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Presentation outline

■ Brief overview of numerical methods for Hamilton-Jacobi
equations

■ A conforming, piecewise quadratic scheme on triangular
meshes, with local evolution for Hamilton-Jacobi equations

■ Numerical examples
■ Conclusions
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The Hamilton-Jacobi Equation

■ We are interested in computing numerical solutions to the
Cauchy problem for the Hamilton-Jacobi equation:

ut(x, t) + H(x,∇u) = 0 for ∀(x, t) ∈ R
n × [0, T ] (1)

u(0,x) = ũ(x) for ∀x ∈ R
n

■ Applications
◆ Plasma processes in semiconductor industry
◆ Image processing
◆ Optimal Control
◆ Problems with evolving interfaces: crack growth,

multiphase flow, etc.
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Theoretical Background

■ There exist infinitely many Lipschitz-continuous solutions to (1).
■ Uniqueness is obtained by considering viscosity solutions:

uε
t + H(x,∇uε) = ε∆uε (2)

The (uniform) limit uε → u when ε → 0, ε > 0, if it exists, is called a viscosity
solution of (1).

■ Assume that H satisfies the assumptions:
1. |H(x,p) − H(y,p)| ≤ C |x − y| (1 + |p|)

2. |H(x,p) − H(x,q)| ≤ C |p− q|
Then the Hamilton-Jacobi equation (1) admits a unique viscosity solution.
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Semi-discrete methods in 1D

■ At time t = tn, find an interior to each
cell, where the solution will remain
smooth for the entire duration dt of the
time step.

■ Use the smooth interior solution to
reconstruct a value for the solution at the
mesh nodes. 1−ix ix 1+ix−

+1ia+
ia

),( ntxu
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■ Take the limit dt → 0 and derive an ODE for the cell nodes. For example
(Bryson, et al):
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■ The ODE is defined only for the mesh nodes, but not the midpoints!
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Semi-discrete methods in 1D (cont.)

■ Given the known piecewise quadratic approximation of the solution at t = tn,
make one time step of the ODE to obtain values at the mesh nodes, i.e.
u(xi, tn+1).

■ Based on the computed u(xi, tn+1), reconstruct the values at the midpoints
u(xi+ 1

2

, tn+1) by minimizing convexity, i.e., minmod limiter scheme:
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Numerical methods in 2D

■ ENO (Essentially Non-oscillatory Methods), WENO
(Weighted ENO) (e.g. Osher, Sethian, Shu).

■ Semi-discrete methods on structured grids with line
reconstructions (e.g. Bryson, Kurganov, Levy, Petrova)



November 15, 2006 IMACS 2006, College Station, TX 2006 - p. 8/18

Current Method: Basic Idea

■ Use a piecewise quadratic, conforming approximation of
u(:, t) on triangles, for any given time t.

■ Every time-step consists of the following substeps:
◆ Local evolution of the the solution in the interior of each

triangle
◆ Reconstruction of the solution on the original grid (vertices

and midpoints) from the interior quadratic polynomials
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Local Evolution

■ For each element e, select an interior
triangle, homothetic to e, such that the
solution remains smooth for the duration of
the time step.

■ Let uint
e be the restriction of u(·, tn) over this

interior triangle.

ee

■ Evolve each interior restriction uint
e by a suitable integrator, that is, solve

numerically
duint

e

dt
= −H(x,∇uint

e ) (4)

by a second order method to obtain uint
e (·, tn+1).

■ At the end, one has an piecewise quadratic, discontinuous approximation to
the solution at t = tn+1
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Reconstruction I: node based

■ For each triangle e, construct the interior and
exterior interpolants uint

e and uext
e ,

respectively.
■ Choose the interpolant which has lower

convexity
■ For each node v (vertex or midpoint),

consider all upwind triangles
{

ei
v

}

i∈Uv

and
let uv be the one with lowest convexity.

■ The nodal value at v is assigned the value of
the upwind interpolant with lowest convexity,
that is,

u(v, tn+1) = uv(v).

e

1e
2e

1e
2e

When the above procedure is repeated for all vertices and midpoints, one has a
continuous, piecewise quadratic approximation of u at time step t = tn+1
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Reconstruction II: triangle convexity

■ For each triangle e, consider the values of
the interior interpolant uint

e as data.
■ Use the values inside e and its neighbors to

generate quadratic functions which
interpolate six of the data points.

■ Choose the approximant inside e which has
lowest convexity from the admissible set of
quadratic functions

■ For each node v (vertex or midpoint), the
value assigned is the average of all
approximants

ee

When the above procedure is repeated for all nodes, one has a unique
continuous, piecewise quadratic interpolant of the data which is our
approximation of u at time step t = tn+1
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Numerical Examples: Linear Transport

Linear transport (H(ux, uy) = ux + uy), h = 0.08, dt = 0.01

Initial Condition T=0T=0 T=0.25T=0.25

T=0.5T=0.5 T=1T=1T=0.75T=0.75
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Numerical Examples: Linear Transport

Linear transport (H(ux, uy) = ux + uy), h = 0.2, dt = 0.01

T=0 T=0.5 T=1
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Numerical Examples: Quadratic Hamiltonian

Nonlinear and convex Hamiltonian (H(ux, uy) = u2
x + u2

y), h ≈ 0.2, dt = 0.0025,
Smooth initial data.

T=0 T=0.15 T=0.4
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Table 1: Relative L1 error

T h, dt h/2, dt/2

Rec I Rec II Rec I Rec II

0.1 0.026 0.021 0.0064 0.004

0.15 0.034 0.024 0.0078 0.0046

0.2 0.040 0.028 0.0099 0.0058

0.3 0.054 0.038 0.014 0.0079

0.4 0.071 0.048 0.019 0.011
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Numerical Examples: Quadratic Hamiltonian

Nonlinear and convex Hamiltonian (H(ux, uy) = u2
x + u2

y), h ≈ 0.2, dt = 0.0025,
Non-smooth initial data, Reconstruction I.

T=0 T=0.05 T=0.1 T=0.2 T=0.5
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Numerical Examples: Quadratic Hamiltonian

Nonlinear and convex Hamiltonian (H(ux, uy) = u2
x + u2

y), h ≈ 0.2, dt = 0.0025,
Non-smooth initial data, Reconstruction II.

T=0 T=0.05 T=0.1 T=0.2 T=0.5T=0 T=0.05 T=0.1 T=0.2 T=0.5
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Numerical Examples: 2D Burgers

Nonlinear and convex Hamiltonian (H(ux, uy) = 1

2
(ux + uy + 1)2), 30 × 30 grid,

Ω = [−2, 2]2, dt = 0.0025, Reconstruction II.

Initial condition: u(x) = −

1

2
cos(π(x + y)) Solution at t = 1.5/π.
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Conclusions

■ The proposed fully discrete method solves successfully
linear and convex Hamilton-Jacobi equations on
unstructured triangular grids

■ The method is exact for quadratic polynomials.
■ Numerical experiments suggest that the reconstruction used

is successful at limiting the convexity of the solution.
■ A further analysis of the algorithm is needed to understand:

◆ Stability of solution with respect to mesh parameters
◆ Behavior of algorithm for non-convex Hamiltonians
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