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Summary
Modeling and numerical simulations of Carbonate Karst
reservoirs is a challenging problem due to the presence of
vugs and caves which are connected via fracture networks
at multiple scales. In this paper we propose a unified
approach to this problem by using the Stokes-Brinkman
equations which combine both Stokes and Darcy flows.
These equations are capable of representing porous me-
dia (porous rock) as well as free flow regions (fractures,
vugs, caves) in a single system of equations. The Stokes-
Brinkman equations also generalize the traditional Darcy-
Stokes coupling without sacrificing the modeling rigor.
Thus, it allows us to use a single set of equations to repre-
sent multiphysics phenomena on multiple scales. The local
Stokes-Brinkman equations are used to perform accurate
scale-up. We present numerical results for permeable rock
matrix populated with elliptical vugs and we consider up-
scaling to two different coarse-scale grids - 5×5 and 10×10.
Both constant and variable background permeability ma-
trices are considered and the effect the vugs have on the
overall permeability is evaluated. The Stokes-Brinkman
equations are also used to study several vug/cave configu-
rations which are typical of Tahe oilfield in China.

Introduction
Naturally fractured karst reservoirs presents multiple chal-
lenges for numerical simulations of various fluid flow prob-
lems. Such reservoirs are characterized by the presence of
fractures, vugs and caves at multiple scales. Each individ-
ual scale is an ensemble of porous media, with well defined
properties (porosity and permeability) and a free flow re-
gion, where the fluid (oil, water, gas) meets no resistance
form the surrounding rock [1].

The main difficulty in numerical simulations in such
reservoirs is the co-existence of porous and free flow re-
gions, typically at several scales. The presence of individ-
ual voids such as vugs and caves in a surrounding porous
media can significantly alter the effective permeability of
the media. Furthermore, fractures and long range caves
can form various types of connected networks which change
the effective permeability of the media by orders of mag-
nitudes. An additional factor which complicates the nu-
merical modeling of such systems is the lack of precise
knowledge on the exact position of the interface between
the porous media (rock) and the and vugs/caves. Finally,
the effects of cave/fracture fill in by loose material (sand,
mud, gravel, etc), the presence of damage at the interface
between porous media and vugs/caves and the roughness

of fractures can play very important role in the overall re-
sponse of the reservoir.

The modeling of fractured, vuggy media is tradition-
ally done by using the coupled Stokes-Darcy equations
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. The porous regions is
modeled by the Darcy equation [4, 12], while the Stokes
equation is used in the free flow region. At the interface
between the two, various types of interface conditions are
postulated [2, 3, 4, 5]. All of these interface conditions re-
quire continuity of mass and momentum across the inter-
face. The difference comes when the tangential component
of the velocities at the interface are treated. Each one of
them proposes a different jump condition for the tangen-
tial velocities and/or stresses, related in some way to the
fluid stress. The selection of jump condition is subject to
the fine structure of the interface and the flow type and
regime (c.f. e.g. [13] and the references therein). Further-
more, these jump conditions introduce additional media
parameters that need to be determined. These parameters
can be obtained either experimentally, or computationally.

There are several aspects of the coupled Darcy-Stokes
approach, which make its application to vuggy reservoirs
complicated. First, good knowledge is required both in the
location of the porous/fluid interface as well as its fine-scale
structure. Such precise information is hard to deduce from
subsurface geological data. Secondly, there is need to ob-
tain, numerically or experimentally values for parameters
related to the interface conditions. Numerical determina-
tion is viable for engineered media, such as oil filters in the
automotive industry, where the fine-scale porous geometry
is known, either by design or can be obtained relatively
easily, for example by 3D tomography. The experimental
approach is more appropriate for subsurface formations,
however, there are many difficulties associated with it. Fi-
nally, the free flow region which represents caves/vugs and
fractures must be free of any obstacles such as loose fill-in
material, and the fluid must also be free of any particle
suspensions which are moving with it.

An alternative way of modeling vuggy media is to
use the Stokes-Brinkman equations [1, 13, 14, 15, 16, 17,
18, 19]. These equations provide a unified approach in
the sense that a single equation with variable coefficients
is used for both porous and free-flow region. Stokes-
Brinkman equations can be reduced to Stokes or Darcy
equations by appropriate choice of the parameters. Since
the different media types are distinguished by selecting
the coefficients of the partial differential equation, there is
usually no need to formulate specific interface conditions.



This is especially helpful in reservoir and groundwater flow,
where the porous domain has a complicated topology. The
numerical treatment of Stokes-Brinkman equation is sim-
pler, due the lack of special interface conditions. Also,
due to uncertainties associated with interface locations be-
tween vugs and the rock matrix, Stokes-Brinkman equa-
tions introduce a somewhat coarse model that does not
require precise interface locations and avoid local grid re-
finement issues that are needed near the interfaces. Finally
the Stokes-Brinkman equations provide a model that can
be continuously varied from a Darcy dominated flow to a
Stokes dominated flow, a feature which allows is to sim-
ulate effectively partially filled fractures or solid particles
suspended in the fluid.

The two mathematical models for the fine scale: the
Stokes-Darcy and the alternative proposed in this work,
the Stokes-Brinkman model, are presented next. This is
followed by a short discussion on the upscaling of the
Stokes-Brinkman equation from the fine to the coarse
scale. Two different types of numerical examples are pre-
sented. The first demonstrates that upscaling the Stokes-
Brinkman model works for isolated vugs distributed in a
porous matrix. The effect of upscaling resolution is also
investigated. The second class of examples deal with sev-
eral typical configurations in a carbonate karst reservoir in
China.

Mathematical Models for Vuggy Media at
Multiple Scales
We begin, by considering two scales, a fine and a coarse
one. The fine scale media is composed of a porous region
and a free flow region. The free flow region represents the
vugs, caves and fractures. The porous region, which we
will also refer to as matrix, has a much finer underlying
structure of impermeable solid and pore space where fluid
flow can occur. This fine scale structure is not considered
but an effective response of the porous media is assumed
governed by material parameters such as porosity and per-
meability.

At the coarse scale, on the other hand, the media is de-
scribed mostly by Darcy flow. The fine scale features such
as vugs caves and fractures, along with the surrounding
porous matrix, are replaced by an effective material with
well defined effective permeability and porosity. However
certain features, such as, large, long-range caves (relative
to the fine scale) may still be retained at the coarse scale.
In the later situation, the Stokes-Brinkman model provides
a very natural way of transiting between the scales.

To fix notation, the characteristic length scales of the
fine and coarse scale, are denoted by l and L, respectively.
Next, the usual small parameter ε is introduced [6, 20]:

ε =
l

L
. (1)

Throughout this section, all quantities with superscript ε
are defined on the fine scale, otherwise they are defined on
the coarse scale. Let Ωf be the free flow region, Ωp the

porous region and the interface between the two (exclud-
ing the external boundary) be Γ. Also, the fine scale fluid
velocity is denoted by vε and the fine scale pressure by pε.
In the free flow region, vε represents the actual physical
velocity of the fluid but in the porous region it represents
the Darcy (or averaged) velocity.

Darcy-Stokes The Stokes equation, used to describe the
free flow region, has the form:

∇pε − µ∆vε = f in Ωf , (2)

∇ · vε = 0 in Ωf . (3)

The first of these equation expresses the balance of linear
momentum, and the second is the conservation of mass.
Also, recall the fluid stress tensor σ is given by the for-
mula:

σ = −pI + 2µD,

where D is the strain rate:

D =
1
2
(
∇v +∇vT

)
.

In the porous region, one has the classical Darcy law
(c.f. e.g. [12, 6]), along with conservation of mass:

vε = −K
µ

(∇pε − f) in Ωp, (4)

∇ · vε = 0 in Ωp. (5)

The two systems need to be coupled at the interface Γ.
There are various ways in which this is achieved. For ex-
ample, the classical condition of [2] states that:

[v] · n = 0 on Γ, (6)
2µDn = [p] on Γ, (7)
∂vf

∂n
=
αBJ√
K

[v] · ti on Γ. (8)

Here, [·] denotes the jump in a given quantity while mov-
ing from the fluid to the porous side, that is, form some
field φ:

[φ] = φf − φp,

n is a unit normal pointing from Ωf to Ωp and vf is the
velocity in the fluid region. In the above equations, the
first interface condition (6) expresses conservation of mass
across the interface, (7) expresses conservation of momen-
tum, and (8) imposes a slip condition on the tangential
component of the velocity. The dimensionless constant
αBJ is a material property which is representative of the
microstructure (at much smaller scales than l) of the in-
terface. It can be obtained either numerically, if such in-
formation is available or obtained experimentally.

It should be emphasized, that the exact form of the
interface conditions (6)-(8) is an active area of research
[2, 3, 4, 5, 8, 9, 10]. For example, [3] modified equation (8)
to contain only variable in the fluid domain, [4, 5] studied
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the interface conditions based on the flow type, e.g. par-
allel or perpendicular to the interface [4, 5] and [8, 9, 10]
studied the mathematical justifications of such interface
conditions. The reader is referred to [13] for a detailed
review.

The Stokes-Brinkman Equation Recall that the fine
scale velocity is denoted by vε and the fine scale pressure
by pε. The Stokes-Brinkman equation for a single phase
flow in a porous/free flow media is written as follows (c.f.
e.g. [14, 13]):

µK−1vε +∇pε − µ∗∆vε = f in Ω, (9)
∇ · vε = 0 in Ω. (10)

Here, K is a permeability tensor, which in Ωp is equal to
the Darcy permeability of the porous media, µ is the phys-
ical viscosity of the fluid and µ∗ is an effective viscosity.
The other two parameters - K and µ∗ are selected differ-
ently depending on the media type (porous or free flow)
and are discussed next. It will also be shown that, in the
fluid region, vε represents the actual physical velocity of
the fluid and in the porous region, it is the Darcy velocity.

The physical fluid viscosity µ is a material constant
that defines the fluid under consideration (e.g. water, oil,
etc) and is a uniform constant in the entire domain Ω. In
the fluid region Ωf , K is assumed to be∞ and µ∗ is taken
equal to the physical fluid viscosity µ:

µ∗ = µ, K =∞ in Ωf (11)

Observe that this selection of parameters implies that
equations (9), (10) reduce to the Stokes system (2), (3).

In the porous region Ωp, K is taken to be the Darcy
permeability of the porous media. With that, and in the
absence of distributed body force f , equation (9) can be
written as

∇pε = −µK−1vε + µ∗∆vε in Ω, (12)

The reader will recognize that in the last equation, the
only difference with Darcy’s law (4) is the additional vis-
cous term µ∗∆vε. So, if µ∗ is taken equal to zero in Ωp,
then equation (9) reduces to (4). However this will reduce
the Stokes-Brinkman system to the coupled Darcy-Stokes
model. This will entail the difficulties mentioned previ-
ously, which we aim to avoid. Observe, that in most porous
media, K is in the range of milli- to tens of Darcy. Thus,
if µ∗ is of the same order as the physical viscosity µ, that
is

µ∗ ∼ µ
the term µK−1vε in equation (12) dominates by many or-
ders of magnitude µ∗∆vε. Thus, the additional viscous
term introduces only a small perturbation to Darcy’s law.
As a result the simplest possible choice for µ∗ is

µ∗ = µ

which, in complex geometries, uncertain interface location
and lack of knowledge of the micro-scale interface features

is a reasonable choice [13, pg. 26-29]. A different choice
of µ∗ is usually motivated by two factors. First, µ∗ can
be used to provide a more accurate model for the porous
medium than is afforded by Darcy law [15, 17, 19]. Sec-
ondly, the effective viscosity µ∗ can also be used to mimic
various jump condition at the interface, as done by [16, 21].
The reader is again referred to [13, pg. 26-29], for an in-
depth discussion on this subject.

The Stokes-Brinkman equation offers several advan-
tages. First, it allows a unified approach to the ensemble
of porous and free-flow media by formulating a single equa-
tion in the entire domain Ω. The different media types are
distinguished by proper selection of K and µ∗ in equations
(9), (10) and there is no need to formulate specific inter-
face conditions, as in the coupled Darcy-Stokes approach.
This is especially helpful when the porous domain Ωp has
a complicated topology, as is the case in vuggy reservoirs.
The unified approach also translates to significant simpli-
fication in the numerical treatment of equations (9), (10).

Upscaling As was mentioned earlier, vuggy, fractured
reservoirs feature multiple scales, and upscaling is neces-
sary for numerical simulation at the field scale. In this
section, we consider the upscaling of the Stokes-Brinkman
equation from the fine to the coarse scale.

First, we assume that we have a Representative Ele-
ment of Volume (REV) which features both porous and
fluid domains. In this case, the coarse scale equations are
Darcy law and conservation of mass. The short summary
presented next is based on two-scale asymptotic expan-
sion [6, 20]. The procedure is very similar to the one em-
ployed for upscaling the Stokes equation in an impermeable
porous media. The reader is thus referred to [22] for tech-
nical details. The results are summarized next. A formal
asymptotic expansion of the type

vε(x) = v−2(x,y) + εv−1(x,y) + ε2v0(x,y) + ε3v1(x,y) + . . .
(13)

pε(x) = p0(x,y) + εp1(x,y) + . . . (14)

is substituted in equations (9), (10). By further assuming
that

µK−1 ≥ O
(
ε−2
)
, (15)

one obtains that the first two velocity terms v−2 and v−1

are identically zero and the first term in the pressure ex-
pansion p0 does not depend on the fine-scale variable y,
that is p0 = p0(x).

Next, one obtains a set of cell problems that are used
to compute the effective (or upscaled) permeability of the
REV. Let d be the dimension (2 or 3) and ei be a unit
vector in the i-th direction. The d cell problems needed to
upscale the Stokes-Brinkman equation are:

K−1wi +∇yq
i − µ∗

µ
∆ywi = ei in Y, (16)

∇y ·w = 0 in Y. (17)
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Here, wi are Y -periodic and the (fine-scale) pressure q has
zero average in Y . The permeability is then computed by
averaging the fine-scale velocities:

Kij := 〈wi
j〉Y =

1
|Y |

∫
Y

widy. (18)

The macroscopic (upscaled) flux is given by the Darcy’s
law:

〈vε〉 = −K
µ

(∇〈pε〉 − f) , (19)

and subject to conservation of mass:

∇ · 〈vε〉 = 0. (20)

Note that wi, i = 1, ..., d are the fine-scale velocities in
the REV, that is Y , are subject to unit forcing in the re-
spective direction. Since ei can also be transferred to the
pressure term:

∇
(
qi + xi

)
= ∇qi + ei,

one can consider 〈wi〉 as the averaged flux in Y over a unit
pressure drop in the i-th coordinate direction.

The above upscaling works well under the assumption
(15) and that an REV consisting of both porous and fluid
region exists. Assumption (15) is quite general, since typ-
ically K−1 dominates the fluid viscosity by orders of mag-
nitude. When K ∼ ε2µ the Brinkman term in the porous
part of equation (16) is significant. The fine-scale velocities
in the porous and fluid region will be of similar orders and
noticeable mass transfer will occur between the fluid and
solid, regardless of the flow regime. When K � ε2µ, the
Brinkman term in (16) will dominate in the porous part of
Y . As a result, the flow will significantly depend on the ge-
ometry of the REV. For example, in the case of connected
vugs, the flow trough the vugs will dominate any flow in
the porous part and one will essentially be homogenizing
Stokes flow in impermeable media.

It is also possible that the some regions of the fine-
scale domain do not allow upscaling, for example when an
REV contains only a fluid part. This will happen if there
are fluid regions with characteristic size much larger then
l, c.f. equation (1). In such cases one can upscale the part
of the fine scale where suitable mixture of porous media
and vugs exist. Large scale voids on the other hand can
be retained as free flow regions at the coarse scale. Then
one will have a homogenized Stokes-Brinkman equation on
the coarse scale, where the fluid region is represented by
vugs, caves or fractures that cannot be homogenize. The
porous region is the part susceptible to homogenization.
There, the macroscopic velocity and pressure are defined
as the average of the respective fine-scale quantities. In
this way, the Stokes-Brinkman model allows us to upscale
fractured, vuggy media, in a natural way and retaining the
same equation at all scales. This allows successive homog-
enization at multiple scales.

Numerical Experiments
Discretization In order to solve numerically the fine-
scale problem (9), (10), as well as the cell problems
(16), (17) we use a mixed finite element method for the
Stokes-Brinkman equations in the primary variables. We
use Taylor-Hood elements (continuous quadratic velocity
and continuous linear pressure, for more details, see e.g.
[23]) on unstructured grids. The Taylor-Hood element is
one of the few commonly used elements for the Stokes
equation which is also stable for the Stokes-Brinkman
equation [24]. It also provides a good approximation for
both velocity and pressure.

The linear systems resulting from this finite element
discretization are symmetric and indefinite and are solved
using preconditioned conjugate gradient method for the
pressure Schur complement. For more details on these
types of numerical the reader is referred to [23]. The
coarse-scale problems (19), (20) are solved by standard,
conforming finite element method (c.f. e.g. [25]).

Influence of the viscous term in the porous re-
gions As was mentioned previously, the viscous term in
the porous region introduces a small perturbation to the
Darcy flow (c.f. equation (12)). In this section we present
a numerical example which demonstrates that this is the
case. The geometry is a simple REV, consisting of a porous
square with a circular vug in the center. The porous ma-
trix is taken with very high permeability K = 100D and
the fluid is water (µ = 1cP ). The permeability was chosen
intentionally very high so that one could see a noticeable
effects of the Brinkman term in the porous region when
µ∗ = µ. Periodic boundary conditions are specified for
both pressure and velocity. The flow is driven by a unit
force in the horizontal direction.

Several simulations were performed, using different
values for µ∗ in the porous region. In Figure 1(a) the
velocity and streamlines are plotted for a single vug inclu-
sion and homogeneous background permeability field using
Stokes-Brinkman equations (5) with µ∗ = µ. This natural
choice was proposed by Laptev [13] in the absence of good
knowledge of the porous-fluid interface microstructure, ex-
act location, etc. Note that the flow is driven by a unit
body force. This, combined with the periodic boundary
conditions leads to a pressure which is antisymmetric with
respect to the line x = 0.5. Moreover, it reaches its mini-
mum near the left border of the inclusion (as the fluid en-
ters the free flow region it experiences the least resistance
to flow) and maximum at the right end of the inclusion
(as the fluid enters back into the porous region the flow
experiences higher resistance).

In Figure 1(b), the same quantities are plotted for the
solution of the Stokes-Brinkman with much smaller vis-
cosity term in the porous region (µ∗ = 0.001µ). The pres-
sure for the two cases is plotted in Figures 1(c) and 1(d),
respectively. Comparing with the case µ∗ = µ, the two
solutions are essentially the same, with about 1% change
in the maximum value of the velocity. This can be ex-
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(a) µ∗ = µ, streamlines and velocity magnitude. (b) µ∗ = 0.001µ, streamlines and velocity magnitude.

(c) µ∗ = µ, pressure (d) µ∗ = 0.001µ, pressure

Figure 1: Effect of the viscous term in the porous region of the Stokes-Brinkman equation.

plained by observing that even for the very high perme-
ability in the porous region (100D), the Brinkman term
dominates over the viscous term by seven orders of mag-
nitude: µ/K = 107. Further decrease of µ∗ in the porous
region did not change the velocity field any further. Be-
cause there is almost no difference between the velocity
and pressure fields, and since in realistic reservoirs there
is little hope to obtain detailed information of the porous-
fluid interface, all further simulations will be performed
with µ∗ = µ.

A 3-Dimensional Example In this section we compute
the solution of the Stokes-Brinkman equations in a simple
3D geometry consisting of a porous block with a spherical
vug in the center (Figure 2). The block is a cube with unit
dimensions (1m) and the spherical vug has radius 0.3m.
The porous rock matrix has permeability K = 100D and
the fluid under consideration is water. The discretization
of the REV domain is performed using tetrahedral Taylor-
Hood elements. Due to symmetry, only half of the domain
is used (Figure 2(b)).

The boundary value problem considered is one of the
three cell problems needed to find the upscaled properties

of this REV. That is we impose periodic boundary condi-
tions and a unit body force in the x1 direction (c.f. equa-
tions (16) and (17)). The result indicate that the upscaled
permeability K∗ of this REV is 137D. The velocity and
pressure profiles of the solution itself are shown in Figure 3.

Upscaling of randomly distributed, disconnected
vugs In this section we perform numerical experiments
designed to test the upscaling of Stokes-Brinkman equa-
tions. We consider a fine scale domain populated with
randomly distributed elliptical vugs, shown in Figure 4(a).
In the figure, the vugs are colored in red. They are gen-
erally well separated from each other and not connected.
The objective is to compare a fine scale solution of equa-
tions (9), (10) with the coarse scale model (19), (20). We
considered two cases depending on the permeability in the
porous region. In both cases the fluid under consideration
is water (µ = 1cP ). In the first case the background per-
meability was taken homogeneous in order to understand
the effect of the vugs. The second example is more realis-
tic. A variable background permeability field is considered
(Figure 7(a)). For each example we performed upscaling
to a 5 × 5 coarse grid and a 10 × 10 coarse grid. This al-
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Porous Rock

Cave/Vug

(a) REV Geometry

Cave/VugCave/Vug

(b) Discretization

Figure 2: A 3D REV (a) consisting of cubic block of porous (transparent) with a spherical vugular inclusion (green) in the
center. The unstructured tetrahedral mesh used in the computations is shown to the right (b). Note that due to symmetry
only half of the domain is used

(a) Velocity in the x1 direction (b) Pressure

Figure 3: REV solution for a 3D spherical inclusion

lowed us to study the quality of the upscaled solution as
the coarse grid was refined. Finally, all fine-scale compu-
tations were performed on the mesh shown in Figure 4(a)
(35272 triangular elements and 17879 nodes).

Homogeneous matrix permeability In the first exam-
ple, the background permeability field is homogeneous with
K = 1mD. We consider no flow at top and bottom sides of
the domain (Figure 4(a)). The flow is driven by a unit pres-
sure drop in the horizontal (x) direction. This is achieved
by setting a 1Pa pressure at the left side and zero at the
right side of the domain.

The fine scale solution is shown in Figure 4(b) and
Figure 4(c). Next we construct two different coarse scale
models by dividing the whole domain into 10x10 and 5x5
coarse grid blocks, as shown in Figure 5 and 6. For
each coarse grid, the upscaled permeability is computed

(c.f. the cell problems (16), (17)). The horizontal and
vertical components of the effective permeability tensor
K is shown respectively. Observing these figures, we can
clearly see that in the coarse regions with high concentra-
tion of vugs, the upscaled permeability is higher. Further
more, the results from higher coarse scale resolution more
accurately represent the distribution of vugs. The cor-
responding coarse scale pressure solutions are plotted in
Figure 5(c) and Figure 6(c). We compare this coarse-scale
pressure with the averaged coarse-scale pressure obtained
from fine-scale pressure. Table 1 gives the absolute and
relative L2 errors in different cases. The relative L2 er-
rors of both coarse scale models were found to be less than
2%. The 10x10 case is more accurate than the 5x5 case
because higher resolution can better represent the hetero-
geneous distribution of vugs.
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0 0.2 0.4 0.6 0.8 1

(a) Discretization (b) Velocity magnitude (c) Pressure

Figure 4: Fine-scale geometry (a) and reference solution (b,c) for vugs in homogeneous background permeability field. The
fine-scale geometry and finite element discretization are shown in (a) with the vugs colored in red. The fine-scale reference
solution is shown in (b) and (c).

(a) K11 (b) K22 (c) Coarse-scale pressure

Figure 5: Upscaling results for vugs in homogeneous background permeability field on a 10×10 grid. Shown are the horizontal
(a) and vertical (b) components of the upscaled permeability tensor, as well as the coarse scale pressure

(a) K11 (b) K22 (c) Coarse-scale pressure

Figure 6: Upscaling results for vugs in homogeneous background permeability field on a 5× 5 grid. Shown are the horizontal
(a) and vertical (b) components of the upscaled permeability tensor, as well as the coarse scale pressure

Table 1: L2 errors between coarse-scale pressures and averaged fine-scale pressures on respective coarse grid models
Coarse grid Constant K Variable K

L2 error Relative L2 error L2 error Relative L2 error
5× 5 1.08× 10−2 1.9% 2.16× 10−2 3.92%

10× 10 6.81× 10−3 1.1% 1.18× 10−2 2.14%
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(a) Fine-scale permeability (log plot) (b) Velocity magnitude (c) Pressure

Figure 7: Fine-scale permeability field (a) and reference solution (b,c) for vugs in variable background permeability field.
The fine-scale permeability is shown in a log plot. The fine-scale reference solution is shown in (b) and (c).

(a) K11 (b) K22 (c) Coarse-scale pressure

Figure 8: Upscaling results for vugs in heterogeneous background permeability field on a 10 × 10 grid. Shown are the
horizontal (a) and vertical (b) components of the upscaled permeability tensor, as well as the coarse scale pressure

(a) K11 (b) K22 (c) Coarse-scale pressure

Figure 9: Upscaling results for vugs in heterogeneous background permeability field on a 5×5 grid. Shown are the horizontal
(a) and vertical (b) components of the upscaled permeability tensor, as well as the coarse scale pressure
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Heterogeneous matrix permeability In the next ex-
ample, we consider a heterogeneous, isotropic background
permeability, as shown in Figure 7(a).The vug population
(size, shape and locations) are identical to the previous
example (Figure 4(a)). The fine scale matrix permeability
field is a realization of a stochastic field with prescribed
overall variance (quantified via σ2, the variance of log(k)),
correlation structure and covariance model. It was gener-
ated using the GSLIB algorithms, characterized by a spher-
ical variogram. The field has long correlation length in the
horizontal direction (0.4) and smaller in the vertical direc-
tion (0.1). The boundary conditions are the same as in the
previous example.

The fine-scale velocity and pressures fields are plotted
in Figures 7(b) and 7(c), respectively. We see from this
figure that the heterogeneous permeability creates addi-
tional high flow channels for the vugs which enhances the
connectivity of the media. This is more evident if one com-
pares Figure 4(b) and Figure 7(b). The longer horizontal
correlation length in the background permeability creates
several high flow channels in the horizontal direction. The
upscaling was performed on the same 10 × 10 and 5 × 5
coarse grids as in the previous example. Comparing Fig-
ures 8 and 9 with Figures 5 and 6, we can observe that the
upscale permeabilities are quite different for homogeneous
and heterogeneous background permeabilities. Again, if
we compare Figure 8 and Figure 9, the results from higher
upscaling resolution can more accurately represent the het-
erogeneity of both vug distribution and background per-
meability, as also can be seen from Table 1 with L2 errors
in both cases less than 4%.

These tests suggest that the proposed upscaling
method provides accurate coarse-scale solution for both
homogeneous and heterogeneous background permeability
fields. Upscaling resolution has clear effects on the ac-
curacy of upscaling results. Higher resolution can better
represent the fine scale heterogeneity and thus gives better
results, while it is well expected that higher resolution also
requires more computational resources.

Case studies from Tahe oil field
Large aperture, long-range cave In this example we
study the effective response of a coarse block of dimen-
sions 50× 50m with a large aperture cave. The geometry
is shown in Figure 10(a). Geological data indicates that
the cave has a large aperture (several meters). Well test
data indicates that the effective permeability of such coarse
blocks is in the order of 100mD. Due to the large aperture
of the cave, the measured effective permeability suggests
that some kind of filling material is present in the cave.

Next, we perform a parameter study aimed at deter-
mining the properties of the fill-in material. The basic idea
is to compute the effective permeability of the entire block
for a number of values of Kf . In this way we can obtain
a tabulated functional dependence of the upscaled perme-
ability on the fracture permeability. The permeability of
the rock has a known value of KR = 0.025mD. The nature

of the fill-in material is not well understood, so we vary
the permeability of the fracture Kf from 0.025mD (effec-
tively a completely blocked cave) to infinity (completely
unobstructed Stokes flow) by computing the effective per-
meability for a range of values for Kf .

The results are shown in Figure 11. Based on these
results, it can be seen that an effective permeability of
100mD for the entire block results from a fracture perme-
ability of about 1D. This implies that the fill-in material
has the permeability of, for example, fine sand [26]. The
velocity field for fracture permeability of 1D is shown in
Figure 12(a). Note that in the Stokes limit (kf →∞) the
permeability of such large aperture caves is in the order of
1014− 1015mD. This is not surprising, as a cave of several
meters aperture can easily support fluid velocities in the
meters-per-second range (Figure 12(b)).

Large, short-range caves connected by fracture net-
work In this example we study the effective response of a
coarse block of dimensions 20× 20m with five large aper-
ture, short-range caves. The caves are connected by four
fractures of approximately 5−30mm aperture. The geome-
try is shown in Figure 13(a). Well test data indicates that
the effective permeability of these types of coarse blocks
is in the range 103 − 5 × 104mD. We again perform a
parametric study to obtain the dependence of the effective
permeability on the fracture permeability.

The permeability of the porous rock matrix has a
known value of KR = 0.025mD. The caves are assumed
to be fill-in free, that is the flow is completely unob-
structed and governed by the Stokes equations. The per-
meability of the fracture Kf is varied from 0.025mD (a
completely blocked fracture) to infinity (completely unob-
structed Stokes flow). The results are shown in Figure 14.
Based on these results, it can be seen that an effective per-
meability of 1D for the entire block (the low end estimate)
results from a fracture permeability of about 350D. The
upper limit for effective permeability (50D) is achieved for
a fracture permeability of approximately 17500D. Based
on typical permeabilities of sand and gravel [26] it can be
seen that such overall block permeabilities (1 − 50D) can
result from well-sorted gravel as the fracture filling mate-
rial. Moreover, the simulations show that most of the flow
occurs in the vug-fracture network. Thus, the overall per-
meability of such coarse blocks is determined mostly by
the aperture and connectivity of the fracture network.

Fracture network in low-permeability rock matrix
In this example we study the effective response of a coarse
block with an intersecting network of long-range fractures
Figure 15(a). Unlike the previous cases, no vugs and
caves are present. The fractures have typical aperture
of 500 − 1000µm and spatial density of 2 − 8 fractures
per meter. Well test data indicates that the effective per-
meability of these types of coarse blocks is in the range
103 − 5 × 104mD. As in the previous examples we would
like to find out the effective permeability of the block as a
function of the fracture fill in material.
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Figure 10: The coarse block (a) consisting of porous rock and a large cave (red) of approximately 4− 8m aperture, running
trough the block. The unstructured mesh used in the computations is shown in (b).
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Figure 11: Effective permeability (K∗
11 component) of the coarse block as a function of the fracture permeability

(a) Kf = 1D (b) Kf =∞ (Stokes limit)

Figure 12: Fine-scale velocity field for filling material with permeability of fine sand (a) and the completely unobstructed
Stokes limit (b).
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Figure 13: The coarse block (a) consisting of porous rock and several large, short-range caves (red) of approximately 4− 6m
aperture, connected by fractures (black lines). The unstructured mesh used in the computations is shown in (b).
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Figure 14: Effective permeability (K∗
11 component) of the coarse block as a function of the fracture permeability

For the computations, we selected a periodic arrange-
ment of fractures networks as shown in Figure 15(a). Two
evenly distributed fracture networks that run at 45 de-
grees to the coordinate axes and intersect with each other
at right angles were used. A uniform fracture aperture
of 707µm was used for all fractures. The spatial den-
sity of both networks was selected to be 2.3 fractures
per meter. This allowed, using periodicity, to use a rel-
atively small REV of dimensions 0.3 × 0.3m as shown
in Figure 15(a). The permeability of the rock matrix is
taken to be KR = 0.025mD (as in the previous sections).
The fracture permeability Kf is varied from 0.025mD (a
completely blocked fracture) to infinity (completely unob-
structed Stokes flow).

The results are shown in Figure 16. It can be seen that
completely unobstructed fractures (no fill-in) result in ef-
fective permeability of 139D. A 1D effective permeability

will result (for this particular network of uniform aperture
of 707µm and spatial density of 2.3 fractures per meter)
from a fill-in material with permeability Kf = 364D. This
implies that the filling is well sorted gravel. On the other
hand, the upper limit of 50D effective permeability the
fracture must be nearly unobstructed (Kf = 4.47×104D).
Note that in this simulation, perfectly smooth fractures
of uniform aperture are assumed. Thus, while an unob-
structed fracture network yields a 139D effective perme-
ability, effects of fracture wall roughness and non-uniform
aperture can easily change this effective permeability by
an order of magnitude.

In conclusion, note that the effective permeability is
influenced not only by the fill-in material but also by the
fracture density and fracture aperture. For example a more
dense network of fractures of, for example, 8 fractures per
meter will result in approximately 480D permeability in
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Figure 15: The coarse block (a) consisting of porous rock (grey region) and intersecting fractures (white strips). Due to the
periodic arrangement of the fractures a smaller REV is used in the computations (black rectangle). The unstructured mesh
used in the computations is shown in (b).
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Figure 16: Effective permeability (K∗
11 component) of the coarse block as a function of the fracture permeability

the Stokes limit (no fill-in). Thus a more detailed char-
acterization of the fracture networks present in Tahe field
is needed to better quantify the these types of fracture
networks. Alternatively, an expanded parametric study
which also includes the fracture density and variable aper-
ture may be performed.

Vugs/Caves imbedded in a fractured matrix In this
example we study the interaction between porous rock,
vugs and small fractures (< 1µm) with density in the range
2−8 fractures per meter. A conceptual picture of such me-
dia is shown in Figure 17(a). Note that the fractures are
not drawn to scale (they are much thinner than they ap-
pear in the figure) and their density (number of fracture
per meter in some direction) may vary. Again we are in-

terested in the effective response of a typical coarse block.
We are considering a coarse block of dimension 20 ×

20m. The fracture network imposed on the porous matrix
is of aperture 707µm and density 2.3 fractures per meter.
Geometrically this is equivalent to the fractured porous
rock of the previous section. The same permeability of the
porous rock (0.025mD) as previously is used. Two ellipti-
cally shaped vugs of dimension 3.8 × 5.2m are imbedded
in this fractured rock. Note that for a 20× 20m bock the
fracture density of 2.3 implies that we have around 12 frac-
tures in each direction (the fractures are at 45 degrees to
the coordinate axes).

The very small aperture of the fractures compared
to the block dimension (the ratio is approximately 1 :
28000) makes a direct numerical simulation of the porous

12
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Figure 17: The coarse block (a) consists of fractured porous rock and two imbedded elliptical vugs. The porous rock is the
grey region and the fractures are conceptually depicted as white strips. The fractures are not drawn to scale - the block is of
dimension 20× 20m and the fracture thickness is much smaller (707µm) than depicted. The very small size of the fractures
makes impossible a direct simulation, so a two scale homogenization approach is used. The unstructured mesh used in the
second homogenization step is shown in (b).

rock/fractures/vug system very difficult. Thus we used a
two-stage homogenization approach. First, we consider the
porous rock and the fractures alone and replace it with an
equivalent effective homogeneous porous medium which we
call matrix. The permeability of this medium is denoted by
Km. Next we imbed the two vugs in this effective medium
and homogenize again to obtain the final effective perme-
ability of the coarse block

This approach is computationally feasible since the
first step involves much smaller REVs. One can take
advantage of the periodic arrangement of the fractures
and needs to consider only two intersecting fractures (Fig-
ure 15(b)), as this was done in the previous section. In the
second step one is faced with solving the Stokes-Brinkman
equation for the matrix and the imbedded vugs which
poses no problems as the vugs are of size similar to the
coarse block dimensions.

This approach allows us to use the parametric study
developed for fractured rock (Figure 16) to directly com-
pute the final effective coarse permeability. For example, it
was found in the previous section, that if our fracture net-
work has permeability of Kf = 364D (due to some fill-in
material such as sorted gravel) the effective matrix perme-
ability (porous rock and fractures) is Km = 1D. With this

parameters for the fracture network the second homoge-
nization step yields an effective permeability tensor given
in table 2. Similarly, it was found that a Kf = 4.47×104D
for the fracture network results in effective permeability of
Km = 50D and an unobstructed fracture network results
in Km = 139D. The results of the second homogeniza-
tion step are summarized in table 2. Some selected cell
solutions of the second homogenization step are shown in
Figures 18- 20.

The use of the two-stage homogenization process (ta-
ble 2) not only allows us to save computational resources
but also to evaluate the influence of the fractures and vugs
on the overall effective permeability. The first homoge-
nization step shows orders of magnitude increase in the
effective permeability Km of the ensemble of porous rock
and fracture network over the very low permeability of
the porous rock itself (Kr = 0.025mD). The second ho-
mogenization step - the addition of the two vugs further
increases the effective permeability (now of the entire en-
semble of porous rock, fractures and vugs) by 16 − 18%.
Thus, the most important contribution to overall perme-
ability is that of the fracture network. This is similar to the
result of [27] which concluded that the computed equiva-
lent permeabilities are more sensitive to fracture patterns

Table 2: Effective permeabilities (two-stage homogenization) for coarse block with vugs imbedded in porous, fractured rock.

Fracture permeability Kf = 364D Kf = 44755D Kf =∞

Homogenization, first step (porous rock
and fractures only) Km = 1D Km = 50D Km = 139D

Effective permeability of coarse block
(Homogenization, second step)

(
1.18 0.036
0.036 1.18

)
D

(
58.7 1.83
1.83 58.7

)
D

(
163.4 5.08
5.08 163.4

)
D

13



(a) Velocity magnitude and streamline (b) Horizontal component (v1) (c) Vertical component (v2)

Figure 18: Second stage homogenization cell solution used to determine K11 and K21 for the case of matrix permeability of
Km = 1D. This corresponds to a fracture permeability of Kf = 364D at the finer scale (See Figure 16). Shown are velocity
magnitude and streamlines (a), horizontal velocity component (b) and vertical velocity component (c).

(a) Velocity magnitude and streamline (b) Horizontal component (v1) (c) Vertical component (v2)

Figure 19: Second stage homogenization cell solution used to determine K11 and K21 for the case of matrix permeability
of Km = 50D. This corresponds to a fracture permeability of Kf = 44755D at the finer scale (See Figure 16). Shown are
velocity magnitude and streamlines (a), horizontal velocity component (b) and vertical velocity component (c).

(a) Velocity magnitude and streamline (b) Horizontal component (v1) (c) Vertical component (v2)

Figure 20: Second stage homogenization cell solution used to determine K11 and K21 for the case of matrix permeability
of Km = 139D. This corresponds to completely free-flow fractures at the finer scale (See Figure 16). Shown are velocity
magnitude and streamlines (a), horizontal velocity component (b) and vertical velocity component (c).
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and connectivity.
It should be noted however the extremely large scale

difference between the vugs and the fractures - about
5000 : 1 if comparing the characteristic dimensions of the
vugs to the fracture aperture. Thus, for all practical pur-
poses, the vugs can be considered as well separated, iso-
lated vugs in an fractured porous rock matrix. The situa-
tion however may change drastically if the vugs are closely
spaced together, or if there is a high-permeability chan-
nel connecting them, as for example was the case in the
previous discussion Figure 7.

Conclusions
In this work, we propose using the Stokes-Brinkman equa-
tion as a unified approach to model the flow through car-
bonate karst formations. By properly choosing the coeffi-
cients, this model automatically adapts to Stokes equation
in free flow regions and Darcy’s law in porous rock matrix.
It is shown that this model can be upscaled to Darcy law on
a coarse scale with standard homogenization procedures.

We evaluated the validity of this model on 2D and 3D
problems. In a domain with randomly populated elliptical
vugs, we performed upscaling computations by comparing
the coarse-scale results with averaged fine-scale solutions.
Both homogeneous and heterogeneous background perme-
abilities were considered. It was shown that the presence
of high permeability channels connecting vugs can sub-
stantially effect the overall flow pattern. The numerical
tests also show that the proposed upscaling to Darcy law
at coarse scale is accurate in the case of isolated vugs. The
effect of upscaling resolution is investigated by comparing
results on 10 × 10 and 5 × 5 coarse grids. As expected,
higher resolution can better represent the fine scale het-
erogeneity and thus gives better accuracy.

We performed serval case studies of typical configu-
rations in a oil field in China. We investigate the effects
of partial filled fractures on the overall permeability of the
coarse block. It is shown that the permeability of the filling
materials have profound effect on the coarse scale, espe-
cially in the transition regions between Darcy and Stokes
regions. It is difficult for the traditional coupled Darcy-
Stokes method to model the flow in such regions. Sensitiv-
ity studies are carried out based on the proposed Stokes-
Brinkman equation. It is demonstrated that if we know
the overall permeability of the coarse block (say from well
testing analysis), we can estimate the filling materials’ per-
meability the and thus determine their possible rock type.

Nomenclature
D = fluid strain rate
f = source term

K =
(

K11 K12

K21 K22

)
permeability (md)

l = characteristic length of fine scale
L = characteristic length of coarse scale
L2 = the standard norm for square-integrable func-

tions

n = unit normal of interface between vugs and rock
matrix

p = pressure (Pa)
v = velocity (m/s)
αBJ = coefficient in Beavers-Joseph tye interface con-

ditions
ε = small parameter (l/L)
σ = fluid stress tensor
µ = fluid physical viscosity (cp)
µ∗ = effective viscosity in Stokes-Brinkman equation

(cp)
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