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Abstract
Modeling and numerical simulations of Carbonate Karst
reservoirs is a challenging problem due to the presence of
vugs and caves which are connected via fracture networks
at multiple scales. In this paper we propose a unified
approach to this problem by using the Stokes-Brinkman
equations which combine both Stokes and Darcy flows.
These equations are capable of representing porous me-
dia (porous rock) as well as free flow regions (fractures,
vugs, caves) in a single system of equations. The Stokes-
Brinkman equations also generalize the traditional Darcy-
Stokes coupling without sacrificing the modeling rigor.
Thus, it allows us to use a single set of equations to repre-
sent multiphysics phenomena on multiple scales. The local
Stokes-Brinkman equations are used to perform accurate
scale-up. We present numerical results for permeable rock
matrix populated with elliptical vugs. Both constant and
variable background permeability matrices are considered
and the effect the vugs have on the overall permeability is
evaluated. Fracture networks connecting isolated vugs are
also studied. It is shown that the Stokes-Brinkman equa-
tions provide a natural way of modeling realistic reservoir
conditions, such as partially filled fractures.

Introduction
Naturally fractured karst reservoirs presents multiple chal-
lenges for numerical simulations of various fluid flow prob-

lems. Such reservoirs are characterized by the presence of
fractures, vugs and caves at multiple scales. Each individ-
ual scale is an ensemble of porous media, with well defined
properties (porosity and permeability) and a free flow re-
gion, where the fluid (oil, water, gas) meets no resistance
form the surrounding rock [1].

The main difficulty in numerical simulations in such
reservoirs is the co-existence of porous and free flow re-
gions, typically at several scales. The presence of individ-
ual voids such as vugs and caves in a surrounding porous
media can significantly alter the effective permeability of
the media. Furthermore, fractures and long range caves
can form various types of connected networks which change
the effective permeability of the media by orders of mag-
nitudes. An additional factor which complicates the nu-
merical modeling of such systems is the lack of precise
knowledge on the exact position of the interface between
the porous media (rock) and the and vugs/caves. Finally,
the effects of cave/fracture fill in by loose material (sand,
mud, gravel, etc), the presence of damage at the interface
between porous media and vugs/caves and the roughness
of fractures can play very important role in the overall re-
sponse of the reservoir.

The modeling of fractured, vuggy media is tradition-
ally done by using the coupled Stokes-Darcy equations
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. The porous regions is
modeled by the Darcy equation [4, 12], while the Stokes
equation is used in the free flow region. At the interface
between the two, various types of interface conditions are
postulated [2, 3, 4, 5]. All of these interface conditions re-
quire continuity of mass and momentum across the inter-
face. The difference comes when the tangential component
of the velocities at the interface are treated. Each one of
them proposes a different jump condition for the tangen-
tial velocities and/or stresses, related in some way to the
fluid stress. The selection of jump condition is subject to
the fine structure of the interface and the flow type and
regime (c.f. e.g. [13] and the references therein). Further-
more, these jump conditions introduce additional media
parameters that need to be determined. These parameters
can be obtained either experimentally, or computationally.
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There are several aspects of the coupled Darcy-Stokes
approach, which make its application to vuggy reservoirs
complicated. First, good knowledge is required both in the
location of the porous/fluid interface as well as its fine-scale
structure. Such precise information is hard to deduce from
subsurface geological data. Secondly, there is need to ob-
tain, numerically or experimentally values for parameters
related to the interface conditions. Numerical determina-
tion is viable for engineered media, such as oil filters in the
automotive industry, where the fine-scale porous geometry
is known, either by design or can be obtained relatively
easily, for example by 3D tomography. The experimental
approach is more appropriate for subsurface formations,
however, there are many difficulties associated with it. Fi-
nally, the free flow region which represents caves/vugs and
fractures must be free of any obstacles such as loose fill-in
material, and the fluid must also be free of any particle
suspensions which are moving with it.

An alternative way of modeling vuggy media is to
use the Stokes-Brinkman equations [1, 13, 14, 15, 16, 17,
18, 19]. These equations provide a unified approach in
the sense that a single equation with variable coefficients
is used for both porous and free-flow region. Stokes-
Brinkman equations can be reduced to Stokes or Darcy
equations by appropriate choice of the parameters. Since
the different media types are distinguished by selecting the
coefficients of the PDE, there is usually no need to formu-
late specific interface conditions. This is especially help-
ful in reservoir and groundwater flow, where the porous
domain has a complicated topology. The numerical treat-
ment of Stokes-Brinkman equation is simpler, due the lack
of special interface conditions. Also, due to uncertainties
associated with interface locations between vugs and the
rock matrix, Stokes-Brinkman equations introduce a some-
what coarse model that does not require precise interface
locations and avoid local grid refinement issues that are
needed near the interfaces. Finally the Stokes-Brinkman
equations provide a model that can be continuously varied
from a Darcy dominated flow to a Stokes dominated flow,
a feature which allows is to simulate effectively partially
filled fractures or solid particles suspended in the fluid.

The two mathematical models for the fine scale: the
Stokes-Darcy and the alternative proposed in this work,
the Stokes-Brinkman model, are presented next. This is
followed by a short discussion on the upscaling of the
Stokes-Brinkman equation from the fine to the coarse
scale. Two different types of numerical examples are pre-
sented. The first demonstrates that upscaling the Stokes-
Brinkman model works for isolated vugs distributed in a
porous matrix. The second class of examples deal with
interaction between vugs and fracture networks.

Mathematical Models for Vuggy Media at
Multiple Scales
We begin, by considering two scales, a fine and a coarse
one. The fine scale media is composed of a porous region
and a free flow region. The free flow region represents the

vugs, caves and fractures. The porous region, which we
will also refer to as matrix, has a much finer underlying
structure of impermeable solid and pore space where fluid
flow can occur. This fine scale structure is not considered
but an effective response of the porous media is assumed
governed by material parameters such as porosity and per-
meability.

At the coarse scale, on the other hand, the media is de-
scribed mostly by Darcy flow. The fine scale features such
as vugs caves and fractures, along with the surrounding
porous matrix, are replaced by an effective material with
well defined effective permeability and porosity. However
certain features, such as, large, long-range caves (relative
to the fine scale) may still be retained at the coarse scale.
In the later situation, the Stokes-Brinkman model provides
a very natural way of transiting between the scales.

To fix notation, the characteristic length scales of the
fine and coarse scale, are denoted by l and L, respectively.
Next, the usual small parameter ε is introduced [6, 20]:

ε =
l

L
. (1)

Throughout this section, all quantities with superscript ε
are defined on the fine scale, otherwise they are defined on
the coarse scale. Let Ωf be the free flow region, Ωp the
porous region and the interface between the two (exclud-
ing the external boundary) be Γ. Also, the fine scale fluid
velocity is denoted by vε and the fine scale pressure by pε.
In the free flow region, vε represents the actual physical
velocity of the fluid but in the porous region it represents
the Darcy (or averaged) velocity.

Darcy-Stokes The Stokes equation, used to describe the
free flow region, has the form:

∇pε − µ∆vε = f in Ωf , (2)

∇·vε = 0 in Ωf . (3)

The first of these equation expresses the balance of linear
momentum, and the second is the conservation of mass.
Also, recall the fluid stress tensor σ is given by the for-
mula:

σ = −pI + 2µD,

where D is the strain rate:

D =
1
2

(
∇v +∇vT

)
.

In the porous region, one has the classical Darcy law
(c.f. e.g. [12, 6]), along with conservation of mass:

vε = −K
µ

(∇pε − f) in Ωp, (4)

∇·vε = 0 in Ωp. (5)

The two systems need to be coupled at the interface Γ.
There are various ways in which this is achieved. For ex-
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ample, the classical condition of [2] states that:

[v] · n = 0 on Γ, (6)
2µDn = [p] on Γ, (7)

∂vf

∂n
=

αBJ√
K

[v] · ti on Γ. (8)

Here, [·] denotes the jump in a given quantity while mov-
ing from the fluid to the porous side, that is, form some
field φ:

[φ] = φf − φp,

n is a unit normal pointing from Ωf to Ωp and vf is the
velocity in the fluid region. In the above equations, the
first interface condition (6) expresses conservation of mass
across the interface, (7) expresses conservation of momen-
tum, and (8) imposes a slip condition on the tangential
component of the velocity. The dimensionless constant
αBJ is a material property which is representative of the
microstructure (at much smaller scales than l) of the in-
terface. It can be obtained either numerically, if such in-
formation is available or obtained experimentally.

It should be emphasized, that the exact form of the
interface conditions (6)-(8) is an active area of research
[2, 3, 4, 5, 8, 9, 10]. For example, [3] modified equation (8)
to contain only variable in the fluid domain, [4, 5] studied
the interface conditions based on the flow type, e.g. par-
allel or perpendicular to the interface [4, 5] and [8, 9, 10]
studied the mathematical justifications of such interface
conditions. The reader is referred to [13] for a detailed
review.

The Stokes-Brinkman Equation Recall that the fine
scale velocity is denoted by vε and the fine scale pressure
by pε. The Stokes-Brinkman equation for a single phase
flow in a porous/free flow media is written as follows (c.f.
e.g. [14, 13]):

µK−1vε +∇pε − µ∗∆vε = f in Ω, (9)
∇·vε = 0 in Ω. (10)

Here, K is a permeability tensor, which in Ωp is equal to
the Darcy permeability of the porous media, µ is the phys-
ical viscosity of the fluid and µ∗ is an effective viscosity.
The other two parameters - K and µ∗ are selected differ-
ently depending on the media type (porous or free flow)
and are discussed next. It will also be shown that, in the
fluid region, vε represents the actual physical velocity of
the fluid and in the porous region, it is the Darcy velocity.

The physical fluid viscosity µ is a material constant
that defines the fluid under consideration (e.g. water, oil,
etc) and is a uniform constant in the entire domain Ω. In
the fluid region Ωf , K is assumed to be ∞ and µ∗ is taken
equal to the physical fluid viscosity µ:

µ∗ = µ, K = ∞ in Ωf (11)

Observe that this selection of parameters implies that
equations (9), (10) reduce to the Stokes system (2), (3).

In the porous region Ωp, K is taken to be the Darcy
permeability of the porous media. With that, and in the
absence of distributed body force f , equation (9) can be
written as

∇pε = −µK−1vε + µ∗∆vε in Ω, (12)

The reader will recognize that in the last equation, the
only difference with Darcy’s law (4) is the additional vis-
cous term µ∗∆vε. So, if µ∗ is taken equal to zero in Ωp,
then equation (9) reduces to (4). However this will reduce
the Stokes-Brinkman system to the coupled Darcy-Stokes
model. This will entail the difficulties mentioned previ-
ously, which we aim to avoid. Observe, that in most porous
media, K is in the range of milli- to tens of Darcy. Thus,
if µ∗ is of the same order as the physical viscosity µ, that
is

µ∗ ∼ µ

the term µK−1vε in equation (12) dominates by many or-
ders of magnitude µ∗∆vε. Thus, the additional viscous
term introduces only a small perturbation to Darcy’s law.
As a result the simplest possible choice for µ∗ is

µ∗ = µ

which, in complex geometries, uncertain interface location
and lack of knowledge of the micro-scale interface features
is a reasonable choice [13, pg. 26-29]. A different choice
of µ∗ is usually motivated by two factors. First, µ∗ can
be used to provide a more accurate model for the porous
medium than is afforded by Darcy law [15, 17, 19]. Sec-
ondly, the effective viscosity µ∗ can also be used to mimic
various jump condition at the interface, as done by [16, 21].
The reader is again referred to [13, pg. 26-29], for an in-
depth discussion on this subject.

The Stokes-Brinkman equation offers several advan-
tages. First, it allows a unified approach to the ensemble
of porous and free-flow media by formulating a single equa-
tion in the entire domain Ω. The different media types are
distinguished by proper selection of K and µ∗ in equations
(9), (10) and there is no need to formulate specific inter-
face conditions, as in the coupled Darcy-Stokes approach.
This is especially helpful when the porous domain Ωp has
a complicated topology, as is the case in vuggy reservoirs.
The unified approach also translates to significant simpli-
fication in the numerical treatment of equations (9), (10).

Upscaling As was mentioned earlier, vuggy, fractured
reservoirs feature multiple scales, and upscaling is neces-
sary for numerical simulation at the field scale. In this
section, we consider the upscaling of the Stokes-Brinkman
equation from the fine to the coarse scale.

First, we assume that we have a REV which features
both porous and fluid domains. In this case, the coarse
scale equations are Darcy law and conservation of mass.
The short summary presented next is based on two-scale
asymptotic expansion [6, 20]. The procedure is very similar
to the one employed for upscaling the Stokes equation in
an impermeable porous media. The reader is thus referred
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to [22] for technical details. The results are summarized
next. A formal asymptotic expansion of the type

vε(x) = v−2(x,y) + εv−1(x,y) + ε2v0(x,y) + ε3v1(x,y) + . . .
(13)

pε(x) = p0(x,y) + εp1(x,y) + . . . (14)

is substituted in equations (9), (10). By further assuming
that

µK−1 ≥ O
(
ε−2

)
, (15)

one obtains that the first two velocity terms v−2 and v−1

are identically zero and the first term in the pressure ex-
pansion p0 does not depend on the fine-scale variable y,
that is p0 = p0(x).

Next, one obtains a set of cell problems that are used
to compute the effective (or upscaled) permeability of the
REV. Let d be the dimension (2 or 3) and ei be a unit
vector in the i-th direction. The d cell problems needed to
upscale the Stokes-Brinkman equation are:

K−1wi +∇yqi − µ∗

µ
∆ywi = ei in Y, (16)

∇y ·w = 0 in Y. (17)

Here, wi are Y -periodic and the (fine-scale) pressure q has
zero average in Y . The permeability is then computed by
averaging the fine-scale velocities:

Kij := 〈wi
j〉Y =

1
|Y |

∫
Y

widy. (18)

The macroscopic (upscaled) flux is given by the Darcy’s
law:

〈vε〉 = −K
µ

(∇〈pε〉 − f) , (19)

and subject to conservation of mass:

∇·〈vε〉 = 0. (20)

Note that wi, i = 1, ..., d are the fine-scale velocities in
the REV, that is Y , are subject to unit forcing in the re-
spective direction. Since ei can also be transferred to the
pressure term:

∇
(
qi + xi

)
= ∇qi + ei,

one can consider 〈wi〉 as the averaged flux in Y over a unit
pressure drop in the i-th coordinate direction.

The above upscaling works well under the assumption
(15) and that an REV consisting of both porous and fluid
region exists. Assumption (15) is quite general, since typ-
ically K−1 dominates the fluid viscosity by orders of mag-
nitude. When K ∼ ε2µ the Brinkman term in the porous
part of equation (16) is significant. The fine-scale velocities
in the porous and fluid region will be of similar orders and
noticeable mass transfer will occur between the fluid and
solid, regardless of the flow regime. When K � ε2µ, the
Brinkman term in (16) will dominate in the porous part of

Y . As a result, the flow will significantly depend on the ge-
ometry of the REV. For example, in the case of connected
vugs, the flow trough the vugs will dominate any flow in
the porous part and one will essentially be homogenizing
Stokes flow in impermeable media.

It is also possible that the some regions of the fine-
scale domain do not allow upscaling, for example when an
REV contains only a fluid part. This will happen if there
are fluid regions with characteristic size much larger then
l, c.f. equation (1). In such cases one can upscale the part
of the fine scale where suitable mixture of porous media
and vugs exist. Large scale voids on the other hand can
be retained as free flow regions at the coarse scale. Then
one will have a homogenized Stokes-Brinkman equation on
the coarse scale, where the fluid region is represented by
vugs, caves or fractures that cannot be homogenize. The
porous region is the part susceptible to homogenization.
There, the macroscopic velocity and pressure are defined
as the average of the respective fine-scale quantities. In
this way, the Stokes-Brinkman model allows us to upscale
fractured, vuggy media, in a natural way and retaining the
same equation at all scales. This allows successive homog-
enization at multiple scales.

Numerical Experiments
Discretization In order to solve numerically the fine-
scale problem (9), (10), as well as the cell problems
(16), (17) we use a mixed finite element method for the
Stokes-Brinkman equations in the primary variables. We
use Taylor-Hood elements (continuous quadratic velocity
and continuous linear pressure, for more details, see e.g.
[23]) on unstructured grids. The Taylor-Hood element is
one of the few commonly used elements for the Stokes
equation which is also stable for the Stokes-Brinkman
equation [24]. It also provides a good approximation for
both velocity and pressure.

The linear systems resulting from this finite element
discretization are symmetric and indefinite and are solved
using preconditioned conjugate gradient method for the
pressure Schur complement. For more details on these
types of numerical the reader is referred to [23]. The
coarse-scale problems (19), (20) are solved by standard,
conforming finite element method (c.f. e.g. [25]).

Upscaling of randomly distributed, disconnected
vugs In this section we perform numerical examples de-
signed to test the upscaling of the Stoke-Brinkman equa-
tions. We consider a fine scale domain populated with ran-
domly distributed ellipsoidal vugs, shown in Figure 1(a).
The vugs are generally well separated from each other and
not connected. The objective is to compare a fine-scale
reference solution of equations (9), (10) with the coarse
scale model (19), (20).

Two numerical examples are computed. In both exam-
ples the fluid under consideration was water (µ = 1cP ). In
the first example the background permeability was taken
homogeneous in order to understand the effect of the vugs.
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Figure 1: Fine scale domain (a) consisting of porous rock and randomly distributed elliptical vugs (red). The coarse block
partitioning used for upscaling calculations is shown to the right (b).

1E-12

(a) Streamlines and velocity magnitude (b) Variation in the pressure (plotted is p− (1− x))

Figure 2: Fine scale reference solution (homogeneous matrix permeability)

In the second example, a variable background permeability
field was considered.

Homogeneous matrix permeability In the first exam-
ple, the background permeability field is homogeneous with
K = 1mD. We consider no flow at top and bottom sides of
the domain (Figure 1(a)). The flow is driven by a unit pres-
sure drop in the horizontal (x) direction. This is achieved
by setting a 1Pa pressure at the left side and zero at the
right side of the domain. The fine scale solution is shown
in Figure 2.

Next, the whole domain is divided into 5×5 coarse grid
blocks, as shown in Figure 1(b). For each coarse grid, the
upscaled permeability is computed (c.f. the cell problems
(16), (17)). The horizontal component K11 of the per-
meability tensor K is shown in Figure 3(a). We observe
from this figure that in the coarse regions with high con-
centration of vugs, the upscaled permeability is higher. In
Figure 3(b), we plot the corresponding coarse-scale pres-
sure. We have compared this coarse-scale pressure with
the averaged coarse-scale pressure obtained from fine-scale
solution. The relative L2 error was found to be less than
2% and there is no visual difference in the plots. For this

reason, we do not present the plot of averaged fine-scale
pressure field. This result suggests that the proposed up-
scaling method provides accurate coarse-scale solution for
homogeneous background permeability field.

Variable matrix permeability In these numerical tests
a heterogeneous, isotropic background permeability, as
shown in Figure 4(a), is considered. The vug population
(size, shape and locations) are identical to the previous
example (Figure 1(a)). The fine-scale matrix permeability
field is a realization of a stochastic field with prescribed
overall variance (quantified via σ2, the variance of log(k)),
correlation structure and covariance model. It was gener-
ated using the GSLIB algorithms [26], characterized by a
spherical variogram. The field has long correlation length
in the horizontal direction (0.4) and smaller in the vertical
direction (0.1). The boundary conditions are the same as
in the previous example.

In Figures 4(b), 4(c), the fine-scale solution is plot-
ted for velocity and pressure fields. We see from this fig-
ure that the heterogeneous permeability field creates ad-
ditional high flow channels for the vugs which enhances
the connectivity of the media. This is more evident if
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(a) K11 (in mD) (b) Coarse-scale Pressure

Figure 3: Upscaled permeability (left) corresponding coarse-scale pressure (right).

(a) Fine scale permeability (log plot)

1E-12

(b) Streamlines and velocity magnitude (c) Variation in the pressure (p− (1− x))

Figure 4: Heterogeneous fine-scale permeability and reference solution. The background permeability field used at the fine
scale is shown to the left (a). This is a log plot, the actual permeability is k = C exp(·) , where C is selected so that the
average of k is 1mD. The reference solution (b), (c), obtained by the Stokes-Brinkman model.

(a) K11 (in mD) (b) Coarse-scale pressure

Figure 5: Upscaled permeability (left) corresponding coarse-scale pressure (right).
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one compares Figure 2(a) and Figure 4(b). The presence
of background heterogeneous permeability field alters the
streamlines significantly.

The upscaling was performed on the same 5×5 coarse
grid (Figure 1(b)), as in the previous example. Comparing
Figure 3(a) and Figure 5(a), one can also observe that the
upscaled permeabilities are quite different for homogeneous
and heterogeneous background permeabilities. The high-
est permeability in the case of heterogeneous background
permeability is 3.36mD, while the highest permeability in
the case of homogeneous background permeability is only
1.52mD. Moreover, one can also observe different pattern
structure in the graphs of upscaled permeabilities.

The upscaled pressure is computed using upscaled
permeabilities, and the result is depicted in Figure 5(b).
Again, we compared the upscaled pressure with averaged
fine-scale pressure and the relative L2 error is less than 5%
and there is no visual difference between two plots. This
result again suggests that the proposed upscaling method
provides accurate coarse-scale solution for heterogeneous
background permeability field.

Vugs and Fracture Networks In this section, we study
the interaction between vugs and fracture networks. The
effective permeability of a coarse block is computed for two
different types of fracture networks connecting large vugs.
The effects of fracture fill-in are also studied.

Effects of vugs connected by fractures A coarse
block with three large elliptical vugs imbedded inside the
block (REV) is considered. A fracture network connecting
the vugs as well as the boundary of the REV is established.
Three cases were considered:

• Case I: The effective permeability tensor K for the
entire block was computed ignoring all the fractures
(Figure 6(a)).

• Case II: The three fractures connecting the vugs were
included in the computation, but the two cracks con-
necting the vugs to the boundary of the REV were
not included (Figure 6(b)).

• Case III: All the fractures were included in the sim-
ulation (Figure 6(c)).

The simulations were set-up as follows: The coarse block
with dimensions 20 × 20m was used in all simulations.
The matrix had a uniform permeability of Kr = 1mD.
The fractures were straight and had aperture in the range
1.1 − 1.7cm. They also were assumed to have completely
smooth surface. When a fracture was included in the simu-
lation, it was treated as a free flow region (K = ∞). When
a fracture was not included in a simulation it was assigned
the same permeability as the surrounding rock matrix.

The results of the simulations are presented in Table 1.
As expected, Case I is similar to the upscaling calcula-
tions of the precious section. The upscaled permeability
increased by 70%− 90% compared to the background ma-
trix permeability.

The calculation of Case II show that connecting the
vugs by short-range fractures of centimeter size nearly dou-
bled the effective permeability in the horizontal direction
in comparison to the basic Case I. The vertical permeabil-
ity grew by another 20%. The larger increase in horizontal
permeability is probably due to the fact that two of the
three fractures run in that direction. Also, while having
big effect, the effective permeability remained of the same
order as the background matrix permeability (1mD). This
can be easily explained by realizing that the fluid cannot
enter the vugs directly but needs to pass through the ma-
trix, thus the matrix determines the order of magnitude of
the overall permeability.

The results for Case III show permeability about six to
seven orders of magnitude more than the background, ma-
trix permeability. This implies that most of the flow runs
directly trough the fractures and the matrix contributes
very little to the overall flow rate. Note also that the off-
diagonal components are non-zero. This is due to the fact
the REV is not completely symmetric. These results raise
two important questions. First, how to upscale REVs in
the presence of long range fractures. And, secondly, what
other physical effects become important in such situations.

Modeling of Fracture Fill-in There are several fac-
tors that were not included in computing the effective per-
meability of a coarse block with vugs interconnected by
long-range fracture networks. First, the fractures are never
straight line, but instead have complex shape. Moreover,
the fractures aperture is not constant, but can vary along
the length of the fracture. In places a fracture may nearly
close, due to local roughness of its surface. Secondly, the
fracture itself need not be a completely free-flow area, but
instead may have various types of filling, such as mud,
sand, gravel, etc. Both of these factors may alter the flow
rate trough a fracture by orders of magnitude. Addition-
ally, the fluid itself may have significant amount of sus-
pended solid particles, which may alter the flow in a frac-
ture.

In this section we address the problem of modeling
fracture fill-in by means of the Stokes-Brinkman model.
As was mentioned earlier, the permeability of a free flow
region is set to∞ (c.f. equation (11)). However, in the case
of fracture fill-in (partial or full) one may assign a finite
permeability of the fracture. Depending on the type of the
fill-in, the flow in the fracture may resemble Stokes flow
(high porosity fill-in) or Darcy flow (low porosity fill-in).
Thus, if the permeability of the fill-in material is known
one may assign a finite permeability in the fracture and
perform the scale-up.

To investigate the effects of finite permeability in a
filled fracture, we performed a number of numerical sim-
ulation. The geometry under consideration was that of
Case III of the previous section (Figure 6(c)). The basic
matrix permeability was taken to be 1D. The permeability
of the fractures Kf (all five of them) were assigned several
different permeabilities, ranging from the matrix perme-
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Figure 6: Representative cases of vugs and fracture networks.

Table 1: Effective permeabilities for a coarse block with vugs connected by a fracture network.
Case I Case II Case III

Effective Permeability Tensor (mD)
(

1.72 0.0
0.0 1.92

) (
3.35 0.0
0.0 2.37

) (
13.2 −1.35
−1.35 0.14

)
× 106
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Figure 7: Effective permeability (K∗
11 component) of the coarse block as a function of the fracture permeability

ability 1D to ∞. The vugs were always maintained free
flow regions, that is, the permeability there was ∞.

The effective permeability K∗ of the entire block was
computed for each value of Kf . The results are shown in
Figure 7. At the left most end of the graph, the fracture
permeability Kf is equal to that of the matrix, that is the
fractures are completely blocked. It can be seen that Kf

needs to increase by a factor of 100, before a significant
change in K∗ occurs. The region in the right part of the
graph on the other hand, is the free, or nearly free flow re-
gion. This flow regime starts at around Kf ∼ 108 − 109D
and an increase in Kf past that range does not visibly
change K∗. There is a large (six orders of magnitude),
intermediate range of values of Kf (102 − 108D), where
the effective permeability changes smoothly form the low
perm limit (blocked fracture) to the high perm limit (un-
obstructed fracture). Since the difference in K∗ between
blocked, or equivalently, no fractures at all, and unob-

structed fracture is many orders of magnitude, determining
the permeability of the fill in material becomes an impor-
tant task.

Conclusions
The results of Section demonstrate that a fine-scale model
based on Stokes-Brinkman equations can be used to de-
scribe the flow through vugular porous media. Our up-
scaled results show that the heterogeneous background
permeability field can give very different results compared
to homogeneous background permeability with the same
vug locations. In particular, the presence of high per-
meability channels connecting the vugs can increase sub-
stantially the overall permeability. The numerical tests
also show that the proposed upscaling to Darcy law at the
coarse scale is accurate in the case of isolated vugs.

The results of Section demonstrate that the presence
of short-range fracture network connecting large vugs can
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change the effective permeability of a coarse block by a
factor of 2-4. However, the effective permeability remains
of the same order of magnitude and upscaling such media
poses no challenges. On the other hand, long range, large
aperture, fractures, may change the effective permeability
by many orders of magnitude. In such cases secondary ef-
fects, such as fracture fill-in and roughness become impor-
tant and need to be included in the fine-scale simulations.
If the fractures are unobstructed and the resulting effec-
tive permeability is very high it may be necessary to con-
sider more complex coarse-scale models which involve near
well modeling and/or iterative homogenization as done by
[27, 28].

It was also shown, that the Stokes-Brinkman equa-
tions allow the simulation of high porosity, but finite per-
meability fill-in regions in fractures and caves in a natural
way. This feature of the Stokes-Brinkman model can be ex-
tended to also capture uncertainty in the interface location,
damage zones near the interface and particle suspension in
the working fluid.
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appliquées aux sciences de l’ingénieur (Santiago, 1989),
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