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Presentation outline

Brief overview of numerical methods for Hamilton-Jacobi
equations

= A conforming, piecewise quadratic scheme on triangular
meshes, with local evolution for Hamilton-Jacobi equations

= Numerical examples
Conclusions
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The Hamilton-Jacobi Equation

= \We are interested in computing numerical solutions to the
Cauchy problem for the Hamilton-Jacobi equation:

us(x,t) + H(x,Vu) =0 forvV(x,t) e R" x [0,T] (1)
u(0,x) =u(x) forvx e R"

= Applications
0 Plasma processes in semiconductor industry
0 Image processing
0 Optimal Control
0 Problems with evolving interfaces: crack growth,
multiphase flow, etc.
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Theoretical Background

= There exist infinitely many Lipschitz-continuous solutions to (1).
= Uniqueness is obtained by considering viscosity solutions:

u; + H(x, Vu®) = eAu 2)
The (uniform) limit v* — v when e — 0, € > 0, If it exists, is called a viscosity

solution of (1).

= Assume that H satisfies the assumptions:
1. |H(x,p) — H(y,p)| < Clx—y|(1+ |p])
2. |H(x,p) — H(x,q)| < C|p—q
Then the Hamilton-Jacobi equation (1) admits a unique viscosity solution.

November 15, 2006 IMACS 2006, College Station, TX 2006 - p. 4/18




Semi-discrete methods in 1D

Solution remains

: smooth u(x, tn+1)

s At time t = ¢,,, find an interior to each
cell, where the solution will remain
smooth for the entire duration dt of the
time step.

s Use the smooth interior solution to

reconstruct a value for the solution atthe | | :
mesh nodes. X, X . _X,
oA Ayt
= Take the limit dt — 0 and derive an ODE for the cell nodes. For example
(Bryson, et al):

dug(, \_ apH(up) +of H(up)
at - " a:“—l—az

_ ‘I‘ ~ ~ _
_ ] Ul — Uy Uy — U
+ a; a,f ‘i ~ — minmod jﬁ = _a; = (3)
a, +a; a, +a, a;, +a,

1

= The ODE is defined only for the mesh nodes, but not the midpoints!
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Semi-discrete methods in 1D (cont.)

= Given the known piecewise quadratic approximation of the solution at ¢t = ¢,,,
make one time step of the ODE to obtain values at the mesh nodes, i.e.
u(z;, tna1).

= Based on the computed u(x;,t,11), reconstruct the values at the midpoints
u(xiJr%,thrl) by minimizing convexity, i.e., minmod limiter scheme:

Xi—l XI )(l+1 Xi+1 Xi Xi+2
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Numerical methods in 2D

= ENO (Essentially Non-oscillatory Methods), WENO
(Weighted ENO) (e.g. Osher, Sethian, Shu).

= Semi-discrete methods on structured grids with line
reconstructions (e.g. Bryson, Kurganov, Levy, Petrova)
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Current Method: Basic Idea

= Use a piecewise quadratic, conforming approximation of
u(:,t) on triangles, for any given time t¢.
= Every time-step consists of the following substeps:
0 Local evolution of the the solution in the interior of each
triangle
0 Reconstruction of the solution on the original grid (vertices
and midpoints) from the interior quadratic polynomials
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Local Evolution

m For each element e, select an interior
triangle, homothetic to ¢, such that the
solution remains smooth for the duration of
the time step.

= Let u"* be the restriction of u(-, t,,) over this
Interior triangle.

= Evolve each interior restriction «** by a suitable integrator, that is, solve

numerically
d int .
7“;‘; = —H(x, Vu"") (4)

by a second order method to obtain u!™(-, ¢, 1).

= At the end, one has an piecewise quadratic, discontinuous approximation to
the solution at ¢t = ¢,, 41
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Reconstruction |I: node based

= For each triangle e, construct the interior and
exterior interpolants »"* and ut*?,
respectively.

= Choose the interpolant which has lower
convexity

= For each node v (vertex or midpoint),
consider all upwind triangles {ef,}ier and
let u,, be the one with lowest convexity.

= The nodal value at v is assigned the value of
the upwind interpolant with lowest convexity,

that is,

u(v,the1) = uy (V).

When the above procedure is repeated for all vertices and midpoints, one has a
continuous, piecewise quadratic approximation of v at time step ¢t = t,,+1
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Reconstruction lI: triangle convexity

= For each triangle e, consider the values of
the interior interpolant '™ as data.

= Use the values inside e and its neighbors to
generate quadratic functions which
Interpolate six of the data points.

= Choose the approximant inside e which has
lowest convexity from the admissible set of
guadratic functions

= For each node v (vertex or midpoint), the
value assigned is the average of all

approximants
When the above procedure is repeated for all nodes, one has a unique

continuous, piecewise quadratic interpolant of the data which is our
approximation of v at time step ¢t = ¢,,14
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Numerical Examples: Linear Transport

Linear transport (H (uy, uy) = uzy + uy), h = 0.08, dt = 0.01

Initial Condition
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Numerical Examples: Linear Transport

Linear transport (H (uy, uy) = uy + uy), h = 0.2, dt = 0.01
T=1

T=0 T=0.5

Solution

Error
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Numerical Examples: Quadratic Hamiltonian

Nonlinear and convex Hamiltonian (H (u,u,) = u2 + ug), h ~ 0.2, dt = 0.0025,

Smooth initial data.

=
el
E Table 1: Relative L, error
0
5
g
T h, dt h/2, dt/2
Rec | Rec Il Rec | Rec Il
E 0.1 | 0.026 | 0.021 | 0.0064 | 0.004
S 0.15 | 0.034 | 0.024 | 0.0078 | 0.0046
0
5 0.2 | 0.040 | 0.028 | 0.0099 | 0.0058
(O]
x 0.3 | 0.054 | 0.038 | 0.014 | 0.0079
0.4 | 0.071 | 0.048 | 0.019 | 0.011
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Numerical Examples: Quadratic Hamiltonian

Nonlinear and convex Hamiltonian (H (u, u,) = uj + u;), h ~ 0.2, dt = 0.0025,
Non-smooth initial data, Reconstruction |I.

T=0 T=0.05 17=0.1 _ 17=0.2 T=0.5
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Numerical Examples: Quadratic Hamiltonian

Nonlinear and convex Hamiltonian (H (u,u,) = u2 + u,z), h ~ 0.2, dt = 0.0025,
Non-smooth initial data, Reconstruction II.
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2D Burgers

Numerical Examples
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Conclusions

= The proposed fully discrete method solves successfully
linear and convex Hamilton-Jacobi equations on
unstructured triangular grids

= The method is exact for quadratic polynomials.

= Numerical experiments suggest that the reconstruction used
IS successful at limiting the convexity of the solution.

= A further analysis of the algorithm is needed to understand:
0 Stability of solution with respect to mesh parameters
0 Behavior of algorithm for non-convex Hamiltonians
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