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Abstract

Shape Memory Alloys (SMAs) have recently been considered for dynamic loading
applications for energy absorbing and vibration damping devices. An SMA body
subjected to external dynamic loading will experience large inelastic deformations
that will propagate through the body as phase transformation and/or detwinning
shock waves. The wave propagation problem in a cylindrical polycrystalline SMA
rod induced by an impact loading is considered in this paper. Numerical solutions
for various boundary conditions are presented for stress induced martensite and
detwinning of martensite. The numerical simulations utilize an adaptive Finite El-
ement Method (FEM) based on the Zienkiewicz-Zhu (ZZ) error estimator. Selected
results are compared to known analytical solutions to verify the adaptive FEM ap-
proach. The energy dissipation in an SMA rod is evaluated for a square pulse stress
input applied at various temperatures involving both stress induced martensite and
detwinning of martensite. The dynamic response of a NiTi SMA rod is also studied
experimentally in a split Hopkinson bar apparatus under detwinning conditions.
Strain history records obtained by strain gauges placed at different locations along
the SMA rod are compared with numerical simulations for a square pulse stress
input. The quasi-static and dynamic stress-strain hysteretic response of the SMA,
both due to detwinning, are found to be nearly identical. The quasi-static tests are
used to calibrate the rate independent constitutive model used for the numerical
simulations, which are found to match the experimental observations reasonably
well.
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1 Introduction

There are many areas of applications which can successfully utilize the unique
properties of SMAs. The engineering research presented in this paper relates
directly to the design of SMA components capable of absorbing dynamic loads.
Such components can be integrated into critical parts of structures that may
need protection from impact loads. Examples include joints that connect the
hull of an underwater vehicle with its internal structure, tank armor or blast
resistant cargo containers. Another promising field of application includes var-
ious active or passive vibration damping devices. Many different SMA devices
have been proposed among which nonlinear hysteretic SMA springs (Yiu and
Regelbrugge, 1995; Graesser, 1995), wires (Thomson et al., 1995; Fosdick and
Ketema, 1998) or rods (Feng and Li, 1996). In a recent paper (Lagoudas et al.,
2001) the authors investigate numerically the vibration damping capabilities
of SMAs.

Shape Memory Alloys are a class of materials that change their internal struc-
ture due to changes in temperature and/or externally applied loads. At high
temperatures the crystal lattice is in the high symmetry austenite phase (A).
At low temperatures the material exists in a low symmetry martensite phase
(M). The austenite to martensite phase transition is diffusionless and is char-
acterized by shear deformations of entire regions inside the material (Way-
man, 1983). What makes SMA materials remarkably different from ordinary
metals is the shape memory effect and the effect of pseudoelasticity which
are associated with the specific way the phase transition occurs (Funakubo,
1987). The shape memory effect allows material which has been deformed
while in the martensitic phase to recover its shape upon heating. The mech-
anism behind this behavior is the ability of SMAs to allow detwinning of the
self-accomodated martensitic variants. The pseudelasticity in SMAs is their
ability to support large inelastic strains recoverable upon unloading due to
the reverse phase transformation from martensite into austenite. The primary
way in which such strains are introduced in the material is the stress induced
phase transformation from austenite into martensite. The pseudoelastic re-
sponse provides both energy dissipation capabilities and shape recovery dur-
ing the thermomechanical loading path. Utilizing the shape memory effect also
leads to dissipation of mechanical energy but the SMA has to be heated after
the loading is applied to recover its shape.

Several constitutive models have been developed in recent years to model the
shape memory effect and pseudoelasticity of polycrystalline SMAs. Among the
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most widely accepted rate independent models are the exponential (Tanaka,
1986), cosine (Liang and Rogers, 1990) and polynomial (Boyd and Lagoudas,
1994, 1996). Any of these models can be unified using a thermodynamic frame-
work (Lagoudas et al., 1996) based on the selection of appropriate thermo-
dynamic potentials. This unified constitutive model is extended by Bo and
Lagoudas (1999a,b,c,d) to incorporate transformation induced plastic defor-
mations and to account for the evolution of the material behavior during
cyclic loading. In the models proposed by Brinson (1993); Brinson and Lam-
mering (1993); Lagoudas and Shu (1999) the martensitic volume fraction is
subdivided in two parts to account for thermally induced self-accommodated
martensite and stress induced detwinned martensite. A different approach is
taken by Abeyaratne et al. (1993, 1994); Abeyaratne and Knowles (1993) who
consider a rate dependent constitutive model that allows for softening during
phase transformation. Other authors such as Patoor et al. (1996); Siderey et al.
(1999); Sun and Hwang (1993a,b) use micromechanical techniques to average
the response of the parent austenitic phase and the different martensitic vari-
ants to obtain a model for the macroscopic behavior of polycrystalline SMAs.
For further details on SMA models the reader is referred to the work by Qidwai
and Lagoudas (2000b) as well as the review paper by Birman (1996). In the
current work the unified approach (Lagoudas et al., 1996) is chosen over the
more complex micromechanical models, assuming rate independence in the
constitutive thermomechanical response of SMAs. As it will be shown later
such an assumption is confirmed experimentally for the case of detwinning of
martensite.

In a recent paper (Chen and Lagoudas, 2000) the rate independent model for
polycrystalline SMAs (Lagoudas et al., 1996) is employed to obtain solutions
to the coupled thermomechanical problem for SMA materials. The authors
take into account the latent heat generation and assuming adiabatic condi-
tions they solve the problem by the method of characteristics together with
jump conditions that yield unique solutions. A similar study (Bekker et al.,
2002), but for different constitutive models has been carried out for both
isothermal and adiabatic conditions. In a different setting Oberaigner et al.
(1996) investigates numerically the coupled problem of wave propagation and
heat transfer in an SMA rod. The authors focus on stress pulses of low magni-
tude that cause only elastic deformations. The temperature at one end of the
SMA rod is chosen as a function of time in such a way as to utilize the phase
change due to the shape memory effect in order to maximize the damping
characteristics of the rod.

The dynamics of phase transformation in piecewise linear elastic materials
with non-monotone hysteresis is also studied by Abeyaratne and Knowles
(1991). A unique solution is obtained with the use of a kinetic relation con-
trolling the rate of the phase transformation together with a nucleation con-
dition for the initiation of the transformation. In later work the same authors
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extend the analysis to account for thermal effects (Abeyaratne and Knowles,
1994a,b). In a general setting Pence (1986) considers wave propagating in a
nonlinear elastic bar with a non-monotonic stress-strain relationship subjected
to a monotonically increasing load. It is found that for sufficiently high loads
a strain discontinuity associated with phase transformation is being created.

There has been a limited amount of experimental work done on characterizing
the dynamic response of SMAs. An experimental study on the propagation of
shear waves in single crystal Cu-Al-Ni shape memory alloy has been done by
Escobar and Clifton (1993). Phase transition shocks are not observed directly
due to their low propagation speed. Instead, their presence is inferred from
the measurements of the elastic waves at the rear end of the specimen. An
analytical attempt to model these experiments is presented in Abeyaratne and
Knowles (1997). In this work experiments will be conducted on polycrystalline
NiTi SMAs.

Classical rate-independent plasticity theory is not sufficient to describe the
behavior of SMA materials. While it is still capable of partially predicting the
shape memory effect (without capturing the strain recovery upon heating),
it cannot model the pseudoelastic response. However, for rate independent
models of SMAs both theoretical and experimental developments of dynamic
elasto-plasticity can be used for guidance. Theoretical developments on elasto-
plastic wave propagation in long rods dates back to the works of Von Kar-
man (1942), Rakhmatulin (1945) and Taylor (1958). Extensive experiments on
elasto-plastic wave propagation have been carried out by Bell (1962); Chiddis-
ter and Malvern (1963); Kolsky (1949); Clifton and Bodner (1966); Bodner and
Clifton (1967) using a split-Hopkinson bar apparatus. The split bar technique
itself was introduced by Kolsky (1949). The reader is referred to classical texts
on wave propagation such as Kolsky (1963) and Graff (1975) for additional
information. In recent years there have been extensions to the Hopkinson tech-
nique (Nemat-Nasser et al., 1991) that allow for dynamic test recovery in both
tension and compression. The basic split-Hopkinson technique will be used in
this work to conduct the dynamic experiments on polycrystalline NiTi SMA
rods.

The main focus of this paper is the study of the one-dimensional dynamic
problem of loading an SMA rod under conditions of pseudoelasticity and de-
twinning. Both computational and experimental results are obtained. Based on
experimental observations the rate independent constitutive model (Lagoudas
et al., 1996) is selected. The complex nature of most constitutive models for
SMA materials makes direct integration of even the simplest uniaxial transient
initial boundary value problems (IBVP) very complicated. Closed form solu-
tions can usually be obtained for simple boundary conditions, e.g. impact step
loading (Chen and Lagoudas, 2000) or by simplifying the constitutive model
so that the stress can be obtained as an explicit function of strain (Bekker
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et al., 2002). Numerical solutions of the impact loading problem have been
obtained by (Jimenez-Vicktory, 1999; Bekker et al., 2002) by mainly using
the Lax-Friedrichs finite difference scheme. This FD scheme has been found
to produce a considerable amount of numerical dissipation which makes the
distinction between a self-contained nonlinear shock and a rarefaction wave
difficult. In this paper numerical simulations of step and pulse shock loading
both for stress induced phase transformation and detwinning of martensite
are performed using the FEM method. An adaptive meshing technique based
on the ZZ error estimator (Zienkiewicz and Zhu, 1987) is utilized in order
to improve the accuracy of the method and decrease computational time.
Comparisons with analytical solutions are made whenever such solutions are
available. Based on the simulation results, the energy dissipation of SMA rods
for pulse loads are discussed.

An experiment on the wave propagation in a SMA rod is also performed in
a split-Hopkinson bar apparatus. A nearly equiatomic NiTi SMA specimen
instrumented with strain gauges is tested under detwinning conditions for a
pulse impact load. Separate tests in a standard uniaxial MTS test frame are
performed to establish its quasi-static response. The results of the Hopkinson
bar experiment are used to extract the dynamic stress-strain relationship due
to detwinning. The adaptive FEM technique is used to simulate the propaga-
tion of stress waves in the dynamic experiment.

The paper begins with a brief overview in Section 2 of the field equations
and boundary conditions and constitutive model defining the problem. The
implementation of the FEM for the NiTi SMA is outlined in Section 3.1. The
adaptive strategy is presented in Section 3.2. In order to verify the implemen-
tation of the adaptive FEM a boundary value problem with a step-function
stress boundary condition is solved in Section 4.1. This specific boundary con-
dition allows for the construction of analytical solutions which can be used
to verify the numerical solution methodology. Then, a square pulse IBVP is
solved for conditions of stress induced martensite (Section 4.2) and detwinning
(Section 4.3). Expected values for energy dissipation as the pulse propagates
through the rod are presented. Section 5 describes the split-Hopkinson bar
experiment and discusses the dynamic characterization of SMA materials. Fi-
nally, in Section 5.4 the numerical schemes developed in this paper are utilized
to simulate the experimental results.

2 Field equations and constitutive model for the impact problem

of SMA rods

A cylindrical SMA rod of uniform cross-section and length L is considered. A
coordinate cover is associated with the centroidal axis of the rod spanning the
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interval 0 ≤ x ≤ L. The rod which is initially stress free and at rest is subjected
to an impact load at its left end (x = 0). The right end (x = L) is assumed to
remain traction free. The field equations, initial and boundary conditions are
presented next followed by a description of the thermomechanical constitutive
model for SMAs.

2.1 Field equations, initial and boundary conditions

The rod is assumed to be long compared to its diameter so it is under uniaxial
stress state and the stress σ(x, t) depends only on the axial position and time.
The axial component of the displacement is denoted by u(x, t). Linearized
strain is further assumed so the axial component of the strain ε(x, t) is related
to the displacement by ε(x, t) = ∂u/∂x. Finally, the density of the material ρ
is assumed constant. The local form of the balance of linear momentum and
energy then read (Graff, 1975; Malvern, 1977):

ρ
∂2u

∂t2
=
∂σ

∂x
(1)

ρ
∂

∂t



U +
1

2

(

∂u

∂t

)2


=
∂

∂x

(

∂u

∂t
σ − q

)

(2)

where U is the internal energy per unit mass and q(x, t) is the heat flux.

The timescale of the impact problem is on the order of micro- to millisec-
onds. The physically meaningful IBVP is an adiabatic one because such time-
intervals are too short for heat conduction to take place as well as for convec-
tion to remove heat through the surface of the rod. In the adiabatic approxi-
mation, therefore, the heat conduction term q in (2) can be neglected so the
balance of energy in conjunction with (1) yields

ρ
∂U

∂t
= σ

∂2u

∂x∂t
(3)

Equation (1) and (3) involve the field variables u, σ and U . Through appro-
priate constitutive assumptions to be discussed in the following section only
u(x, t) and the temperature T (x, t) will become the independent variables.

For the field variables the following initial and boundary conditions are as-
sumed:
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u|t=0 = 0,
∂u

∂t
|t=0 = 0, T |t=0 = TR (4)

σ|x=0 = σ0(t), σ|x=L = 0 (5)

The initial conditions indicate that the rod is at rest and its temperature is
equal to the ambient temperature TR. The boundary conditions specify the
traction σ0(t) applied

1 to the left end of the rod. The right end is kept traction
free.

2.2 Thermomechanical constitutive model for polycrystalline SMAs

The field equations (1), (3) and initial and boundary conditions (4), (5) alone
are not sufficient to form a complete IBVP. A thermomechanical constitutive
model that captures the key characteristics of pseudoelasticity and detwinning
of the SMA response is needed.

2.2.1 Stress induced martensite

The constitutive model used is formulated in terms of the Gibbs free energy
G and employs the volume fraction of detwinned martensite ξ formed from
austenite as an internal variable (Lagoudas et al., 1996). The specific form of
G in the one dimensional case is:

G = G(σ, T, ξ) = − 1
2ρ
Sσ2 − 1

ρ
σ (α(T − TR) + εt)

+c
(

(T − TR)− T ln
(

T
TR

))

− s0T + u0 + f(ξ)
(6)

and it is linked to the internal energy U by a Legendre transformation:

U = G+ Ts+ 1
ρ
σε (7)

The definition of G includes the inelastic transformation strain εt associated
with the phase transformation. The function f(ξ) is taken to be a quadratic
polynomial in ξ and is responsible for the transformation hardening:

1 There is no continuity requirement on σ0(t) i.e. impact loads are allowed
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f(ξ) =











1
2
ρbMξ2 + (µ1 + µ2)ξ, ξ̇ > 0

1
2
ρbAξ2 + (µ1 − µ2)ξ, ξ̇ < 0

(8)

where material constants ρbA, ρbM , µ1 and µ2 define the transformation sur-
faces and the hardening during the forward and reverse transitions (Qidwai
and Lagoudas, 2000b). In the above ξ̇ > 0 denotes the forward transformation
and ξ̇ < 0 the reverse. The remaining material properties in (6) are the effec-
tive compliance S, effective thermal expansion coefficient α, effective specific
heat c, effective specific entropy at the reference state s0 and effective specific
internal energy at the reference state u0 for the SMAs which is composed of
a mixture of austenite and martensite. They are approximated by the follow-
ing averaging expressions, which are good approximations for polycrystalline
SMAs with random orientation distributions for grains (Boyd and Lagoudas,
1994):

S = S(ξ) = SA + ξ∆S, ∆S := SM − SA

α = α(ξ) = αA + ξ∆α, ∆α := αM − αA

c = c(ξ) = cA + ξ∆c, ∆c := cM − cA

s0 = s0(ξ) = sA0 + ξ∆s0, ∆s0 := sM0 − s
A
0

u0 = u0(ξ) = uA
0 + ξ∆u0, ∆u0 := uM

0 − u
A
0

(9)

Quantities with subscript A denote the appropriate material constant for the
austenite phase and those with subscript M for the martensite phase. Follow-
ing a standard thermodynamic procedure the following constitutive relations
are obtained:

s = −
∂G

∂T
(10)

ε = −ρ
∂G

∂σ
(11)

π = −ρ
∂G

∂ξ
(12)

where s is the entropy and π is the driving force for the transformation. Using
(11) the following constitutive relation is obtained:

σ = E(ξ)(ε− α(ξ)(T − TR)− ε
t) (13)

where E(ξ) = 1/S(ξ) is the effective elastic modulus. The evolution of the
inelastic variable ξ is given by a consistency condition derived from a trans-
formation criterion (Lagoudas et al., 1996). The evolution of εt follows that of
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ξ and in the one dimensional case can be integrated explicitly to yield:

εt = Hsgn(σ)ξ (14)

Here H is a positive material constant corresponding to the maximum trans-
formation strain. The principle of maximum transformation dissipation in
conjunction with the second law of thermodynamics leads to the following
transformation surface:

π = ±Y ∗ (15)

where Y ∗ = −1
2
ρ∆s0(A

of −M os)− 1
4
ρ∆s0(M

os−M of −Aof +Aos). The +Y ∗

at the right hand side stands for the forward (A→M) transformation surface
and −Y ∗ for the reverse (M → A) transformation surface. The start and
finishing temperature for the forwards transformation are denoted by Aos and
Aof and the start and finishing temperatures for the reverse transformation
are denoted by M os and M of , respectively.

For detailed description of the transformation rule and conditions for the for-
ward and reverse phase transformation the reader is referred to the original
paper by Lagoudas et al. (1996). The next section describes how detwinning
is incorporated into the constitutive model.

2.3 Detwinning of martensite

The detwinning deformation will be accounted for by adapting the constitu-
tive model. The material constants for twinned and detwinned martensite are
the same. Consequently, the initial response and the response after the com-
pletion of detwinning will both be elastic with the slope being the modulus of
elasticity of martensite EM . The deformation is irreversible upon unloading
which, consequently, will also be elastic.

The material constants in the constitutive model can be reinterpreted, replac-
ing the ones for the austenitic phase with the ones for martensite. This will
ensure the same elastic response prior to the onset of detwinning and after
its completion. The internal variable ξ should be interpreted as the volume
fraction of detwinned with respect to self-accommodated martensite and H is
the maximum inelastic strain. From equation (15) the transformation surface
will have the following simple form:

σH −
∂f

∂ξ
= 0 (16)

9



The hardening function in this case may be expressed as follows:

f(ξ) =
1

2
ρbdξ2 + Y dξ, for ξ̇ > 0 (17)

where Y d = σsH and ρbd = σfH − Y d. For convenience, the critical stress
level σs for the onset and σf for the completion of the detwinning deformation
are introduced as material constants. Note that for the detwinning case ξ̇ can
only be positive since the unloading is entirely elastic. This adaptation of the
model allows for the modelling of detwinning deformations when no stress
induced martensite is being produced.

2.4 Isentropic approximation

The adiabatic heat equation can be simplified in order to facilitate the numer-
ical treatment of the impact problem. Using the Legendre transformation (7)
the internal energy can be eliminated from equation (3):

ρT
∂s

∂t
= π

∂ξ

∂t
(18)

Further, upon combining (6) and (10) an explicit expression for the entropy
is obtained

s = ασ/ρ+ c ln(T/TR) + ∆s0ξ + sA0 (19)

On substituting (19) into (18) the balance of energy becomes:

ρc
∂T

∂t
= −T

∂

∂t
(ασ + ρ∆s0ξ) + π

∂ξ

∂t
(20)

According to Cory and McNichols (1985) and McNichols and Cory (1987) π ¿
ρ∆s0T for most SMAs. For NiTi the precise values yield π/ρ∆s0T ¿ 0.013
so equation (20) can be approximated by

ρc
∂T

∂t
= −T

∂

∂t
(ασ + ρ∆s0ξ) (21)

which is equivalent to the isentropic condition ∂s
∂t

= 0. The heat capacity c can
be assumed constant for the two phases (i.e. cA = cM). Then equation (21)
can be integrated directly, yielding:
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T = TRe
−

1
ρc
(α(ξ)σ+ρ∆s0ξ) (22)

Consequently, the differential equation (3) is replaced by the algebraic equa-
tion (22). The impact problem then reduces to solving the balance of linear
momentum (1) for the only field variable u(x, t). The remaining field vari-
ables σ and T are coupled with the strain ε and the internal variable of the
constitutive model ξ by equations (13) and (22).

2.5 Tangent moduli

A nonlinear displacement-based FEM solver utilizing the Newton-Raphson
iteration to resolve the nonlinearity requires partial derivatives of the stress
with respect to an increment of the strain. An increment in the strain causes
increments in both stress (equation (13)) and temperature (equation (22)):

dσ

dε
=
∂σ

∂ε
+
∂σ

∂T

dT

dε
(23)

In order to find the total derivative dσ
dε

a closed form expression for ∂T
∂ε

is
needed. This is done by differentiating equations (13) and (22) with respect
to the strain and combining the result to obtain:

dT

dε
= −

(

α
∂σ

∂ε
+ (σ∆α + ρ∆s0)

∂ξ

∂ε

)/(

ρc

T
+ α

∂σ

∂T
+ (σ∆α+ ρ∆s0)

∂ξ

∂T

)

(24)

Second order approximations for the partial derivatives ∂σ
∂ε
, ∂σ

∂T
, ∂ξ

∂ε
and ∂ξ

∂T
are

developed in (Qidwai and Lagoudas, 2000a) and thus all the quantities in (23)
can be computed numerically.

3 Numerical implementation

The numerical techniques used to implement the constitutive laws are de-
scribed first. For given strain increment ∆ε and temperature increment ∆T
the stress σ given by equation (13) is computed with the help of the cutting
plane return-mapping algorithm described in (Qidwai and Lagoudas, 2000a).
A displacement based FEM provides strain increments. In the impact problem
both stress and temperature depend on the strain increment ∆ε, that is for
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given strain both (13) and (22) have to be satisfied simultaneously. This is
done via an iterative process. The process starts with given values ε(0), σ(0),
T (0) for strain, stress and temperature which satisfy (13) and (22). Given a
strain increment ∆ε the pair (σ, T ) corresponding to strain ε = ε(0) + ∆ε is
found through the iteration:

σ(n+1)=E
(

ε− α
(

T (n) − TR

)

− εt
(n)
)

(25)

T (n+1)=TRe
−

1
ρC (ασ(n+1)+ρ∆s0ξ

(n+1)) (26)

The first equation (25) uses the return-mapping algorithm to compute a new
value σ(n+1) for the stress based on the old temperature T (n). The second
equation (26) attempts to enforce the isentropic heat equation by comput-
ing a corrected temperature T (n+1). The process is terminated when there is
no further progress, i.e. when

∣

∣

∣σ(n+1) − σ(n)
∣

∣

∣ and
∣

∣

∣T (n+1) − T (n)
∣

∣

∣ both become
smaller than certain tolerance. The algorithm showed linear convergence in
the test cases, however a detailed theoretical study is required to establish its
properties.

3.1 FEM procedure

A standard semi-discrete Galerkin approximation is used to generate the weak
form of the problem. In this paper only linear elements will be used. Let
P 1([0, L]) ⊂ H1([0, L]) be the set of piecewise linear functions over each ele-
ment and {ψi}

N
i=1 be the usual basis of P 1([0, L]). The weak form of (1) then

reads:

Find uh(x, t) =
∑N

i=1 Ui(t)ψi(x) such that for ∀vh ∈ P 1([0, L]):

ρ
∫ L

0

∂2uh

∂t2
vhdx+

∫ L

0
σ
∂vh

∂x
dx = −σvh

∣

∣

∣

x=0
(27)

As usual the number of nodes isN (i.e.N−1 elements) and the nodal values for
the displacement are denoted by Ui(t). Whenever appropriate, vector notation
will be used, that is U = (U1, ..., UN )

t. Problem (27) is reduced to a second
order nonlinear system of ODEs:

MÜ = F(U) (28)

where M is the mass matrix and Fξ(t)(U) is the forcing term. The subscript
ξ(t) stands to indicate that Fξ(t)(U) does not depend on the displacement
only but on the whole loading history. However, for any given loading history
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the stress and hence Fξ(t)(U) can be viewed as well defined single valued
functions. Thus, without loss of generality the subscript ξ(t) will be dropped
in the discussion that follows. The mass matrix and load vector are given by:

Mij = ρ
∫ L

0
ψiψjdx (29)

Fi(U)=−
∫ L

0
σ
∂ψi

∂x
dx (30)

It is also useful to introduce the forcing term F̃(U) due to inelastic strains
and the stiffness matrix K(U) which are given by 2 :

Kij(U)=
∫ L

0
E(ξ)

∂ψi

∂x

∂ψj

∂x
dx (31)

F̃i(U)=
∫ L

0
E(ξ)

[

εt(ξ) + α(ξ)(T − TR)
] ∂ψi

∂x
dx (32)

Note that the decomposition F(U) = F̃(U)−K(U)U holds and (28) can be
rewritten as:

MÜ+K(U)U = F̃(U) (33)

The time integration in (28) (or (33)) is done by the backward difference
method, a member of the Newmark family (Newmark, 1959; Reddy, 1993).
For t = ts the Newmark scheme is defined by 3 :

Us+1=Us + τU̇s +
1

2
τ 2((1− γ)Üs + γÜs+1) (34)

U̇s+1= U̇s + τ((1− α)Üs + αÜs+1) (35)

The backward difference method is obtained by setting α = 3
2
and γ = 2. It is

easy to show (see e.g. (Reddy, 1993)) that the above difference equations lead
to the following system of nonlinear algebraic equations for Us+1:

2

γτ 2
MUs+1 = F(Us+1) +Gs (36)

or, equivalently, to

(

2

γτ 2
M+K(Us+1)

)

Us+1 = F̃(Us+1) +Gs (37)

2 Similarly, a more precise notation for K and F̃ would be Kξ(t)(U) and F̃ξ(t)(U),
respectively.
3 The usual notation Us := U(ts) is used
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whereGs = M
(

2
γτ2Us +

2
γτ
U̇s +

1−γ
γ
Üs

)

. The nonlinear problem (36) is solved
by linearizing the right-hand side

Fi(U+∆U) ' Fi(U) +
N
∑

j=1

∂Fi(U)

∂Uj

∆Uj

and using the chain rule to obtain:

Lij(U) :=
∂Fi(U)

∂Uj

=
∫ L

0

∂σ

∂Uj

∂ψi

∂x
dx =

∫ L

0

dσ

dε

∂ψj

∂x

∂ψi

∂x
dx (38)

The solution Us+1 is found through a Newton-Raphson iterative process. Set

the initial guess to U
(0)
s+1 = Us and for n = 1, 2 . . . until convergence compute:

U
(n+1)
s+1 =

(

2

γτ 2
M− L(U

(n)
s+1)

)

−1
(

F(U
(n)
s+1)− L(U

(n)
s+1)U

(n)
s+1 +Gs

)

(39)

The cutting plane method (Qidwai and Lagoudas, 2000a) which is used to re-
solve the nonlinear behavior of the material also provides second order numer-
ical approximation for the derivative dσ/dε which results in a quasi-Newton
algorithm. Since the Newton algorithm is only locally convergent in the cases
when it diverges the simple iteration was applied to (37). Again, setU

(0)
s+1 = Us

and for n = 1, 2 . . . until convergence compute:

U
(n+1)
s+1 =

(

2

γτ 2
M+K(U

(n)
s+1)

)

−1
(

F̃(U
(n)
s+1) +Gs

)

(40)

In all numerical examples tested the later iteration demonstrated global linear
convergence.

3.2 Adaptive mesh refinement

Let σh
n be the stress at the completion of the Newton iterations for given time

step n, i.e. t = tn. Since there is no risk of confusion the subscript n will be
dropped. For linear elements σh is a piecewise constant function. Let σh be
the continuous, piecewise linear function in [0, L] which assumes the averaged
value of σh at each nodal point. The error indicator ησ(e) is defined locally
over each element e by (Zienkiewicz and Zhu, 1987):

ησ(e) =
∥

∥

∥σh − σh
∥

∥

∥

0,e
(41)

where ‖·‖0,e is the L2 norm. An element e is refined if

ησ(e)/σmax > TOL1 (42)
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where σmax is the absolute value of the maximum attainable stress in the rod,
which for impact problems is known in advance. Two neighboring elements ei
and ei+1 are merged into one if

ησ(ei)/σmax < TOL2, ησ(ei+1)/σmax < TOL2 (43)

Two aspects of the actual implementation details of the FE analysis should be
emphasized. The linear system (36) (or (37)) is tridiagonal and poses no com-
putational problems. Secondly, the most time-consuming parts of the FE pro-
cedure are the assembly of the stiffness matrix at each Newton step (because
of the nonlinear dependance of the stiffness on the strain) and the assembly of
the force vector. They require the execution of the stress update procedure via
the return-mapping algorithm which is a computationally expensive operation
and is performed once for each element at each Newton step.

Clearly a global uniform h-refinement strategy used to achieve satisfactory
spatial discretization will impose severe restrictions on the problem size due
to the assembly time issues. In order to avoid this the local criterion (42) is
applied to each element at the completion of the Newton iteration to refine or
coarsen the mesh. If there is no further need to refine the mesh the algorithm
proceeds to the next time step. It was found that this approach works very
well for the class of SMA hysteretic materials under consideration.

4 Numerical Examples

The implementation of the FEM was tested in three different numerical exam-
ples. The step loading problem under conditions of pseudoelasticity (T > Aof )
presented in the next section is used to compare the numerical solution to ex-
isting analytical solutions (Chen and Lagoudas, 2000; Bekker et al., 2002).
It is also used to demonstrate the capabilities of the adaptive mesh refine-
ment strategy. Secondly, a problem with pulse boundary conditions is solved,
again under pseudoelastic conditions. The third problem also features a pulse
boundary condition but at a lower temperature (T < M os) so only detwinning
of martensite is involved.

The material properties (Table 1) for all model problems are taken from (Qid-
wai and Lagoudas, 2000a) and represent generic NiTi SMA properties. In ad-
dition to that for all numerical simulations the length of the rod was taken to
be 0.5m. All calculations were performed on a 933 Mhz PIII machine running
Windows NT.
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Table 1
Material parameters used in the SMA model

Material constant Value Material constant Value

EA 70× 109 Pa dσ
dT

7.0× 106 Pa/(m3K)

EM 30× 109 Pa Mof 275 ◦K

αA 22× 10−6/K Mos 291 ◦K

αM 10× 10−6/K Aos 295 ◦K

H 0.05 Aof 315 ◦K

4.1 Step loading problem

The fixed impact stress initial-boundary value problem 4 is defined by setting
the boundary condition to be the step function:

σ0(t) =











0 for t ≤ 0

σ0 for t > 0
(44)

The strain level ε0 which causes the constant impact stress σ0 can be found
from equation (13). This particular boundary condition is chosen because it is
a natural starting point for nonlinear hyperbolic equations and because there
are existing analytical solutions for it.

4.1.1 Analytical solutions to the step loading problem

The structure of the solution depends strongly on the impact stress σ0. Let the
pair (εel, σel) be the point on the hysteresis curve that corresponds to the start
of the phase transformation. In this example σ0 it is taken to be sufficiently
high so that full phase transformation transformation has occurred. It is also
required that the value of σ0 be high enough, so that the graph of of the stress
strain relationship of the SMA is below the line connecting the points (εel, σel)
and (ε0, σ0) (see Figure 1).

Following Chen and Lagoudas (2000); Bekker et al. (2002) it can be shown
that for material with initial linear stress-strain relationship prior to the onset
of phase transformation the solution has the following two-shock structure:

4 When the same initial boundary value problem is reformulated as an initial prob-
lem on an infinite domain with the initial condition being a step function it is usually
referred to as the Riemann problem.
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Fig. 1. Schematic of the loading portion of a stress-strain relationship and the critical
points defining the solution to the problem.

σ(x, t) =



























σ0 for 0 ≤ x/t ≤ Vph

σel for Vph < x/t ≤ Vel

0 for Vel < x/t

(45)

T (x, t) =



























T0 for 0 ≤ x/t ≤ Vph

Tel for Vph < x/t ≤ Vel

0 for Vel < x/t

(46)

where T0 is the temperature corresponding to the impact stress σ0 and Tel

is the temperature just prior to the onset of the phase transformation. The
faster shock is a linear thermoelastic elastic shock and has velocity

Vel =

√

σel

ρεel
(47)

This shock is due to the shock type of the boundary condition and the initial
linear stress-strain response. The second, slower shock, is a transformation
shock which travels with velocity

Vph =

√

σ0 − σel

ρ(ε0 − εel)
(48)

This shock occurs not only because of the boundary condition but also be-
cause of the convex-down nature of the stress-strain relationship for ε > εel.
Higher stress levels travel with higher velocity than lower stress levels which
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make the shock self sustained and independent of the boundary condition (see
(Godlewsky and Raviart, 1996, pg. 83-97) for a general discussion as well as
(Chen and Lagoudas, 2000; Bekker et al., 2002) for solutions specific to SMA
materials). The phase transformation shock specifies the point of abrupt phase
transition. For material points with x ≤ Vpht the material is in the martensitic
phase and the region x ≥ Vpht is still in the austenitic phase.

Note that the adiabatic heat equation (22) does not provide for a completely
linear initial response. However, prior to the onset of phase transformation,
ξ = 0 and the heat equation (22) can be linearized as follows:

T = TR(1−
α

ρc
σ) +O

(

(
ασ

ρc
)2
)

(49)

By neglecting the higher order terms in (49) the remaining linear part can
be substituted in (13) to obtain a completely linear adiabatic stress-strain
response. The linear approximation in (49) is justified in the thermoelastic
range before commencement of phase transformation because ασ0

ρc
≈ 10−3. If

equation (22) is not linearized the elastic shock will be replaced by a continuous
function with very high gradient. The velocity of the points on the graph of
this function will deviate from the velocity Vel of the elastic shock by ≈ 10−5.

4.1.2 Numerical results for the step loading problem

For all numerical simulations the impact stress level is σ0 = −400MPa cor-
responding to impact strain of ε0 = −0.0635. The reference temperature is
TR = 320 ◦K. The FEM solver was set to use the backward difference time
integration scheme and the Newton-Raphson method to solve the nonlinear
system (36). The Newton-Raphson iteration showed quadratic convergence at
all time steps except for the first few ones when the shock were forming. In
the cases when it was diverging the alternative direct iteration (40) approach
was used.

Significant computational savings can be obtained if isothermal instead of adi-
abatic conditions are assumed. In an isothermal problem the temperature is
held constant T = TR and the balance of energy (2) is not considered. Thus
the quasi-static hysteresis of the material is used instead of solving equations
(13) and (22). For a NiTi SMA with the material data from Table 1 the dif-
ference between the adiabatic and isothermal hysteresis is shown in Figure 2.
The shape of the hysteresis is the same and the differences in the transforma-
tion portion will not affect the structure of the solution provided that σ0 is
well above the stress level required to finish the transformation. Consequently,
no matter whether isothermal or adiabatic conditions are assumed the shock
speeds Vph and Vel will only depend on the values for εel, σel, ε0, σ0. From
a computational point of view this simplification avoids the iteration process

18



-0.08 -0.04 0.00
Strain

-700

-600

-500

-400

-300

-200

-100

0

St
re

ss
, M

P
a

Isothermal

Adiabatic

Fig. 2. An adiabatic and isothermal path for the material data in Table 1 with
TR = 320 ◦K. Under adiabatic conditions higher stress levels are required to com-
plete the phase transformation compared to isothermal hysteresis loops.

(25),(26) (typically 6-7 iterations) which results in a significant reduction in
computational time. While the structure of the solution is not compromised
very fine spatial meshes can be explored for the purposes of comparing ana-
lytical and numerical solutions.

For the isothermal hysteresis (Figure 2) an impact stress of σ0 = 400MPa is
sufficient for the full completion of the phase transformation under isothermal
conditions. The onset of phase transformation begins at σel = −195MPa for
a strain εel = 2.78 × 10−3. Given this, the speed of the two shocks (48) and
(47) are found to be:

Vph =723m/s (50)

Vel =3294m/s (51)

Based on the first few numerical results (Figure 3) and (Figure 4) several ob-
servations can be made. First, all numerical solutions have the expected two
shocks - one elastic and another corresponding to the phase transformation.
Fixed meshes with coarse spatial discretizations have oscillations close to the
phase shock location. A comparison of the two meshes in Figure 3, both for
a fixed time-step of τ = 0.1µs at time t = 30µs shows that oscillations can
be eliminated by refining the mesh. Secondly, the backward difference scheme
which was used in these computations, introduced numerical dissipation which
is most pronounced at the elastic shock. Several other members of the New-
mark family were tested. Explicit methods as well as the constant acceleration
scheme were found to be unconditionally unstable producing highly oscillatory
solutions that were diverging with time. Of those methods that were able to
converge the backward difference was found to dampen the high frequency
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Fig. 3. Stress profile at 30µs for a fixed mesh with 500 (a) and 2000 elements
(b). Numerical oscillations are eliminated for the finer spatial discretization. The
position of the elastic shock is marked by a dashed line.
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Fig. 4. Stress profile at 30µs for an adaptive mesh with two different time steps.
The linear shock is smeared for a coarse time step τ = 0.1µs (a). It is much sharper
when a finer step of τ = 0.001µs (b) is used. Mesh nodes are marked with black
squares and the thin line at the top shows the density of elements.

oscillations (Figure 3(a)) in the most efficient manner and was subsequently
chosen for all future computations. The numerical dissipation can be decreased
by appropriately decreasing the time step. The quasi-Newton method used to
solve the nonlinear system (36) showed quadratic convergence at all time steps
but the first few ones when the shock were forming. In that case the alternative
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direct iteration (40) approach was used.

Quantitatively the results obtained by both the fixed and adaptive FEM are
in agreement with the analytical solution. In regions away from the shocks
the relative difference in the values of the stress for the numerical and the
exact solution is less then 10−4. The accuracy of the solutions therefore is
determined based on the quality of the numerical solution close to the shock
locations. The interval covering a shock (phase or elastic) where the numerical
values for the stress differ from the exact ones by more than 1% is assumed
to be the range of uncertainty for the numerical value of the shock location.
Consequently, the left and right end of this interval are assumed to be bounds
for the position of the shock of the numerical solution.

Based on this measure of error, for a time step of τ = 0.1µs the phase shock
is found to travel with velocity in the range 693 − 900m/s. The velocity of
the elastic front is calculated to be in the range 3316± 420m/s. These results
are the same for a fixed (Figure 3(b)) and adaptive mesh (Figure 4(a)). This
indicates that the adaptive and fixed FEM converge to the same solution.

The smearing of the stress profile in the region of the elastic shock is due to the
time-integration scheme. When the time step is decreased the slope becomes
steeper and eventually converges to the shock. For an adaptive solution with
a time step τ = 0.001µs (the same computation for a fixed mesh was time
prohibitive) the calculated values for the phase shock are now in the range
723 − 733m/s and the elastic shock is within the bounds 3256 − 3366m/s
(Figure 4(b)). This indicates that the lower bound for the transformation
shock is very close to the actual value (50) and that the elastic shock (51) is
virtually in the middle of the suggested numerical range. The relative error
in the predicted value for the phase shock velocity decreases from 24% for
τ = 0.1µs down to 1.3% for τ = 0.001µs. The error in the elastic shock
speed decreases from 12% to 1.1% which is a clear indication that the FEM
algorithm is converging to the exact solution.

An inspection of Figure 3 reveals that there are large regions in the bar with
no variation in the stress. This is fully utilized by the adaptive approach.
Figure 4(a) shows an adaptive FE solution with the same time step as the
solution on Figure 3(b) and an adaptive tolerance (see (42)) set to 10−4. This
accuracy is comparable to the one of a fixed mesh with 2000 elements. The
maximum number of elements that the adaptive mesh contained was 305. The
order of magnitude fewer number of elements in the adaptive meshes induced
a corresponding order of magnitude decrease in the computational time.

A comparison in the performance of the fixed and adaptive FE methods is
given in Table 2. The time step is τ = 0.01µs. The number of elements for the
fixed FEM is 16000. The adaptive solution was chosen so that it had compa-
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Table 2
Execution times for fixed and adaptive meshes

Time Fixed Mesh Adaptive Mesh

Elements Time (min) Elements Time (min)

10 µs 16000 56 161 1:12

20 µs 16000 113 199 2:37

40 µs 16000 226 256 6:10

80 µs 16000 451 301 15

rable accuracy with the one for the fixed mesh solution. A comparison of the
execution times for the fixed and adaptive methods shows that the adaptive
procedure delivers an order of magnitude improvement in performance.

4.2 Square pulse loading problem in pseudoelastic conditions

A more realistic initial-boundary value problem is one for which, instead of
step loading, the boundary condition is a square pulse, that is

σ0(t) =



























0 for t ≤ 0

σ0 for 0 < t < tpulse

0 for t ≥ tpulse

(52)

where tpulse is the duration of the pulse. Due to the complicated constitutive
response and boundary conditions there is no analytical solution to be com-
pared with. Moreover, there are unresolved questions regarding the uniqueness
of the weak solution for times t > tpulse when unloading takes place.

The stress level used for the numerical simulation is σ0 = 800MPa and the
initial temperature is TR = 320 ◦K > Aof . The simulation is done for adiabatic
conditions, utilizing both equations (13) and (22) to calculate the adiabatic
response of the SMA. The stress level is chosen so that the full adiabatic
hysteresis loop can be realized (see Figure 2). The pulse length is tpulse = 10µs
and the time step is t = 0.001µs.

The evolution of the stress and temperature in the rod up to 90µs is shown
in Figures 5 and 7. As predicted by (45) the two-shock solution for the stress
is clearly visible at the end of the pulse load at t = 10µs (Figure 5). The tem-
perature profile (Figure 7) also has two shocks (equation (46)). The maximum
temperature T0 = 378.8 ◦K is achieved in the region of full phase transforma-
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Fig. 5. Stress profile at different instances of time for a square pulse in adiabatic
loading
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Fig. 6. Magnified view near the left end. The unloading (10µs) produces two
right-travelling shock waves (20µs). The faster unloading wave reflects off the trans-
formation shock (≈ 21µs) and forms a left-travelling wave (24µs). What follows is
a series of complicated reflections that gradually kill the initial non-linear shock.

tion. The jump in the elastic shock is Tel − TR = 0.66 ◦K and for this reason
it is not clearly visible in the figure.

The most noticeable feature observed in Figure 6 is the structure of the un-
loading pulse. Again a two wave shock structure is seen that corresponds to the
initial elastic unloading and the following reverse transformation M t → A as
can be seen from the stress profile at 10 and 20µs. Both unloading shocks travel
faster than the forward phase transformation shock. When the faster unload-
ing front catches up with the forward phase transformation shock (t ≈ 22µs)
a left-travelling reflection is generated. The left-travelling wave, as seen for
t = 24µs, partially reflects from the slower unloading shock and partially con-
tinues (t = 26µs) until it reflects off the left end of the rod. A complicated
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Fig. 7. Temperature profile at various times. The jump at the forward transformation
shock is T0 − Tel = 58.2 ◦K. The elastic shock is not visible clearly because of its
small magnitude of Tel − TR = 0.66 ◦K.

series of reflection waves follows. The first reflection results in approximately
34% decrease of the peak stress level (t = 24µs). The picture becomes even
more complicated when the slower unloading shock eventually catches up with
the forward travelling phase transformation shock. Eventually the peak stress
levels are reduced to values below σel, the critical stress corresponding to the
onset of phase transformation. The temperature profile at t = 90µs is hardly
visible because the material is entirely in the elastic range and the temperature
in the rod is very close to the reference temperature. The large amounts of
latent heat generated during the initial loading phase are gradually consumed
in the reverse transformation as the stress is reduced within the elastic limits.

For pulse loading it is physically meaningful to compute the energy dissipation
due to the phase transformation. If P (τ) is the work done by the external forces
at the left end of the rod from t = 0 up to t = τ , K(τ) is the kinetic energy
of the rod at time t = τ and W(τ) is the stored elastic energy of the rod then
the energy dissipation is defined by

D(τ) =
P (τ)− (K(τ) +W(τ))

P (τ)
(53)

The quantities P , K and W given by

P (τ)=
∫ τ
0 σ(0, t)v(0, t)dt

W(τ)=1
2

∫ L
0 σ(x, τ)ε

e(x, τ)dx

K(τ)= 1
2

∫ L
0 ρ(v(x, τ))

2dx

(54)
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Fig. 8. Energy dissipation for a 10 µs square pulse in adiabatic conditions.

can be easily computed numerically at each time step.

The calculations show (Figure 8) that the dissipation level goes from 40%
at the end of the pulse (t = 10µs) to 64% at t ≈ 22µs when the faster
unloading wave reflects off the forward travelling transformation wave. The
high stress levels are then gradually reduced within the elastic limits. The
energy dissipation reaches approximately 84% at 100 µs, shortly before the
elastic front reaches the right end.

4.3 Detwinning Induced by a pulse load

In this numerical simulation the same boundary condition (52) as in the pre-
vious section is used. The initial temperature is set to TR = 295 ◦K which
is in the detwinning range and the material is initially in the M t state. The
stress pulse has magnitude σ0 = 400MPa which is sufficient to complete the
detwinning and then obtain the elastic response of the martensite phase.

There is no latent heat generation during the detwinning deformation. If it is
assumed that all the work dissipated through inelastic deformations is trans-
formed into heat, then the change in temperature would be ≈ 2 ◦K. Therefore
it is both physically and computationally justified to perform the simulation in
an isothermal setting. The loading part of the hysteresis is of the same type as
the loading part (A→M d) of the stress-strain relationship for stress induced
martensite. Therefore for the duration of the pulse a two-shock structure for
the stress distribution can be expected (see equations (45), (50) and (51)).
This is observed clearly for the stress profile at t = 10µs in Figure 10.

The unloading is completely elastic and a single linear shock forms, travelling
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Fig. 9. Stress profiles at various times for a square pulse. The material is in the
detwinning range. The attenuation of the stress to values within the elastic material
response is clearly visible.
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Fig. 10. Magnified view of stress profiles in the region close to the left end of the
rod. Direction of the shock velocities are indicated by arrows.

at the speed of the forward elastic shock (both the initial loading response and
unloading are linear with the elastic modulus of martensite). The unloading
shock is therefore fast enough to catch up with the nonlinear shock caused by
the detwinning. This is followed by a series of reflections between the left end
(which is traction free after the pulse is over) and the forward propagating
detwinning shock. The stress profile at several different instances of time is
presented in Figure 9.

The energy dissipation (Figure 11) in the rod follows a similar path as in the
previous numerical simulation. The first significant rise in the dissipation levels
occurs immediately after unloading, at t = 10µs. After the unloading wave
reaches the forward propagating detwinning front at t ≈ 18µs a new rise in
the dissipation occurs leading to final levels of approximately 86%. It should
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Fig. 11. Energy dissipation for a 10 µs square pulse (detwinning).

be noted that this case is not equivalent to the pulse load in pseudoelastic
conditions because of different initial stress levels. Another difference with the
pseudoelastic case is that the material is permanently deformed and in order
to recover its shape the rod has to be reheated.

5 Dynamic Loading Experiment of an SMA rod

The dynamic response of a nearly equiatomic NiTi alloy rod is character-
ized with one dimensional wave propagation experiments in a Hopkinson bar
arrangement. The main feature of the Hopkinson implementation of the dy-
namic experiment is in the length of the specimen, Lsp which is quite long.
This means that a steady-state condition is not reached during the time of
the experiment and one has to deal with the propagation of the wave in the
specimen material.

5.1 Description of the Apparatus

Hopkinson bar apparatus has become standard in the characterization of the
dynamic response of materials. Detailed descriptions are provided in many
handbooks and textbooks (Kolsky, 1963; Graff, 1975), and hence only a brief
description is provided here. A photograph of the experimental setup is shown
in Figure 12 and a schematic of the impact device is given in Figure 13.

The apparatus consists of a striker bar, an input bar and an output bar, all of
diameter d = 15.5mm and all made of a 4340 steel, quenched and tempered
to a martensitic state. The yield strength of these bars is about 1.8 GPa and
they remain elastic during the impact experiments. The density of the bars is
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Fig. 12. Photograph of the Hopkinson bar experimental setup. The specimen is
visible at the top-right part of the photograph
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Fig. 13. Geometry and arrangement of strain gauges in Hopkinson apparatus. (Fig-
ure not drawn to scale)

ρ = 7800kg/m3, the measured bar wave speed Cb =
√

Eb/ρ = 5300m/s and

Eb is the modulus of elasticity of the steel bar. The striker bar (13) of length L
is propelled from an air gun at speeds in the range of 10 to 40m/s. This striker
impacts the input bar which is 1.7m long. A one dimensional compression wave
propagates into both bars. Since the striker bar is short, the reflected tension
pulse arrives at the striker-input bar interface at a time tpulse = 2L/Cb. At
this point, the striker comes to a stop and is disengaged from the input bar.
Hence, a compression pulse of duration tpulse is propagated down the length
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of the input bar. This wave is coupled into the specimen which is in contact
with the far end of the input bar. Due to the impedance mismatch between
the specimen and the input bar, part of the pulse is reflected back into the
input bar and part of the pulse propagates into the specimen. A strain gauge
mounted at about the middle of the input bar is used to monitor the incident
compressive pulse and the reflected tensile pulse propagating in the input bar.
The wave propagating through the specimen, gets coupled into the output bar,
again with a reflected component due to the impedance mismatch. The output
bar is free at the far end and so a tensile pulse reflects from the far end of the
output bar and is unable to transmit into the specimen. Hence the specimen
is loaded only once. A strain gage mounted at the middle of the output bar is
used to monitor the strain pulses, in particular the first transmitted pulse, in
the output bar.

5.2 Specimen Preparation

In the experiments a single SMA specimen 345 mm long was used as well
as two short specimens of 25.4 mm length. All the specimens had diameter
12.7 mm. After machining the specimens to the appropriate lengths they were
heated to 540 ◦C in standard atmosphere for 2 hours and furnace cooled. This
process was used to erase history of prior plastic deformation. A thin oxide
layer was formed during the heat treatment, but this did not affect the overall
response of the material. In the long bar, six strain gauges were placed at dis-
tances 10 mm, 20 mm, 40 mm, 80 mm, 160 mm and 320 mm from the impact
end. A high temperature strain gauge adhesive was used and the specimens
were then annealed at 100 C for 1 hour. Subsequently, the specimens were
cooled to dry ice temperature (-70 ◦C) and then brought to room temper-
ature for testing. All tests were performed at room temperature (nominally
20 ◦C). A Differential Scanning Calorimeter (DSC) was used to determine the
transformation temperatures in the material. As can be seen from the DSC
measurements shown in Figure 14, under the indicated temperature cycling,
the specimens were in a twinned martensitic state during the tests. In order
to obtain preliminary information on the mechanical behavior of this material
quasi-static compression test was performed on one of the short specimen in a
standard testing machine. Since the dynamic test involved only detwinning of
martensite the quasi-static tests were done at room temperature. These tests
were used to obtain the stiffness of the martensitic phase EM and the critical
stresses σs and σf for onset and finish of detwinning.

The material constants used for the detwinning model are summarized in
Table 3. The hysteresis simulated by the model (Section 2.3) and the actual
hysteresis from the quasi-static test are given in Figure 15.
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Table 3
Material parameters used in the SMA model for detwinning

Material constant Value Description

EM 42× 109 Pa Modulus of elasticity in martensite

H 0.027 Maximum detwinning strain

σs -125MPa Start of M t →Md deformation

σf -273MPa Completion of M t →Md deformation

Y d σsH

ρbd σfH − Y d

Fig. 14. Differential Scanning Calorimeter measurements of the SMA specimen.

5.3 Dynamic Results

As indicated earlier, in the Hopkinson bar experiment a 345 mm long rod in-
strumented with six strain gauges was placed behind the input bar. The output
from these gauges is shown in Figure 16. Strain gauge number 3 (40mm) suf-
fered a partial debond during the test and hence the results from this gauge
are not meaningful beyond the point marked by the dark dot in the figure.
The elastic wave in the input bar was not recorded due to an error in the de-
vice; all other gauges worked well and recorded the strain profile as the wave
propagated down the length of the SMA rod. An x-t diagram corresponding
to elastic wave propagation in this specimen is shown in Figure 17. The strain
gauge locations are indicated by the thin vertical lines and the leading edge
of the initial loading pulse is shown by the dark line; this pulse reaches each
one of the gauges at the time where the dark line intersects the vertical lines.
From the timing of the elastic wave arrival at each gauge, the elastic wave
speed was determined to be 2500 m/s. The elastic wave reaches the far end
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Fig. 16. Strains measured by the gauges mounted on the SMA bar. Gauge 3 suffered
a partial debond at the point indicated by the dark circle and hence the data beyond
this time should not be interpreted.

of the specimen about 138 µs after impact. The duration of the loading pulse
is about 90 µs and hence an unloading pulse propagates from down the spec-
imen with the elastic wave speed (since the unloading is elastic). This wave
is shown by the line with an arrow at the tip. Time t = 0 corresponds to the
first arrival of the loading pulse at the strain gauge in the input bar.

As seen in Figure 16, the strain in the first two gauges increases rapidly to
a level of about 1.3% and levels off as the load from the input bar levelled
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Fig. 17. X-t diagram indicating arrival of the elastic wave front at the gauge loca-
tions.

off. The oscillations seen in these gauges near the plateau are Pochhammer-
Chree oscillations that appear in bars. At around 290 µs the unloading wave
from the end of the loading pulse reaches the first two gauges and the strain
begins to decrease; however, because the strains beyond 0.3% were the result
of detwinning (see the quasi-static results in Figure 15), these strains are not
recovered and a permanent strain of about 1% is left at these locations. The
signal in gauge 4 clearly indicates the dispersion of the wave - higher strain
levels propagate at significantly slower speeds and arrive later at the gauge
location. Hence a broadening of the strain pulse can be seen - the peak in
the strain at gauge 4 occurs 75 µs after elastic wave arrival while it occurs in
about 20 µs in gauge 1. This delay also results in the peak strain not being
sustained for too long as the elastic unloading pulse reaches the gauge quickly;
once again a residual strain of peak strain - 0.3% is left at this gauge location.
The same behavior is seen in gauge 5 where due to its distance from the impact
end, and due to the slowness of the inelastic waves, the peak strain reached is
only about 0.5%. Once again a residual strain is left in this location. In gauge
6, the reflected wave from the end of the SMA rod (left free in this experiment)
causes unloading of the gauge; a very small, but measurable permanent strain
or detwinning is observed in this location. Subsequent to the test, the rod was
heat treated through a temperature cycle taking it above Aof first, holding for
1 hour and then cooling below M of and warming back to room temperature.
All strain gauges recovered their original state indicating full recovery of the
specimen.
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The results of this experiment can be used to extract the dynamic stress-
strain response by applying the theory of one-dimensional wave propagation
in plastic rods due to (Rakhmatulin, 1945; Von Karman and Duwez, 1950;
Taylor, 1958). The idea is a simple extension of the rod theory for elastic
waves. Let us assume that stress is only a function of strain, i.e. σ = σ(ε).
Then the balance of linear momentum (1) can be written in the form

utt =
σ′(ε)

ρ
uxx (55)

Note that this is not an incremental theory, but a total strain theory; therefore
unloading cannot be considered here. The wave speed C(ε) of disturbances is
no longer a constant as in the linear elastic case, but a function of strain:

C(ε) =

√

σ′(ε)

ρ
(56)

The main result of this one dimensional theory is that a given strain (or stress)
level will propagate into the rod with a characteristic speed given by equation
(56). If the propagation speed of strain waves in a one-dimensional rod is
known (measured with strain gauges as in the experiment discussed above),
equation (56) can be inverted to determine the stress-strain behavior of the
material:

σ(ε) =
∫ ε

0
σ′(ζ)dζ = ρ

∫ ε

0
C2(ζ)dζ (57)

This representation of the wave speed is used to extract the constitutive be-
havior of the material (Bell, 1960; Kolsky and Douch, 1962). There exists a
critical point in the stress-strain curve: σ′(ε) = 0. Strain amplitudes larger
than this cannot propagate through the material. Of course, in the experi-
ment discussed above, we have not reached this stage; in fact, this would be
of interest in determining the propagation of phase transformation fronts and
such experiments are in progress.

The propagation speeds of different strain levels were obtained from the results
shown in Figure 16. The time of arrival of different strain levels at each one of
the five gauges were determined from the strain measurements. The speed of
each strain level C(ε) was then determined from the known distances between
the gauges. The variation of the wave speed with strain level is shown in
Figure 18; a smooth trendline is also shown in the figure. The elastic wave
speed is about 2500 m/s and all strain levels below about 0.1% travel with
this speed; this suggests that there is really no significant elastic region and
that even small strain levels are susceptible to dispersion. A large change
in the wave speed occurs at around 0.3% strain which corresponds to the
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onset of massive detwinning deformation. Beyond this level, the wave speed
drops to about 1000 m/s and varies more slowly. If the averaged data on the
wave speed variation with strain level is used in equation (57), the resulting
numerical integration provides the stress strain relationship associated with
the detwinning deformation in the SMA rod. Such a relationship is shown in
Figure 19. The scatter in the plot is a result of the averaging of the noisy data
in Figure 18; the solid line shows the trend of the data.
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5.4 Numerical simulations of the Hopkinson bar experiment

A numerical simulation was performed and results were compared with the
experimental data. As indicated earlier, due to a trigger failure, the signal
in the input bar was lost so only the readings of the six strain gauges on
the specimen were available. In order to supply proper boundary conditions
the signal from the first strain gauge (at 10mm) was used and the remaining
gauges were simulated. Gauge number 3 was not included in the modelling
because it unglued during the test.

The Hopkinson bar experiment was done at room temperature and due to
the heat treatment of the specimen prior to the test it was in fully twinned
martensitic state. The SMA model was applied in detwinning conditions (Sec-
tion 2.3) with the material constants given in Table 3. The measured stress-
strain response at room temperature and the simulated hysteresis are shown in
Figure 15. The adaptive FEM scheme was chosen because of its accuracy and
ability to predict precisely the positions of both the elastic and transformation
shocks. The results are presented in Figure 20.

As expected from the numerical examples studied in section 4.1 the strain
wave splits into an elastic and a transformation front. The transformation
front timing and magnitude at all strain gauges is in good agreement with the
experiment. The small oscillations observed at the first two gauges are due to
surface effects caused by the impacting projectile. Such effects cannot possibly
be modelled within a 1-D formulation.

There is, however, a noticeable disagreement in the timing of the elastic fronts.
The reason for this is the deviations from linear behavior for small strains. The
polynomial model always predicts a linear response until the beginning of the
detwinning deformation. However an inspection of Figure 15 shows a smoother
nonlinear stress-strain relationship for small strain values.

To verify the hypothesis that the disagreement is due to the initial elastic
response of the model an independent numerical simulation of the dynamic
experiment was performed. A phenomenological deformation plasticity model
was used instead of the constitutive model of Section 2.3. The loading is as-
sumed to have the form of a sixth degree polynomial that curve fits the loading
part of the quasi-static hysteresis in Figure 15. The unloading was assumed
linear, the slope being the modulus of martensite, 42GPa, as measured by
the quasi-static experiments. Due to the fact that the deformation is mostly
detwinning of martensite there is no significant release of latent heat, so the
quasi-static hysteresis is very close to the actual material behavior in the dy-
namic case (Figure 19).

The results of the simulation of the dynamic problem are shown in Figure 21.
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Fig. 20. An adaptive FE analysis of experimental data under isothermal conditions.
The first strain gauge is used to define the boundary condition.
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Fig. 21. An adaptive FE analysis of experimental data under isothermal conditions
and a curvefit of the hysteresis. The first strain gauge is used to define the boundary
condition.

This time the wave profiles are matched much more closely and the small
disagreements can be attributed to measurement errors and effects of lateral
inertia not included in the simulation. It should be noted that unlike a consti-
tutive model based on physical principles such an approach will only work for
a particular SMA specimen and particular operating temperature. However
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using a curve fit for the loading part of the hysteresis is sufficient to check
whether disagreements between experiments and simulations are indeed due
to the constitutive model.

6 Conclusions

The problem of dynamic loading of one-dimensional polycrystalline SMA rods
has been explored numerically and experimentally. FEM simulations were per-
formed for SMAs experiencing both pseudoelastic phase transformation as well
as detwinning deformations. A long SMA rod was tested in a split Hopkin-
son bar experiment under detwinning conditions. The wave propagation was
observed through strain gauges placed on the surface of the specimen. The
strain history at the gauge locations obtained through numerical simulations
of the dynamic experiment was found to be in good agreement with the actual
results.

Computational solutions were shown to coincide with known analytical re-
sults. Nonlinear shock formation and velocities were captured correctly by the
FEM simulations. The standard semi-discrete FEM approach for hyperbolic
problems was complemented by an adaptive mesh refinement technique. The
utilization of the Zienkiewicz-Zhu error indicator lead to an order of mag-
nitude decrease of the computational time. Energy dissipation calculations
for both detwinning of martensite and stress-induced phase transformation
showed that the strain energy can be reduced by 80-90% which suggests that
SMAs can be used effectively as shock-absorption devices.

On the experimental side, it has been shown that an instrumented Hopkinson
bar can be used effectively to evaluate the wave and phase propagation char-
acteristics in the SMA rods. Through the use of multiple strain gauges, the
phase velocity at the different strain levels was obtained easily. An inelastic
deformation theory was used to interpret the dispersion in terms of the un-
derlying dynamic material response of the material. Dynamic and quasi-static
material response were shown to be in excellent agreement.

Through careful calibration of the constitutive model for SMAs the peak strain
levels of the Hopkinson bar experiment were accurately predicted. The main
drawback of this model is its initial linear response in the case of detwinning
and the existence of kinks in the hysteresis curve. Accurate predictions of the
entire experimental data were obtained by using a polynomial curve fit of the
quasi-static hysteresis of the material. Both the wave timings, shape and peaks
were modelled within experimental error.

The material and environmental conditions used in the Hopkinson bar exper-
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iments correspond to a detwinning deformation of the martensitic phase, but
the methods can be easily adapted to stress induced martensitic transforma-
tion in tests at higher temperatures. Theoretical work can also be extended
to more realistic 2-D and 3-D geometries. Complicated SMA components and
structures can be simulated to better understand the nonlinear wave propa-
gation phenomena as well as the practical aspects of their energy dissipation
capabilities. More refined models which incorporate both detwinning and pseu-
doelastic deformations simultaneously and also predict accurately the smooth
hysteresis of the detwinning deformation will be extremely helpful in further
studies of wave propagations in polycrystalline SMAs and are currently under
consideration.
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