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a b s t r a c t

Approximate solutions to nonlinear diffusion systems are useful for many applications in computational
science. When the heterogeneous nonlinear diffusion coefficient has high contrast values, an average
solution given by upscaling the diffusion coefficient provides the average behavior of the fine-scale solu-
tion, which sometimes is infeasible to compute. This is also related to a problem that occurs during
numerical simulations when it is necessary to coarsen meshes and an upscale coefficient is needed in
order to build the data from the fine mesh to the coarse mesh. In this paper, we present a portable
and computationally attractive procedure for obtaining not only the upscaled coefficient and the zer-
oth-order approximation of nonlinear diffusion systems, but also the first-order approximation which
captures fine-scale features of the solution. These are possible by considering a correction to an approx-
imate solution to the well known periodic cell-problem, obtained by a two-scale asymptotic expansion of
the respective nonlinear diffusion equation. The correction allows one to obtain analytically the upscale
diffusion coefficient, when the heterogeneous coefficient is periodic and rapidly oscillating describing
inclusions in a main matrix. The approximate solutions provide a set of analytical basis functions used
to construct the first-order approximation and also an estimate for the upper bound error implied in
using the upscaled approximations. We demonstrate agreement with theoretical and published numer-
ical results for the upscale coefficient, when heterogeneous coefficients are described by step-functions,
as well as convergence properties of the approximations, corroborating with classical results from
homogenization theory. Even though the results can be generalized, the emphasis is for conductivity
functions of the form Kðx;uðxÞÞ ¼ KsðxÞkrðuðxÞÞ, widely used for simulating flows in reservoirs.

Published by Elsevier B.V.
1. Introduction based on the two-scale method presented in Bensoussan et al.
Many important problems in science and engineering fields
such as material science, earth and environmental sciences, petro-
leum and chemical engineering, involve solving a nonlinear diffu-
sion equation with highly oscillating heterogeneous coefficients.
One example occurs in modeling flow and transport in natural por-
ous media since geological formations are characterized by heter-
ogeneity at multiple length scales. These problems are often
difficult to solve by direct numerical simulation due to their expen-
sive computational requirements. Because of that, upscaling or
homogenization techniques are often employed in order to obtain
macroscopic approximations of the flow behavior and to minimize
computational efforts.

Existing upscaling techniques for flow through porous media
are reviewed in Hornung [14]. Our multiscale approximation is
B.V.
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[4], Sanchez-Palencia [24], Jikov et al. [17], and Bourgeat [6] among
many others.

The problem in obtaining multiscale approximations starts with
computing the zeroth-order approximation or the averaged macro-
scopic flow behavior. If each grid block represents one type of het-
erogeneity, such as the example presented in [2], the
computational cost involved in obtaining the effective coefficient
may exceed the cost of solving the fine-scale problem. Moreover,
it often requires special code design, which may also add to coding
time and reduce performance. Because of such constraints, obtain-
ing the macroscopic solution of a given nonlinear system, feasible
for field scale simulations, is still a challenging problem. Intensify-
ing further the challenge is the addition of small scales features
into the solution, given by the first-order approximation. Therefore
it is desirable to develop a portable algorithm, applicable to exist-
ing codes, that not only captures the macroscopic behavior, but
also adds fine-scale features into the solution of a generalized non-
linear solution.

The goals of this paper are two-fold. First, an analytical
closed form approximation of the effective macroscopic diffusion
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coefficient is proposed for nonlinear diffusion equations that are
relevant to flow in porous media. The approach also leads to an
analytical approximation to the cell solutions, used to construct a
first-order approximation to the fine-scale nonlinear solution. Sec-
ondly, we demonstrate, by numerical means, convergence proper-
ties for both the zeroth and first-order approximations to the fine-
scale solutions, that corroborates theoretical convergence results
from the classical literature.

The results are based on an analytical approximation to the
solutions of the canonical cell problems for the diffusion equation
(c.f. e.g. [4,7,17,24]). The approximation was proposed in Sviercoski
et al. [25] for linear diffusion equation with step function coeffi-
cients including periodic fine-scale geometries, leading to an effec-
tive coefficient in agreement with the lower bound of the
generalized Voigt–Reiss’ inequality [17, Eq. 1.74]. The advantage
of the current approach is that in addition to the macroscopic coef-
ficient it also provides an approximation to the solution of the
canonical cell-problems and thus can be used to construct first-or-
der correctors. For the class of nonlinear problems under consider-
ation, the analytically upscaled coefficient is computed only once
and then used in the solution to the nonlinear diffusion equation,
implying significant savings in computational effort, compared to
general nonlinear solver formulations. Moreover, an indicator for
an upper bound estimate of the error between the exact fine-scale
solution and the approximations is proposed. The results presented
are an extension of the linear case from Sviercoski et al. [26].

Among many numerical multiscale approaches applicable to
the nonlinear case, a certainly non exhaustive list includes the var-
iational approaches [3,16], adaptive modeling algorithms [20], the
domain decomposition [22], the two-grid technique [30] and the
equivalent block permeability by numerical means [1,2,9]. Our re-
sult can be considered as an analytical version of the nonlinear
multiscale finite element method (MsFEM) of Efendiev et al. [10–
13]. The MsFEM provides a way of obtaining a numerical first-or-
der solution by constructing a finite element basis function from
a numerical solution of the cell-problem built into the coarse scale
through the global stiffness matrix. Here, the differences are: the
effective coefficient is explicitly computed by analytical means,
and an analytical approximation to the basis function is applied,
which is the major advantage here since in practice, a large amount
of overhead time comes from constructing basis functions [15].
Moreover the approximation for the basis function is obtained
for the whole domain; it is a local–global approach that avoids res-
onance errors reported in Hou et al. [15]. Another advantage com-
pared with other multiscale numerical procedures, is the ability to
get an estimate for the upper bound error (UBE) implied in using
the approximations. Error estimates are very important in multi-
scale modeling, and the approach presented here can be further
exploited in the context of adaptive modeling algorithms, such as
Oden et al. [20].

The nonlinear diffusion system, considered in this paper, as-
sumes that the conductivity function is of the form
Kðx;uðxÞÞ ¼ KsðxÞkrðuðxÞÞ, and krðuðxÞÞ is the same form throughout
the domain in consideration. This form of nonlinearity is com-
monly used in Petroleum Engineering and Soil Sciences [29], where
Darcy’s law describes the velocity of a wetting front. Moreover, the
system is such that the capillary forces are dominant, meaning that
the flow behavior has a finite Peclet number. Theoretical results for
upscaling such systems are presented in Bourgeat [6], and litera-
ture herein. The fact that we present results for periodic media
might be a limitation of the procedure, however it is a necessary
step towards generalized cases. Because the first-order approxima-
tion is proposed, there is no constraint regarding the separation of
scales, which is the case when only the zeroth-order is considered.

Besides flow in porous media, the method applies to other areas
and aspects of computational sciences, such as effective diffusivity
when averaged concentration is considered and, elastic modulus,
when averaged displacement needs to be calculated [24]. The re-
sults have also the potential to be applied to multilevel iterative
solvers [21].

The paper is organized as follows: In Section 2, we briefly re-
view homogenization theory and the main results that will be used
in the paper. In Section 3, we review recent analytical results that
allow one to obtain an upscaled coefficient and a first-order
approximation. In Section 4, we present numerical results by first
comparing the upscaled value with analytical and numerical re-
sults from the literature and second, demonstrating numerically
convergence properties, by using different types of boundary con-
ditions and nonlinearity relationships. Moreover, one of the exam-
ples includes gravity forcing. The oscillating coefficients are,
without loss of generality, described by square and circular inclu-
sions (in 2-D) in a primary matrix, with contrast ratios being
1000:1, 1:100, 1e�07:1e�02.

2. Diffusion in nonlinear periodic media

In this section, we consider the nonlinear diffusion boundary
value problem (BVP) in e-periodic heterogeneous media:

�r � ðKeðx; ueÞrueðxÞÞ ¼ f ðxÞ x 2 X; ð1Þ
ueðxÞ ¼ gðxÞ x 2 @X; ð2Þ

where ueðxÞ ¼ uðe�1xÞ and e ¼ l
L is the scale parameter defined as the

ratio between the characteristic length of the small structure, l, and
the macroscopic length scale L. The conductivity function is the
diagonal matrix:

Keðx;ueÞ ¼ Keðx; ueÞI ¼ Ke
sðxÞkrðueðxÞÞI: ð3Þ

where I is the identity matrix and Ke
sð�Þ is the known saturated

hydraulic conductivity or absolute permeability which quantifies
the ability of the medium to transmit any single-phase fluid and,
the superscript e denotes that this coefficient is the periodic part
of Ke. The scalar function krð�Þ is the relative permeability, which de-
pends on the pressure (through saturation) to account for the wet-
ting phase and is usually obtained by laboratory experiments,
having parameters reflecting the soil type [29]. The fluid velocity
is related to the pressure field through Darcy’s law:

qeðxÞ ¼ � 1
l

Keðx; ueÞrueðxÞ; ð4Þ

where l is the fluid viscosity.
Next the classical upscaling of the above equation is described.

We introduce the fast variable y ¼ e�1x ¼ ðy1; y2; . . . ynÞ 2 Y ¼
½0;1�n, and the formal two-scale asymptotic expansion of (1)
[4,24,28], is considered:

ueðxÞ ¼ u0ðx; yÞ þ eu1ðx; yÞ þ e2u2ðx; yÞ þ . . . ; ð5Þ

where each term uiðx; yÞ is periodic in y. By substituting (5) into (1),
and identifying powers of the small parameter e we obtain the
homogenized system as well as the canonical cell problems.

The formal derivation is not readily available in the literature
for nonlinearities of the type (3), and for the sake of clarity, it is gi-
ven in Appendix A. Here we summarize the main results. The zer-
oth-order u0 is found to depend on x only and satisfies the
macroscopic equation (c.f. Eq. (46) Appendix A):

�r � ðK0ðu0ðxÞÞru0ðxÞÞ ¼ f ðxÞ x 2 X;

u0ðxÞ ¼ gðxÞ x 2 @X; ð6Þ

where the upscaled Darcy’s velocity is given by:

q0ðxÞ ¼ � 1
l

K0ðu0ðxÞÞru0ðxÞ: ð7Þ
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The upscaled coefficient K0 satisfies (c.f. Eq. (48)):

K0
ijðu0ðxÞÞ ¼ krðu0ðxÞÞ

Z
Y

KsðyÞ dij þ
@wi

@yj

 !
dy; ð8Þ

where dij is the Kronecker delta and the scalar fields wiðyÞ,
i ¼ 1; . . . ;n are the y-periodic solutions to the n cell-problems:

ry � ðKeðy;u0ðxÞÞrywiðyÞÞ ¼ �ry � ðKeðy; u0ðxÞÞeiÞ y 2 Y; ð9Þ

where ei, i ¼ 1; . . . ; n is the ith coordinate direction. Because of the
multiplicative form of conductivity (3), the last equation simplifies
to give

ry � ðKsðyÞrywiðyÞÞ ¼ �ry � ðKsðyÞeiÞ y 2 Y; ð10Þ

and the form (8) follows. Thus, the cell problem involves only the
absolute permeability Ks and is of the same type as the canonical
cell problems for the linear diffusion equation. It should be noted
that if the multiplicative decomposition (3) did not hold one would
instead have cell problems that are coupled to the coarse scale Eq.
(6). The theoretical justification for (6)–(10), based on a fine-scale
coefficient of the type (3) can be found in Bourgeat [6] who demon-
strated that in the limit e ! 0:

ueðxÞ ! u0ðxÞ in L2ðXÞ; ð11Þ
KeðueðxÞÞrueðxÞ * K0ðu0ðxÞÞru0ðxÞ in ðL2ðXÞÞn: ð12Þ

Because we emphasize numerical convergence properties, we con-
strain ourselves to the Hilbert Space LpðXÞ for p ¼ 2, but analogous
results follow for 1 6 p <1. We also recall that if a function and its
derivative belongs to L2ðXÞ, then it belongs to the subspace H1ðXÞ.
Functions in H1ðXÞ have a higher degree of smoothness compared
to the ones belonging only to L2ðXÞ. An illustration of the difference
between functions on each of these spaces is shown in Fig. 1 ahead.
Now, strong convergence is achieved for the solution itself but only
weak convergence is proven for the flux. A reminder of the differ-
ence between these two types of convergence can be given by con-
sidering the function f eðxÞ ¼ sinðe�1xÞ, which converges weakly in
L2 to f 0ðxÞ ¼ 0 but the convergence is not in the strong sense. This
will be also revealed in the examples on Section 4.2.

The limiting or upscale solution, u0ðxÞ, provides a smooth
approximation to ueðxÞ (see Fig. 6). In order to obtain an approxi-
mation that captures fine-scale details of ueðxÞ, one retains the first
two terms in the expansion (5), denoted by the subscript ‘‘1” to not
confuse with the first-order term of the expansion, as:

ue
1 ¼ u0ðxÞ þ eu1ðx; yÞ; ð13Þ

where eu1ðx; yÞ is defined as:

eu1ðx; yÞ ¼
Xn

i¼1

wiðy; u0ðxÞÞ @u0ðxÞ
@xi

: ð14Þ

The solutions wiðy;u0ðxÞÞ of Eqs. (9) and (10) contain fine-scale fea-
tures and are used as basis functions to construct the first-order
expansion of ueðxÞ.

The following two-scale expansion for the gradient is known for
the linear case (c.f. [7] and literature herein):

rueðxÞ ¼ ru0ðxÞ þ eru1ðx; yÞ þ . . . :

¼ ru0ðxÞ þ ryu1ðx; yÞ þ erxu1ðx; yÞ þ . . . :

¼ ru0ðxÞ þ rywðyÞru0ðxÞ þwrðru0ðxÞÞ þ . . .

¼ ðIþrywðyÞÞru0ðxÞ þ ewrðru0ðxÞÞ þ . . . ; ð15Þ

where w ¼ ðw1; . . . ;wnÞ, ryw ¼ @w
@y1
; . . . ; @w

@yn

� �t
, and

@w
@yi
¼ @w1

@yi
; . . . ; @wn

@yi

� �
.

From the last equation, a corrector function to the gradient is
defined as the matrix
CðyÞ ¼ IþrywðyÞ: ð16Þ

Also, from ([7], Th. 8.6) we know that:

krueðxÞ � CðyÞru0ðxÞk2 ! 0inðL2ðXÞÞn: ð17Þ

The corrector CðyÞ incorporates fine-scale features into ru0ðxÞ,
allowing an approximation in the strong sense to rueðxÞ.

Even though (15)–(17) were developed for the linear case, the
result will be applied, in the next section, to the nonlinear case pre-
sented in this paper. To get there, we will first present an analytical
approximation to the cell problem (10) and a corrector term, de-
rived from CðyÞ, leading to an approximation to the effective coef-
ficient (8) and (6). Based also on this corrector, approximations will
follow for the basis function, for the first-order term u1ðx; yÞ (14),
and for the gradient and flux.

3. Analytical approximations

The analytical result presented in this section is based upon a
closed form approximation to the solution of the cell problem
(10). Let us first define the function

Giðy1; . . . ; yi; . . . ; yn;u
0Þ ¼

Z yi

0

ds
Kðy1; . . . ; yi�1; s; yiþ1; . . . ; yn;u0Þ ;

and note that the harmonic average, Hi, in the ith coordinate direc-
tion is:

Hiðy1; . . . ; yi�1; yiþ1; . . . ; yn; u
0Þ ¼

Z 1

0

dyi

Kðy1; . . . ; yn;u0Þ

� ��1

:

Observe, that Hiðy1; . . . ; yi�1; yiþ1; . . . ; yn;u0Þ ¼ Giðy1; . . . ;1; . . . ; yn;u0Þ�1.
Now, let us define the general approximation ~wi to the solution of
the ith cell problem (10) as:

~wiðyÞ ¼ Giðy1; . . . ; yi; . . . ; yn; u
0Þ

Giðy1; . . . ;1; . . . ; yn; u0Þ � yi ¼
Z yi

0

dyi

KsðyÞ

Z 1

0

dyi

KsðyÞ

� ��1

� yi:

ð18Þ

This construction follows the same approach as [25], where a linear
diffusion equation with heterogeneous coefficients is considered.
Note that, while in the current work Gi and Hi depend on u0, thanks
to (3) this dependence cancels out and ~wi is a function of y only.
This is consistent with Eq. (9) reducing to the equivalent (10).

The function defined in (18) is an n-dimensional approximation
to the solutions of the cell problems (10). In some special cases,
such as one-dimensional media, layered media, or media with spa-
tially separable coefficient K, this approximation reduces to the
respective exact solution, as described below:

(R1) – In 1-D, one can directly verify that ~w1ðyÞ solves (10). Fur-
thermore, by substituting it into (8) the well known harmonic
average H1 is obtained for the upscaled coefficient K0

s (c.f. e.g.
[14]).
(R2) – When KsðyÞ describes a layered media, then the substitu-
tion of (18) into (8), leads to the known diagonal tensor (c.f. e.g.
[14]) with the arithmetic average of KsðyÞ as the components in
directions parallel to the layers and the harmonic average of
KsðyÞ in the direction perpendicular to the layers. Indeed, sup-
pose without loss of generality, that the media has layers per-
pendicular to the y1 direction, then the harmonic average H1

is a constant and substituting (18) into (8) yields H1 as the
upscaled component in that direction. For i – 1, ~wiðyÞ ¼ 0 and
(8) yields the arithmetic average of KsðyÞ as the upscaled com-
ponent in those directions.
(R3) – If KsðyÞ ¼ PikiðyiÞ, that is, a spatially separable coeffi-
cient, then (18) will give the effective coefficient as the diagonal



Fig. 1. Top: Analytical approximations ~wiðe�1xÞ 2 L2ðXÞ for e ¼ 0:25 and e ¼ 0:125, meaning 4 and 16 square inclusions, respectively, and inclusion ratio 10:1. Bottom their
numerical counterpart, wiðe�1xÞ 2 H1ðXÞ. Observe that their main heterogeneity features, such as number of critical points, maximum and minimum values, and the zero
mean, are preserved. The main difference is the smoothness.
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matrix with entries given as the arithmetic average of the har-
monic average ([17, Eq. 1.28]).

In Sviercoski et al. [25], it has been shown that when KsðyÞ is gi-
ven as a step function coefficient, then ~wiðyÞ 2 L2ðYÞ is an approx-
imation to (10). Furthermore, when the coefficient is
symmetrically centered in the Y-cell, meaning that KsðyÞ is periodic
with center of mass being at half of the period and invariant under
p=2 rotation, the results follow:

(R4)
R

Y
~wiðyÞdy ¼ 0.

(R5)
R

Y KsðyÞ @ ~wi

@yj
dy ¼ 0 for j – i:

(R6)
R

Y
~wiðyÞ ~wjðyÞdy ¼ 0 i – j:

Even though these results were applied to step function coeffi-
cients, here this condition is generalized to any type of coefficient
functions such that the heterogeneity is symmetrically centered in
the unit cell. (R4)–(R6) also justify the choice of ~wiðyÞ, i ¼ 1; . . . ;n
as candidates to the basis functions in (13). Note that ~wiðyÞ can
be defined on the whole domain X, not only over the cell Y, and be-
cause of the periodicity, the same results above apply to X. A com-
parison between wiðyÞ 2 H1ðXÞ, the solution to (10), and its
approximation ~wiðyÞ 2 L2ðXÞ is illustrated in Fig. 1, for the particu-
lar case when the inclusions have a square shape. Note that they
agree in most of the features, including number of critical points,
maximum, minimum and zero mean values. They differ in
smoothness.

The substitution of (18) into the integrand of (8) and (R5) leads
to:

eK ðu0ðxÞÞ ¼ diag
Z

Y
H1ðyÞdY ; . . . ;

Z
Y

HnðyÞdY
� �

krðu0Þ

¼ eK skrðu0Þ ð19Þ

and the following result holds:

(R7) eK s is the lower bound of the generalized Voigt–Reiss’
inequality (Jikov et al. [17, Eq. 1.74]):eK s 6 K0

s 6 Ku
s ; ð20Þ

where the upper bound is defined as Ku
sii
¼

R
Y

dyjR
Y

KsðyÞdyi

� ��1

, with
j – i.

This shows that eK s is not new in the literature. Inequality (20) is
a more accurate two-sided estimate for isotropic effective coeffi-
cient than the classical Voigt–Reiss’ inequality (also known as Wie-
ner bounds [23]), stating that K0

s lies between the harmonic and
arithmetic averages of KsðyÞ. In [17] they obtained the lower and
upper bound by variational principle. What is new is that ~wiðyÞ is
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an explicit n-dimensional minimizer of the energy functional con-
sidered by [17]. The advantage of such findings is that one can use
these approximations to obtain a corrector and therefore a more
accurate approximation to K0

s , moreover they also provide a way
of obtaining an approximation to the first-order (13), as it will be
shown next.

3.1. An analytical approximation to K0

It can be verified that eK s ¼ K0
s for the classical cases discussed in

(R1)–(R3). For all the other cases, eK s is, at least, a lower bound, and
therefore a correction is needed. We first recall that in [7] and lit-
erature herein, the corrector function CðyÞ (16) is also used as a
multiplicative function for correcting the effective coefficient K0,
as CðyÞK0. We use similar idea to construct a constant corrector
to the lower bound eK s. In this sense, we first define our corrector
function, using ~wiðyÞ from (18) instead of wiðyÞ into the definition
of the matrix corrector CðyÞ from (16), to obtain the diagonal cor-
rector functions:

eC iiðyÞ ¼ 1þ @
~wi

@yi
¼ 1

KsðyÞ

Z 1

0

dyi

KsðyÞ

� ��1

¼ Hi

KsðyÞ
: ð21Þ

Each eCiiðyÞ is a dimensionless function having the propertyR
Y
eCiiðyÞdy ¼ 1. By computing the L2-norm of these functions, a cor-

rector to eK s can be obtained. The product:

ðeK 0
s Þii ¼ keCiiðyÞk2ðeK sÞii ¼ eC iðeK sÞii ð22Þ

corresponds to a correction to the ith diagonal of eKs, and a more
accurate approximation to (8) is obtained as:

K0ðu0ðxÞÞ � eC eK skrðu0ðxÞÞI ¼ eK 0
s krðu0ðxÞÞI ¼ eK 0: ð23Þ

where eC ¼ diagðeC1; . . . ; eCnÞ and eCi ¼ keCiiðyÞk2. The L2-norm is rea-
sonable to consider as it is a constant that does not depend on e,
which is greater than or equal to 1. It also relates to the root mean
square of the error implied by using ~wi, instead of wi, in the defini-
tion of K0

s . Indeed, if an error function riðyÞ > 0 is added to the ith
diagonal entry of eK s to account for the approximation to K0

s , then
by requiring this component to be positive, FiðyÞ ¼
KsðyÞ 1þ @ ~wi

@yi
þ riðyÞ

� �
> 0 implies that riðyÞ > �eCiiðyÞ, which is al-

ways satisfied. Note also that kriðyÞ þ eCiiðyÞk2 ¼ b and
kriðyÞk2 6

eCi þ b.
The corrector is also applied to (18) to get an approximation to

the basis functions (10), as:

~wi
cðyÞ ¼ eCi ~wiðyÞ: ð24Þ

We observe that, by choosing these correctors, the agreements be-
tween ~wiðyÞ and wiðyÞ, pointed out in Fig. 1, and the properties
ðR4Þ � ðR6Þ are still valid when ~wi

cðyÞ is considered. For (R7), one
can show that 1 6 eCi 6 2. These imply that (23) satisfies the gener-
alized Voigt–Reiss’ inequality (20) from below, and numerical re-
sults, in Section 4, indicate that the upper bound is also satisfied.
It will also be shown by numerical means, that the corrector eC plays
a crucial role in obtaining an effective coefficient eK 0

s that is in good
agreement with numerical and analytical results.

The form of the upscaled coefficient implies that the term eCi
eK s

is computed only once throughout the simulation, even for the
transient case, as the dependence on the solution u0ðxÞ is through
the scalar function krðu0ðxÞÞ, that updates at each nonlinear
iteration.

In Section 4.2, we use the analytical form (23) to demonstrate
that the upscaled approximations (11) and (12) are obtained. For
the sake of notation, from now on, we will use u0ðxÞ to indicate
the solution to (6) by using the upscaled coefficient (23).

Moreover, a first-order approximation, similar to (13), is pro-
posed by
ueðxÞ � u0ðxÞ þ e~u1ðx; yÞ ¼ u0ðxÞ þ
Xn

i¼1

eCi ~wiðyÞ @u0

@xi
¼ ~u1ðx; yÞ: ð25Þ

In Section 4.2 ahead, it will be shown numerically that:

kueðxÞ � ~u1ðx; yÞk2 ! 0 in L2ðXÞ: ð26Þ

By considering (25), the L2-norm of e~u1ðx; yÞ, can be used as an error
indicator (UBE), implied by the approximation u0ðxÞ, as

kueðxÞ � u0ðxÞk2 �
Xn

i¼1

eCi ~wi @u0ðxÞ
@xi

�����
�����

2

¼ UBE: ð27Þ

The correction to the gradient approximation is carried out from
(15) to (16), by replacing CðyÞ and w by eCðyÞ and eC ~w, respectively,
to give

rueðxÞ ¼ eCðyÞru0ðxÞ þ eeC ~wrðru0ðxÞÞ þ . . . ; ð28Þ

and an approximation to the first-order of the gradient and flux can
be considered. Numerical results ahead show that the error be-
tween the gradients

krueðxÞ � eCðyÞru0ðxÞk2 6 a1 ð29Þ

and fluxes

kKeðx; ueÞrueðxÞ � eK 0ðu0ðxÞÞðeCðyÞru0ðxÞÞk2 6 a2; ð30Þ

are bounded independently of e. These imply that convergence for a
subsequence is obtained. The boundedness may also be the result of
error accumulation in computing the highly oscillating functions.
Nevertheless, Figs. 10 and 11 illustrate that eCiiðyÞ is as highly oscil-
lating as KsðyÞ and incorporates heterogeneous features into the
homogenized gradient and flux.

Remark – Note that the zeroth-order approximation applies to
transient and multiphase cases, as well as to the non-uniform
oscillating case, Ksðx; yÞ, when there are several different geological
rock facies [6]. However, the only theoretical results, to our knowl-
edge, on convergence properties for the first-order approximation
for nonlinear elliptic problems is presented in [4, Eq. 16.27–
16.28], where the nonlinearity is not under the divergence
operator.

Step function coefficients are widely used in Science and Engi-
neering, particularly in porous media applications. Because of that
there are results in the literature for upscaled coefficients com-
puted numerically and analytically. In the next section, we com-
pare these results with our proposed form (23).

4. Numerical results

The goals of this section are two fold. First, we demonstrate
agreement between analytical and numerical results and the ana-
lytical form (23). Second, we numerically demonstrate conver-
gence properties of the proposed zeroth-order and first-order
approximations of (1), with various boundary conditions and dif-
ferent relative permeability forms krðuðxÞÞ.

In all the cases, Ksð:Þ are periodic functions with the center of
mass symmetrically distributed at half of the period. We illustrate
the case where they are two-value step functions with ratio n1:n2,
where n2 is the value in the inclusion. We also confirm that this
type of geometry leads to a diagonal upscaled tensor, which is in
agreement with (R5) above. We present 3 cases; the first one is
the well known analytical result regarding the geometric average
for checkerboard type of geometry, and the other 2 cases are
numerical values, K0

n, obtained by solving numerically the cell-
problem (10) and (8) by various numerical schemes. Since all the
upscale tensors are diagonal and isotropic, the values in the follow-
ing 3 tables are diagonal values, eC1 � eK s ¼ eC1

eK s.



Table 2
Comparison between eK 0

s , column 4, and the numerical values K0
n , column 3, from [1].

Observe that inequality (20) is also satisfied.

ratio
n1 : n2

K0
n

(from [1])

eK 0
s ¼ eC1 � eK s Ku

s Eq.
(20)

RD jK0
n�eK 0

s jeK 0
s

� �
(%)

Test 1 10:1 6.52 1:093� 5:91 ¼ 6:459 7.09 1.0
Test 2 10:1 6.52 1:093� 5:91 ¼ 6:459 7.09 1.0
Test 3 100:1 59.2 1:1378� 51 ¼ 58:03 67 2.0
Test 4 10:1 3.106 1:0663� 2:98 ¼ 3:177 3.27 2.0
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4.1. Comparison of K0 with theoretical and numerical results

4.1.1. Case 1
The effective coefficient for the checkerboard basic unit cell

(Fig. 2) is computed using (23), to demonstrate agreement with
the well known result for the geometric average, Kg

s ¼
ffiffiffiffiffiffiffiffiffiffi
n1n2
p

, dem-
onstrated by Keller [18]. The results are shown in Table 1, where
our analytic form is shown to provide good to very good
agreements.

4.1.2. Case 2
In [1] the effective value K0

n was obtained by numerically solv-
ing the cell-problem (10) with Y � R2 and KsðyÞ having ratios 10:1,
100:1, respectively and applied for two-phase nonlinear flow sim-
ulation, with krðSðuðxÞÞÞ ¼ SðuðxÞÞ2ð3� 2SðuðxÞÞÞ, S the saturation.
Note that here the value for the inclusion is less than the value
on the matrix. The geometry for Test 1–Test 3 is illustrated in
Fig. 3 (left). The difference between the simulations for Test 1
and Test 2 was the viscosity ratio, being 1:1 and 50:1, respectively.
Fig. 3 (right) is the geometry used for Test 4.

As in Table 1, eC in Table 2 corrects the lower bound eK s, and
inequality (20) is also satisfied.
Fig. 2. KsðyÞ as the unit cell for the checkerboard structure.

Table 1
Comparison between eK 0

s in column 3 and the geometric average, Kg
s , in column 2.

Note that eC indeed corrects eK s . Observe that inequality (20) is also satisfied.

n1 : n2 Kg
s (geom. avg.) eK 0

s ¼ eC1 � eK s Ku
s (Eq. (20))

5:20 10 1:0725� 9:31 ¼ 9:94 10.79
1:10 3.16 1:1732� 2:60 ¼ 3:03 3.94
2:8 4 1:0725� 3:722 ¼ 3:98 4.34
4:16 8 1:0725� 7:4451 ¼ 7:96 8.69
16:4 8 1:0725� 7:38 ¼ 7:92 8.64

0.25 0.75

0.25

0.75

1 2 3 4 50 0

Fig. 3. (Left) KsðyÞ used in Test 1, Test 2 an
4.1.3. Case 3
Table 3 shows the comparison between eK 0

s and K0
n from [5],

where the value was obtained by numerically solving the cell prob-
lem for different shapes of inclusions. Three types of inclusions are
presented with an area equal to 1

4, as in Fig. 4, and ratio 1:10. The
experiment also illustrates the influence of the shape and surface
area of the inclusions in obtaining the effective coefficient. Note
that the square and lozenge have the same surface area, which is
larger than the circle. Nevertheless, their effective values are differ-
ent, as well as their lower and upper bounds.

Overall, Tables 1–3 show that our analytical form is accurate for
estimating the effective coefficient in agreement with other analyt-
ical and numerical results, independently of shape. The common
property between the heterogeneous fields was their symmetry.
We also observe that the generalized Voigt–Reiss inequality pro-
vides more accurate lower and upper bounds than the classical
Voigt–Reiss inequality, which can be easily calculated.

Next, we use the analytical form to compute effective values
that are placed into the upscaled Eq. (6) to obtain convergence
properties of the upscaled solution.

4.2. Numerical convergence results

In this section, we present error analyze illustrating conver-
gence properties between the fine-scale and upscale pressure solu-
tions, by using coefficient functions defined as (31) with ratios
1000:1, 1:100, and 1e�7:1e�2, with square and circular inclusions,
without loss of generality.

Ke
sðxÞ is the sequence of coefficients that can be formally written

as
1 2 3 4

0.1 0.9
0.1

0.9

d Test 3; (Right) KsðyÞ used in Test 4.

Table 3
Comparison between eK 0

s (23) and numerical values from [5]. Note how eC corrects the
lower bound eK s . Observe that inequality (20) is also satisfied.

Shape K0
n from [5] eK 0

s ¼ eC1 � eK s Ku
s Eq. (20) RD jK0

n�eK 0
s jeK 0

s

� �
(%)

Square 1.548 1:0937� 1:4091 ¼ 1:5411 1.695 0.4
Circle 1.516 1:08� 1:403 ¼ 1:5156 1.791 0.02
Lozenge 1.573 1:069� 1:417 ¼ 1:5148 1.936 3.7



Fig. 4. Different shapes of inclusions with equal area of 1
4.

Fig. 5. Ke
s ðxÞ for square inclusion and e ¼ ð0:5Þ3; ð0:5Þ4; ð0:5Þ5, respectively.
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Ke
sðxÞ ¼

n1 if x 2 Xe nXe
c

n2 if x 2 Xe
c

(
; ð31Þ

with n1 being the value outside the inclusion Xe
c , symmetrically cen-

tered in each Xe where X ¼ [eX
e, and n1:n2 is the inclusion ratio. As

an example, let Xc represent inclusions in (31), occupying 1
4 of the

area of an unit cell, which does not change by varying e. The se-
quence Ke

sðxÞ is then constructed by considering K0:5
s ðxÞ having one

square or circular inclusion over the unit domain X; K0:25
s ðxÞ with

four inclusions in the unit domain, until Kð0:5Þ
5

s ðxÞ with 16� 16
inclusions. In this process, the degree of heterogeneity of the coef-
ficient is decreasing at the ratio r ¼ 0:5, and the initial total volume
occupied by the inclusions is preserved, but the total surface area is
doubled for each e. An illustration of Ke

sðxÞ-sequence for
e ¼ ð0:5Þ3; ð0:5Þ4; ð0:5Þ5 is given in Fig. 5.

The analysis of the convergence is done by computing the L2-
norm of the error between the heterogeneous or fine-scale solu-
tion, ueðxÞ, and the respective approximations obtained on a coar-
ser mesh. The numerical experiments were done by considering
X ¼ ½0;1�2, without loss of generality.

The general procedure to perform the error analysis, summa-
rized in Tables 4–9, follows:
Table 4
Error analysis for the zeroth-order approximation for Ex. 1 for which Ke

s ðxÞ sequence
has circular inclusions, ratio 1000:1; eK 0

s ¼ 1:1866� 436:60 ¼ 518:09. Note how the
error in the second column is decaying linearly and also that UBE is a reliable error
indicator. The gradient and flux sequences are bounded. The grid for u0ðxÞ was the
same as for the fine-scale.

e kue � u0k2 UBE krue �ru0k2 kKerue � eK 0ru0k2 grid (�)

ð0:5Þ1 2.22e�2 3.65e�2 1.58e�1 3.10e+0 88� 88
ð0:5Þ2 1.08e�2 2.17e�2 1.50e�1 2.85e+0 94� 94
ð0:5Þ3 4.00e�3 1.21e�2 1.45e�1 2.60e+0 104� 104
ð0:5Þ4 3.25e�3 5.92e�3 1.41e�1 2.47e+0 114� 114
ð0:5Þ5 1.34e�3 2.31e�3 1.22e�1 2.21e+0 130� 130
(S1) – Given KsðyÞ, compute analytically eK 0
s using (23) to obtaineK 0ðu0Þ ¼ eK 0

s krðu0Þ, as noted in the Tables.
(S2) – For a given BVP, compute numerically the fine-scale solu-
tion of (1), the gradients and fluxes on a given mesh.
(S3) – From (S1), compute the respective u0ðxÞ by solving (6),
ru0ðxÞ and K0ðu0ðxÞÞ � ru0ðxÞ on a coarser mesh. The results
are then interpolated to the mesh size of the respective fine-
scale solution obtained in (S2).
(S4) – Compute the error between the respective gradients and
fluxes, using krf ðxÞk2

2 ¼ k@x1 uðxÞk2
2 þ k@x2 uðxÞk2

2;
(S5) – Obtain analytically ~wiðyÞ and eCðyÞ on the same mesh as
ueðxÞ.
(S6) – Obtain the first-order approximation, using (S3) and (S5),
according to (25).
(S7) – Obtain the error indicator (UBE) as in (27);
(S8) – Compute the error between the gradients from (29);
(S9) – Compute the error between the fluxes from (30);

(S1)–S4) are the steps taken to perform the error analysis for
the zeroth-order approximation. (S5)–(S9) are the steps for the
analysis of the first-order approximation. They are a-posteriori
computations, requiring the analytical result (S1) and numerical
results from (S2)–(S3). The domain discretization uses standard
Table 5
Error analysis for the first-order approximation for Ex. 1. Note how the error in the
second column is decaying linearly and it corresponds to about half of the UBE value
from Table 4. There was no significant improvement in the error convergence of the
gradient.

e kue � ue
1k2 UBE krue � eCðyÞru0k2 kKerue � eK 0eCðyÞru0k2

ð0:5Þ1 1.34e�2 1.82e�2 2.45e�1 3.47e+0
ð0:5Þ2 8.56e�3 1.08e�2 2.28e�1 3.35e+0
ð0:5Þ3 4.57e�3 6.00e�3 2.28e�1 3.26e+0
ð0:5Þ4 2.89e�3 2.96e�3 2.10e�1 2.96e+0
ð0:5Þ5 1.09e�3 1.15e�3 1.01e�1 2.57e+0



Table 6
Error analysis for the zeroth-order approximation for Ex. 2, where Ke

s ðxÞ sequence has
square inclusions, ratio 1:100; eK 0

s ¼ 1:139� 1:4901 ¼ 1:6972. Note how the error in
the second column is decaying linearly and also that UBE is a reliable error indicator.
The gradient and flux sequences are nearly bounded. Grid for u0ðxÞ was 40� 40 (�).
See also Fig. 6.

e kue � u0k2 UBE krue �ru0k2 kKerue � eK 0ru0k2 grid (�)

ð0:5Þ1 1.17e�2 1.69e�2 1.02e�1 4.13e�2 130� 130
ð0:5Þ2 5.41e�3 8.10e�3 1.08e�1 1.14e�1 130� 130
ð0:5Þ3 2.33e�3 4.06e�3 1.12e�1 1.28e�1 130� 130
ð0:5Þ4 1.16e�3 1.98e�3 1.13e�1 1.33e�1 130� 130
ð0:5Þ5 7.22e�4 9.91e�4 1.14e�1 1.38e�1 281� 281

Table 7
Error analysis for the first-order approximation for Ex. 2. Note how the error in the
second column is decaying linearly and it corresponds to about half of the UBE value.
The error for the gradient and flux sequences improved from Table 6. See also Fig. 7.

e kue � ue
1k2 UBE krue � eCðyÞru0k2 kKerue � eK 0eCðyÞru0k2

ð0:5Þ1 4.86e�3 8.4e�3 8.09e�2 2.40e�1
ð0:5Þ2 2.61e�3 4.05e�3 6.30e�2 1.91e�1
ð0:5Þ3 1.20e�3 2.03e�3 5.52e�2 1.67e�1
ð0:5Þ4 6.23e�4 9.98e�4 5.40e�2 1.48e�1
ð0:5Þ5 4.48e�4 4.95e�4 5.50e�2 1.45e�1

Table 8
Error analysis for the zeroth-order approximation for Ex. 3. Ke

s ðxÞ sequence has square
inclusions, and ratio 1e�07:1e�02; eK 0

s = 1.147�1.51e�07 = 1.73e�07. The error in
the second column is decaying linearly and UBE is a reliable error indicator. The
gradient and flux sequences are nearly bounded. Grid size for computing the u0 was
30� 30 (�). See also Fig. 8.

e kue � u0k2 UBE krue �ru0k2 kKerue � eK 0ru0k2 grid (�)

ð0:5Þ1 2.87e�1 4.54e�1 2.77e+0 7.00e�10 130� 130
ð0:5Þ2 1.96e�1 2.70e�1 3.50e+0 6.97e�10 130� 130
ð0:5Þ3 1.19e�1 1.50e�1 4.14e+0 6.79e�10 130� 130
ð0:5Þ4 6.74e�2 7.50e�2 4.39e+0 6.39e�10 130� 130
ð0:5Þ5 3.65e�2 3.70e�2 4.08e+0 5.60e�10 130� 130

Table 9
First-order error analysis for Ex. 3. The error in the second column is decaying linearly
and it corresponds to about half of the UBE value from Table 8. The error for the
gradient and flux sequences generally improved from Table 8. See also Figs. 9–11.

e kue � ue
1k2 UBE krue � eCðyÞru0k2 kKerue � eK 0eCðyÞru0k2

ð0:5Þ1 2.65e�1 2.27e�1 3.45e+0 4.35e�12
ð0:5Þ2 1.49e�1 1.35e�1 3.29e+0 4.22e�12
ð0:5Þ3 7.78e�2 7.50e�2 4.60e+0 4.15e�12
ð0:5Þ4 3.95e�2 3.75e�2 3.06e+0 4.01e�12
ð0:5Þ5 2.18e�2 1.85e�2 2.72e+0 3.50e�12
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linear conforming finite triangular elements. Mesh refinement was
used when solving the fine-scale problems until the error de-
creased to acceptable values. For example, in the tables, the grid
size 130� 130 (�) is an approximation of the number of triangular
nodes in each direction. The nonlinear systems were solved by
Newton–Raphson iterative scheme. There was no constraint im-
posed between the matrix and inclusion, other than the standard
assumption of the flux continuity across the interface.

By looking at the Tables 4–9, similar convergence patterns are
observed for different BVP’s, shapes of inclusion, and inclusion ra-
tio. Therefore the summary of the results are discussed towards the
end.

4.2.1. Example 1
The BVP describes a flow from the left lower corner of the do-

main, X1 ¼ ½0;0:05�2, to the right upper corner X2 ¼ ½0:95;1�2, with
no-flow boundary elsewhere.
r � qe ¼ 0 x 2 X

ueðxÞ ¼ 1:5 x 2 X1

ueðxÞ ¼ 1 x 2 X2

Keðx;ueðxÞÞ @ue

@g ¼ 0 @X nX1 [X2

8>>>><>>>>:
�

r � q0 ¼ 0 x 2 X

u0ðxÞ ¼ 1:5 x 2 X1

u0ðxÞ ¼ 1 x 2 X2

K0ðx;u0ðxÞÞ @u0

@g ¼ 0 @X nX1 [X2

:

8>>>><>>>>: ð32Þ

The results are presented in Tables 4 and 5 where we have used
Ke

sðxÞ with ratio 1000:1 and circular inclusions with conductivity
function given by the van Genuchten’s relationship:

Keðx;ueðxÞÞ ¼ Ke
sðxÞðð1þ jaueðxÞjnÞ�mÞp½1� ð1� ð1

þ jaueðxÞjnÞ�1Þm�2; ð33Þ

and parameters: a ¼ 1:04 m�1, m ¼ 0:283;n ¼ 1 n ð1�mÞ and
p ¼ 0:5 [29].

4.2.2. Example 2
This example is the classical nonlinear Dirichlet problem. Based

on our experience, this is the most challenging of our examples in
terms of obtaining good convergence rates.

r � ðKeðx; ueðxÞÞrueðxÞÞ ¼ 1 x 2 X

ueðxÞ ¼ 0 x 2 @X

�
� r � ðK0ðu0ðxÞÞru0ðxÞÞ ¼ 1 x 2 X

u0ðxÞ ¼ 0 x 2 @X

(
: ð34Þ

The relative permeability function applied here is known as Gard-
ner’s relationship:

Keðx;ueðxÞÞ ¼ Ke
sðxÞ expðajueðxÞjÞ ð35Þ

with a ¼ 3½m�1� [29] and, Ke
sðxÞ describing square inclusions with

ratio 1:100. The analysis of the errors between the approximations
are summarized in Tables 6 and 7 and illustrated in Figs. 6 and 7.

4.2.3. Example 3 – Steady-state with gravity forcing - evaporation
from a water table

In this example, we apply the results above for low Preclet
number condition, meaning the capillary pressure dominates over
gravity. In such a case, the effective tensor remains the same as
without gravity [6]. When gravity is considered, Darcy’s law has
the form:

qeðxÞ ¼ �Ke
sðxÞkrðueðxÞÞ

l
rðue � qgrx2Þ

¼ �KeðueðxÞÞrðue � qgrx2Þ; ð36Þ

where x2 is the direction of gravity. This example describes a stea-
dy-state flow (evaporation) through an unsaturated vertical profile,
(c.f. [29]), from a more saturated region C1 ¼ ½x1;0�, where capillary
pressure is uðxÞ ¼ �2½m�, to the less saturated region (soil surface),
C3 ¼ ½x1;1� with 0 6 x1 6 1 where uðxÞ ¼ �6½m�. There is no-flow
boundary on the sides C2 ¼ ½0; x2� and C4 ¼ ½1; x2� with 0 6 x2 6 1:

r � qe ¼ 0 x 2 X

ueðx1;1Þ ¼ �6; ueðx1;0Þ ¼ �2 x 2 C1 [ C3

Ke @ue

@g ¼ 0 x 2 C2 [ C4

8><>:
�
r � q0 ¼ 0 x 2 X

u0ðx1;1Þ ¼ �6; u0ðx1; 0Þ ¼ �2 x 2 C1 [ C3

K0 @u0

@g ¼ 0 x 2 C2 [ C4

8><>: ð37Þ

with @X ¼
S4

i¼1C
i. Note that one can consider this BVP as a par-

ticular case of (1) with a highly oscillatory forcing f eðxÞ ¼



Fig. 8. Fine-Scale (solid) and zeroth-order u0ðxÞ, (dashed) for e ¼ ð0:5Þ3; ð0:5Þ4; ð0:5Þ5, respectively, from Table 8, Example 3. The contours are from top to bottom
uðxÞ ¼ �5;�4:5;�4;�3:5;�3;�2, respectively. Note that u0ðxÞ smooths out oscillations from the heterogeneities, in contrast with ue

1ðxÞ for the same problem, shown at Fig. 9
ahead.

Fig. 7. A quarter of the unit domain showing the fine-scale (solid) and first-order ue
1ðxÞ (dashed) for e ¼ ð0:5Þ3; ð0:5Þ4; ð0:5Þ5, respectively, from Table 7, Example 2. Contours

values are from the boundary to the inside uðxÞ ¼ �0:01;�0:02;�0:03;�0:04, respectively. Note how ue
1ðxÞ captures the heterogeneous features that were averaged out from

Fig. 6, and the error dropped to about half of the error obtained by the u0ðxÞ approximation.

Fig. 6. A quarter of the unit domain showing the fine-scale (solid) and zeroth-order u0ðxÞ, (dashed) for e ¼ ð0:5Þ3; ð0:5Þ4; ð0:5Þ5, respectively, from Table 6, Example 2.
Contours values are from the boundary to the inside uðxÞ ¼ �0:01;�0:02;�0:03;�0:04, respectively. Note that u0ðxÞ smooths out oscillations from the heterogeneities, in
contrast with ue

1ðxÞ for the same problem, illustrated in Fig. 7.
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qgr � ðKeðxÞrx2Þ. The conductivity function is given by the Brooks
and Corey relationship:

Keðx; ueðxÞÞ ¼ Ke
sðxÞðjaueðxÞjÞ�

2mþ3
m ; ð38Þ

where a ¼ 1:71½m�1� and parameter m ¼ 2 [29]. The results are
summarized in Tables 8 and 9, and illustrated in Figs. 8–11. We ob-
serve that when capillary pressure is not dominant, the upscaled
equation may change [19].
4.2.4. Discussion of the numerical results – Tables 4–9
We recall that the convergence results are for the pressure

solution. In general, they demonstrate that the proposed analytical
approximations have similar convergence rates with respect to the
exact fine-scale solution as the classical zeroth and first-order
homogenized approximations based on exact solutions of the
respective cell problems. For the first-order, they indicate the
same convergence pattern as the classical theoretical results
(c.f. e.g. [4,17,24]), proven for linear diffusion problems with



Fig. 9. Fine-Scale (solid) and first-order ue
1ðxÞ (dashed) for e ¼ ð0:5Þ3; ð0:5Þ4; ð0:5Þ5, respectively, from Table 9, Example 3. The contours are from top to bottom

uðxÞ ¼ �5;�4:5;�4;�3:5;�3;�2, respectively. Note how ue
1ðxÞ captures the heterogeneous features that were averaged out from Fig. 8, and the error dropped to about half of

the error obtained by the u0ðxÞ approximation.

Fig. 11. Comparison between the second component of the fluxes: Keðx; ueÞrue (left), eK 0ðx;u0Þru0 (center) and eK 0ðx; u0ÞeCðyÞru0 (right), when Ke
s ¼ ð0:5Þ

4, from Example 3,
Tables 8,9. Note how the upscaled flux on the right incorporates heterogeneous features of the medium, unlike the zeroth-order approximation in the center.

Fig. 10. Comparison between the fine-scale partial derivatives: @ue

@x2
(left), @u0

@x2
(center), and eC22ðyÞ @u0

@x2
(right), when Ke

s ¼ ð0:5Þ
4, from Example 3, Tables 8,9. Note how the right

graph is a much better approximation than the one in the center.
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heterogeneous fine-scale coefficient. Further details on each aspect
of the convergence is presented next.

(i) The convergence analysis for the zeroth-order approxima-
tion agrees with theoretical results, meaning strong conver-
gence in the L2-norm of the solutions and weak convergence
of the gradients and fluxes [6].

(ii) From our experiments, example 2 is the most sensitive to
changes in the upscale coefficient, and presented the most
difficulty in obtaining good convergence results. We point
that out because similar convergence behavior was obtained
in the other examples, by using upscaled coefficients within
5% of our analytical value. However, the example 2 did not
present similar convergence behavior. Because of its sensi-
tivity of the error to the upscaled approximation, this kind
of problem may be considered as a benchmark to various
upscaling procedures, and will also be explored in a future
study.

(iii) The error indicator (UBE) was accurate for all the cases,
demonstrating that the proposed analytical approxima-
tion for the basis functions is indeed capturing the
error.
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(iv) The first-order approximation is also converging strongly in
L2-norm. Moreover, the error indicator (UBE) in the solution
dropped to about half of the respective zeroth-order, corre-
sponding to a more accurate approximation. This result
occurs despite the small scale structure observed by adding
the first-order term, illustrated in Figs. 7 and 9. This variabil-
ity of the corrector, which has the appearance of a numerical
noise, becomes negligible as the scale parameter goes to
zero. To make sure that these features did not result from
using the approximation ~wiðyÞ 2 L2ðXÞ, we performed the
same simulations using the numerical solution
wiðyÞ 2 H1ðXÞ, and these small scale features were also
observed. This indicates that they are indeed a characteristic
of the first-order approximations of these nonlinear cases.
We note that they did not appear when applying the results
to the linear case [26,27].

(v) Note how the first-order correction provides a significant
improvement for the gradient approximation in Table 7
and flux approximation in Table 9, and also illustrated on
Figs. 10 and 11. We observe that the absolute value of the
error is smaller than the zeroth-order approximation, in gen-
eral. However, the gradient and flux estimates may be pol-
luted by the small scale features of the first-order
approximation, which is likely to also be the cause of the
non-monotone behavior of the error sequences.

(vi) In general, we observe that the sequence of gradients and
fluxes are at least bounded as stated before on Eqs. (29)
and (30), therefore convergence up to a subsequence is
expected. Note that boundedness may also be an important
property for many applications. An improvement in these
errors may be achieved by using, for example, nonconform-
ing finite element or mixed finite element discretization
methods.
5. Conclusion

In this paper we proposed an analytical procedure for obtaining
the effective coefficient when the medium is composed of centered
symmetric inclusions, which allow a zeroth and a first-order
approximation to a nonlinear BVP (1). The first-order was possible
by using an analytical approximation to the basis functions. To
demonstrate that our results provide a valid description of the flow
behavior, we performed convergence analysis that corroborates
theoretical convergence results from the classical literature. In
the same literature, the extension to more general nonlinear prob-
lems, including multiphase systems, has also been proved to be
possible.

Even though we only apply this analytical computation to med-
ia containing block inclusions symmetrically centered in the grid
cell, the procedure is general in nature. This particular case allows
one to demonstrate that, in such cases, the upscale coefficient is a
diagonal tensor and it is a necessary step towards more general-
ized cases, by considering a given media as a superposition of such
geometries, which can further extend to random media, for exam-
ple. Generalization to non-periodic media is possible and is also an
ongoing work. Numerical application of the zeroth-order results to
multiphase transient cases is possible [1,2,8]. Another possible ve-
nue for further applications includes multilevel solvers and adap-
tive modeling algorithms.
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Appendix

The macroscopic Eq. (6), which is the result of upscaling of
equations of type (1), is well known [4,24]; however the details
of deriving it by the formal asymptotic expansion method are
not easily accessible in the literature. For the benefit of the reader,
a detailed derivation of the upscaled Eq. (6) along with the cell
problems (10) using the formal asymptotic expansion (5) is given
in this appendix.

We consider a nonlinear relationship of type (3), where the spa-
tial variability is periodic and specified by the tensor Ke

sðxÞ. Follow-
ing the classical approach of two-scale asymptotic expansion, we
first consider x and y as independent variables. Thus, given a func-
tion /eðxÞ ¼ /ðx; yÞ and using y ¼ x

e, we note that differentiation of
the function /e becomes:

d/e

dxi
¼ @/
@xi
þ 1

e
@/
@yi

: ð39Þ

Consequently, we use the notation r! rx þ e�1ry. Let us also re-
call the Y-averaging operator:

h/ðx; yÞiY ¼
1
jY j

Z
Y

/ðx; yÞdy: ð40Þ

Now, consider the following Taylor expansion of the permeability K
around the point ðy; u0Þ:

Kðy;ueÞ ¼ Kðy;u0 þ eðu1 þ eu2 þ . . .ÞÞ

¼ Kðy;u0Þ þ eðu1 þ eu2 þ . . .Þ @K
@u
ðy; u0Þ þ Oðe2Þ

¼ Kðy;u0Þ þ eu1 @K
@u
ðy; u0Þ þ Oðe2Þ: ð41Þ

In the following we shall assume that @K
@u is of order Oð1Þ or higher.

Our goal is to substitute the expansions (5) and (41) into the fine-
scale Eq. (1) and collect the powers of e.

First, by combining (5) with (39) one obtains

rue ¼ e�1ryu0 þ e0ðrxu0 þryu1Þ þ e1ðrxu1 þryu2Þ þ � � �

Substituting the last equation into (1) and applying again (39) to the
divergence operator one obtains:

� f ðxÞ ¼ r � ðKðy;ueÞrueÞ ¼ e�2½ry � ðKðy; ueÞryu0Þ�
þ e�1½rx � ðKðy; ueÞryu0Þ þ ry � ðKðy;ueÞðrxu0 þryu1ÞÞ�
þ e0½rx � ðKðy;ueÞðrxu0 þryu1ÞÞ
þ ry � ðKðy; ueÞðrxu1 þryu2ÞÞ� þ OðeÞ: ð42Þ

Next, the Taylor expansion (41) is substituted into the last equation.
Considering the fact that (41) starts at order e0, one immediately
observes that at order e�2 in Eq. (42) one gets:

ry � ðKðy;u0Þryu0Þ ¼ 0

This is a differential equation for the Y-periodic function u0ð�; yÞ
with zero right-hand side. Hence, the solution is constant in y, that
is:

u0ðx; yÞ ¼ u0ðxÞ:

In particular this also implies that ryu0 	 0, and as a consequence
the first term in the third line of Eq. (42) becomes identically zero.
Therefore, we can now collect powers of e�1 in Eq. (42). These will
come only from the remaining term in the third line, which, with
the help of (41) yields:

ry � ðKðy;u0Þðrxu0 þryu1ÞÞ ¼ 0:

Observe now, that this is a linear differential equation for the Y-
periodic function u1ð�; yÞ. Its general solution can be expressed in
the form:
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u1ðx; yÞ ¼ c þ
Xd

i¼1

wiðy;u0Þ @u0

@xi
x: ð43Þ

where wi, i ¼ 1; . . . ;d are the solutions to the d cell problems

ry � ðKðy; u0ÞrywiÞ ¼ �ry � ðKðy;u0ÞeiÞ ð44Þ

and c (may even be a function of x) is independent of y and accounts
for the boundary of u1ðx; yÞ. Due to the special form (3) of the con-
ductivity, the last equation reduces to Eq. (10). Note also, that we
obtain the same type of cell problems as in the case of linear diffu-
sion equation with oscillatory coefficients, c.f. e.g. [7].

Finally, we collect terms at order e0 in Eq. (42). These will come
from the second term in the third line and the two terms in the
fourth line. We obtain:

ry � u1 @K
@u
ðy;u0Þðrxu0 þryu1Þ þ Kðy;u0Þrxu1 þryu2

� �
þrx � ðKðy; u0Þðrxu0 þryu1ÞÞ þ f ðxÞ
¼ 0: ð45Þ

Now, u1ð�; yÞ and u2ð�; yÞ are Y-periodic functions, and thanks to its
special form (Eq. (3)), so is @K

@u ðy;u0Þ. As a result we can apply the
Y-averaging operator (40) to the last Eq. (45), and, using the diver-
gence theorem and periodicity, obtain:

� 1
jYj

Z
Y
rx � ðKðy;u0Þðrxu0 þryu1ÞÞdy ¼ f ðxÞ: ð46Þ

The last equation, with the help of Eq. (43), can be written as:

�rx � ðK0ðu0ðxÞÞrxu0Þ ¼ f ðxÞ:

Here, the homogenized permeability tensor K0 is given by:

K0ðu0ðxÞÞ ¼ 1
jYj

Z
Y

Kðy;u0ðxÞÞ½IþrywðyÞt�dy; ð47Þ

where I is the identity tensor and w is the vector of the cell solu-
tions (44), that is, w ¼ ðw1; . . . ;wdÞ. In component form, the last
equation reads:

K0
ijðu0ðxÞÞ ¼ 1

jYj

Z
Y

Kijðy;u0ðxÞÞ þ
Xn

l¼1

Kilðy;u0ðxÞÞ @wj

@yl
ðyÞ

" #
dy: ð48Þ

Observe that the above derivation can easily be extended to
Ks ¼ Ksðx; x=eÞ, the non-uniform oscillating function, that is with
slow dependence of Ks on x at the coarse scale.
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