
A 3-D constitutive model for shape memory

alloys incorporating pseudoelasticity and

detwinning of self-accommodated martensite

Peter Popov b and Dimitris C. Lagoudas a,∗

aDepartment Of Aerospace Engineering,
Texas A&M University, TX 77843-3141, USA

bInstitute for Scientific Computation,
Texas A&M University, TX 77843-3404, USA

Abstract

A 3-D constitutive model for polycrystalline Shape Memory Alloys (SMAs), based
on a modified phase transformation diagram, is presented. The model takes into ac-
count both direct conversion of austenite into detwinned martensite as well as the
detwinning of self accommodated martensite. This model is suitable for perform-
ing numerical simulations on SMA materials undergoing complex thermomechanical
loading paths in stress-temperature space. The model is based on thermodynamic
potentials and utilizes three internal variables to predict the phase transforma-
tion and detwinning of martensite in polycrystalline SMAs. Complementing the
theoretical developments, experimental data is presented showing that the phase
transformation temperatures for the self accommodated martensite to austenite and
detwinned martensite to austenite transformations are different. Determination of
some of the SMA material parameters from such experimental data is also discussed.
The paper concludes with several numerical examples of boundary value problems
with complex thermomechanical loading paths which demonstrate the capabilities
of the model.
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1 Introduction

Shape Memory Alloys (SMAs) are metallic alloys that can undergo martensitic phase trans-
formations as a result of applied thermomechanical loads and are capable of recovering ap-
parently permanent strains when heated above a certain temperature. At high temperatures
the crystal lattice is in a high symmetry, parent austenitic phase, while at lower temperatures
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a low symmetry martensitic phase appears (Otsuka and Wayman, 1999; Otsuka and Ren,
2005). The key characteristic of all SMAs is the occurrence of a martensitic phase trans-
formation from the austenitic phase to the different variants of the low temperature, low
symmetry martensitic phase. The martensitic transformation is a shear-dominant diffusion-
less solid-state phase transformation occurring by nucleation and growth of the martensitic
phase from the parent austenitic phase (Olson and Cohen, 1982). What make SMAs re-
markably different from other materials are primarily the Shape Memory Effect (SME) and
Pseudoelasticity, which are associated with the specific way the phase transformation occurs.

When a shape memory alloy undergoes a martensitic phase transformation, it transforms
from the parent phase to one or more of the different variants of the martensitic phase (Otsuka
and Wayman, 1999). In the absence of applied stresses, the variants of the martensitic phase
usually arrange themselves in a self-accommodating manner through twinning, resulting in
no observable macroscopic shape change. By applying mechanical loading the martensitic
variants are forced to reorient (detwin) into a single variant leading to large macroscopic
inelastic strains. After heating above a certain temperature, the martensitic phase returns to
the austenitic phase, and the inelastic strains are recovered. This behavior is known as the
SME (Otsuka and Wayman, 1999). Pseudoelasticity is observed when the martensitic phase
transformation is induced by applied thermomechanical loading of the austenitic phase in
which case detwinned martensite is directly produced from austenite. The process is again
associated with large inelastic (transformation) strains which are recovered upon unloading
due to the reverse phase transformation (Wayman, 1983; Otsuka and Wayman, 1999). The
extensive list of alloys exhibiting SME and pseudoelasticity includes the Ni-Ti alloys, and
many copper-, iron-, silver- and gold-based alloys (Nishiyama, 1978).

During the last two decades the area of constitutive modeling of polycrystalline SMAs has
been a topic of many research publications and significant advancements have been reported.
One major class of SMA constitutive models is the phenomenological one, which relies on
continuum thermodynamics with internal state variables to account for the changes in the
microstructure due to phase transformation (Tanaka et al., 1992; Patoor et al., 1988; Ortin
and Planes, 1988, 1989; Berveiller et al., 1991; Liang and Rogers, 1992; Sun et al., 1991; Sun
and Hwang, 1993a,b; Graesser and Cozzarelli, 1991; Brinson, 1993; Raniecki and Lexcellent,
1994; Lagoudas et al., 1996; Marketz et al., 1995; Leclercq and Lexcellent, 1996; Juhasz
et al., 2002; Bo and Lagoudas, 1999a,b,c; Lagoudas and Bo, 1999; Lexcellent et al., 2000;
Lagoudas and Entchev, 2004). These type of models usually assume a macroscopic energy
function that depends on state and internal variables used to describe the degree of phase
transformation. Evolution equations are then postulated for the internal variables. Most
phenomenological constitutive models adopt such a thermodynamic structure and select the
martensitic volume fraction as an internal state variable to account, on the average, for the
influence of the microstructure.

The early constitutive models (Tanaka, 1986; Tanaka et al., 1986; Sato and Tanaka, 1988;
Tanaka et al., 1995; Liang and Rogers, 1990, 1992; Brinson, 1993; Boyd and Lagoudas,
1994, 1996a,b) have been used to derive the pseudoelastic response of SMAs and their main
focus is the hardening function selected to model the stress-strain response during the stress
induced martensitic phase transformation. A unified framework for these early constitutive
models has been presented by Lagoudas et al. (1996). Further improvements in the accuracy
of SMAs models were achieved by Raniecki and Lexcellent (1998); Qidwai and Lagoudas
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(2000b); Lexcellent et al. (2002), who proposed different transformation functions in order
to capture the asymmetric response that SMAs exhibit in tension and compression. Qidwai
and Lagoudas (2000b) also studied the implications of the principle of maximum dissipation
during phase transformation on the transformation surfaces and evolution equations for
the martensitic volume fraction. These models are suitable for stress induced martensitic
transformations or for SMAs which have already been trained to exhibit the Two-Way Shape
Memory Effect (TWSME), (for details on the TWSME, see Otsuka and Wayman, 1999).
Modifications, such as making the total amount of transformation strain dependent on the
stress, have been introduced by some authors (Bo and Lagoudas, 1999a,b,c; Lagoudas and
Bo, 1999; Lagoudas and Entchev, 2004) in order to account for certain aspects of the SME.
These changes however do not make an explicit distinction between twinned and detwinned
martensite and thus are only suitable for SME related thermomechanical loading paths.

The analysis of the existing models and their comparison to the experimental results has
shown that current SMA constitutive models which take into account the development of
stress-induced martensite have reached a high level of sophistication. However, such models
generally lack the ability to handle other loading paths involving detwinning and reorienta-
tion of martensite in conjunction with the pseudoelastic response. Therefore, there is need
for a 3D constitutive model that can accurately capture not only the material response dur-
ing pseudoelastic and SME loading paths, but also loading paths that involve co-existence
of all the three material phases - austenite, twinned (self-accommodated) martensite and
detwinned martensite. Such a model should also be implemented numerically and tested on
a comprehensive set of model problems. This will allow to perform numerical simulations of
problems of varying engineering difficulty, such as the actuation of SMA micro-grips (Kohl
et al., 2002), the cooling/heating cycles in the manufacturing and deployment of biomedical
devices (Jung et al., 2004), temperature actuated flow regulating devices (Popov, 2005) and
fuel powered SMA actuators (Jun et al., 2006), to name a few.

The early attempts to combine the pseudoelastic material response with detwinning of
martensite were done in one dimension by Brinson (1993); Brinson and Lammering (1993);
Boyd and Lagoudas (1993). These models used two internal state variables to model pseu-
doelasticity and detwinning. In addition, Brinson (1993) used a uniaxial phase diagram in
stress-temperature space which conveniently defines the thermodynamically stable domains
for the three phases and the possible transformations between them. The work was further
refined by Bekker and Brinson (1997, 1998) who incorporated minor loops for the pseudoe-
lastic transformation. However, this basic phase diagram does not account for certain loading
paths, especially those that traverse the regions where the three phases can co-exist.

Three dimensional thermodynamics based models of combined detwinning and pseudoe-
lasticity have been proposed by Leclercq and Lexcellent (1996); Lagoudas and Shu (1999);
Juhasz et al. (2002). The models of Leclercq and Lexcellent (1996); Lagoudas and Shu (1999)
used two scalar volume fractions for twinned and detwinned martensite. While formulated in
3D, they were implemented and tested only on 1D examples. Furthermore, complex loading
paths which involve a mixture of the three phases were also not tested. The model of Juhasz
et al. (2002) used the entire transformation strain as a tensorial internal variable instead of
the volume fraction of detwinned martensite. All three models used phase diagrams which
were based on the work of Brinson (1993). While attempts were made to overcome some of
its basic limitations, the current work attempts to present an extended phase diagram which

3



refines existing concepts and also incorporates new experimental results.

In this paper, a three-dimensional, thermodynamics based model with three internal vari-
ables is formulated for the simultaneous modeling of pseudoelasticity and detwinning of
self-accommodated martensite in polycrystalline SMAs. The model is consistent with an ex-
tended uniaxial phase diagram. The novel characteristics of this model are: (i) integration
into the phase diagram of new experimental results which demonstrate that twinned and
detwinned martensite transform to austenite at different temperatures; (ii) refinement of the
phase diagram with respect to loading paths that involve a mixture of the three phases; (iii)
the use of three independent internal variables (in contrast to the usual two, typically used
in this class of models) which provides a new approach to modelling the training of SMA
materials and the associated evolution of the phase diagram; (iv) numerical implementation
which tests complex loading paths, including ones that involve a mixture of the three phases.

The paper begins with experimental results which demonstrate that, at zero stress, twinned
and detwinned martensite transform to austenite at different temperatures (Section 2). The
phase diagram is constructed in Section 3 based on these observations, as well as a careful
reexamination of published experimental data on detwinning of twinned martensite and
the conversion of twinned martensite to austenite. The 3-D constitutive model is presented
in Section 4. A discussion of how to identify the material parameters used in the model
from experimentally observable quantities is given in Section 4.5. Finally the numerical
implementation of the model into a displacement based Finite Element Method (FEM) code
is presented in Section 5 and numerical examples are given in Section 6.

To simplify the presentation, throughout this paper the three phases are denoted by A, M t

and Md for austenite, twinned martensite and detwinned martensite, respectively. The five
possible phase transformations are denoted by A → M t, A → Md, M t → A, Md → A
and M t → Md for austenite to twinned martensite, austenite to detwinned martensite,
twinned martensite to austenite, detwinned martensite to austenite and twinned to de-
twinned martensite, respectively. The detwinning of twinned martensite M t → Md does
not involve phase transformation and is, in fact, an inelastic deformation process of reorien-
tation of martensitic variants (c.f. e.g. Otsuka and Wayman, 1999). For the sake of simplicity,
the collective term transformations is applied to it whenever the distinction is not impor-
tant. Note also, that the transformation Md → M t from detwinned to twinned martensite
(the so called rubber-like effect, c.f. Otsuka and Wayman (1999)) is not thermodynamically
stable and it is not considered. Finally, the critical start and finish transformation temper-
atures at zero stress level (c.f. Figures 3 and 4) are denoted as follows: Ms and Mf for the
A → M t transformation, At

s and At
f for the M t → A transformation and Ad

s and Ad
f for the

Md → A transformation. The clarification that these temperatures are at zero stress level
will be omitted, and only the term transformation temperatures will be used.

2 Experiments on the transformation temperatures of M t → A and Md → A.

In a recent paper, Sakamoto (2002) questioned the assumption made by many researchers
that, at zero stress, the transformation temperatures for M t → A and Md → A coincide.
He introduced the concept of shape change stress which is a local stress field generated at
interface between twinned martensitic variants and the surrounding matrix. In stress induced
martensite this elastic stress field is absent, and a detailed analysis of the magnitude of
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Fig. 1. Results from quasistatic mechanical testing of annealed 2.16mm NiTi wire followed by DSC
test. The transformation temperatures for A ↔ Md, as annealed, are obtained from an initial DSC
test (a). A mechanical loading is then performed (b).

this shape change stress with respect to specimen and martensitic plate sizes leads to the
conclusion of different transformation temperatures for twinned and detwinned martensite.
In this section, mechanical testing combined with calorimetric measurements are used to
confirm this idea.

2.1 Setup and experimental procedure

A 2.16 mm diameter Ni50.3Ti49.7 wire was used in the experiment. Two specimens were
annealed at 800 ◦C for 30 min, slowly cooled to 0 ◦C, and then brought to room temperature
(22 ◦C). Differential scanning calorimetry (DSC) measurements in a Perkin-Elmer Pyrus 1
apparatus were performed in order to establish the transformation temperatures for the A →
M t and M t → A transformations and characterize the material state after the annealing. It
was found that the transformation temperatures were Ms = 45 ◦C, Mf = 3 ◦C, At

s = 40 ◦C
and At

f = 76 ◦C. Since the austenitic start temperature was well above room temperature,
it was concluded that, after the heat treatment the wire was entirely in the M t state. Note,
that the transformation temperatures Ad

s and Ad
f (assumed different from At

s and At
f ) cannot

be determined from a DSC sweep which involves only the A → M t transition. The remainder
of this section details the measurement of Ad

s and Ad
f for this SMA material. It will be shown

that they are substantially different from the Md → A temperatures.

After establishing the transformation temperatures for the A ↔ M t transition, the two spec-
imens were mechanically loaded at room temperature in a MTS 801 loading frame (Figure
1(b)). Due to the initial state of the specimens (M t), the self-accommodated martensite
underwent the detwinning (M t → Md) deformation. Upon elastic unloading, large inelastic
strain of about than 7.2% was observed, implying a detwinned material state (Md). Note
that there was no strain recovery during unloading, indicating the Ad

s (to be determined by
subsequent DSC testing) is higher than room temperature. In order to quantify the amount
of inelastic strain due to detwinning of M t and the amount due to plastic deformations the
first specimen was heated to about 150 ◦C. During the process about 5% of the inelastic
strain was recovered, indicating that it was due to detwinning and the remaining 2% is due
to plastic deformations.

The second specimen, immediately after unloading and hence entirely in the Md state, was
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Fig. 2. Results form DSC testing sequence of an untrained NiTi wire performed immediately after
a single mechanical loading. The initial state of the wire is Md. The wire is first heated, revealing
the transformation temperatures for the Md → A, followed by cooling during which the wire
undergoes A → M t transformation, followed by a second heating which shows the transformation
temperatures for M t → A.

subjected to further DSC testing (Figure 2), described below. Care was taken to prepare the
DSC sample so that the material state (Md) achieved at the end of the mechanical unloading
step was not altered in the sample preparation process, that is, the specimen was always kept
at room temperature, which is below Ad

s.

A total of five thermal loading steps were executed in the DSC apparatus. The actual heat
flow observed in the specimen during the first three DSC steps is shown in Figure 2(a).
The corresponding latent heat is shown in Figure 2(b). The specimen was first heated from
room temperature (the temperature at which the mechanical test was performed) to 200 ◦C.
The first signs of the forward Md → A transformation were observed at Ad

s = 82 ◦C, the
peak of the transformation was at approximately 96 ◦C and the transformation ended at
approximately Ad

f = 108 ◦C. At this point the sample was in the austenitic phase. The sample
was then cooled from 200 ◦C to −60 ◦C. During the cooling a single peak was observed at
approximately 28 ◦C, corresponding to the A → M t transformation. Note that, due to the
nature of a DSC test, the sample always remains stress free. The beginning of the reverse
transformation indicated Ms = 47 ◦C and Mf = 3 ◦C, which is consistent with the first
DSC test performed before the wire was subjected to mechanical loading. A repeatability
in the A → M t temperatures was therefore observed. The third thermal loading step was
again heating from −60 ◦C to 200 ◦C. The transformation temperatures were markedly
different from the first heating step: At

s = 35 ◦C, At
f = 76 ◦C with the peak at 59 ◦C. At the

beginning of this step the sample was entirely in the M t state (the natural state after the
DSC cooling step), therefore the transformation temperatures correspond to the M t → A
transformation. Two more loading steps, not shown on Figure 2, were performed. These
included an additional cooling and a heating cycle. Due to the stress free state of the SMA, the
transformations involved were A → M t and M t → A, respectively. Results were close to those
from the second (cooling) and third (heating) cycles, respectively, indicating repeatability
of the A → M t transformation temperatures. The later are substantially different from the
Md → A temperatures.

The same type of mechanical loading followed by the above sequence of DSC tests was
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performed for SMA materials with different annealing history and pseudoelastic training. In
all cases similar results of markedly different critical temperatures for the M t → A and Md →
A were observed (Popov, 2005). The simplest conclusion from these experiments is that the
M t → A and Md → A transformation temperatures at zero stress are, generally, different.
A qualitative explanation for this results can be done as follows: the twinned martensite,
requires some energy input to transform back to austenite. The detwinned martensite, also
requires this energy input, but in addition it also needs more energy in order to reverse the
inelastic strains which are present (note this always happens in the presence of a local stress
field, even when its macroscopic average is zero). Thus, the reverse phase transformation
occurs at higher temperatures, compared to twinned martensite. The theoretical study by
Sakamoto (2002) arrives at the same conclusion with the help of microstructural arguments
and by analyzing the local stresses around the martensite/austenite interfaces which are
different for twinned and detwinned martensite. These experimental results motivate a re-
examination of the commonly used SMA phase diagram (next section) and the proposed
constitutive model takes into account the different temperatures At

s, Ad
s, At

f and Ad
f .

3 Modified SMA phase diagram

The phase transformations from austenite to martensite as well as the detwinning of self-
accommodated martensite occur due to thermomechanical loading. A convenient way of
describing general thermomechanical loading paths leading to the different transformations
is to use a phase diagram in stress-temperature space (Figures 3 and 4). Such phase diagrams
include the stable domains of A, M t and Md in stress-temperature space as well as transfor-
mation strips in which the various transformations take place. The proposed SMA model is
based on the 1-D phase diagram shown in Figure 4. This phase diagram incorporates both
the new data presented in Section 2 as well as certain modifications in comparisons with
other works. The aim is two-fold: first, to take into account the different critical transfor-
mation temperatures for the M t → A and Md → A transformation, which has not been
considered previously; second, to define the transformation strips, in agreement with avail-
able experimental data, so that non-physical behavior is eliminated for all possible loading
paths. In this section the proposed phase diagram is presented and compared with other
common choices in the literature (an example is the diagram in Figure 3).

Several SMA models which attempt to take into account both the development of M t and
Md (c.f. e.g. Brinson, 1993; Leclercq and Lexcellent, 1996; Lagoudas and Shu, 1999; Bekker
and Brinson, 1997; Juhasz et al., 2002) use phase diagrams. The phase diagram shown in
Figure 3 was used by Brinson (1993) and works well for pure pseudoelastic paths (path 1
on the figure, no M t is ever produced) and pure SME paths (path 2, complete M t → Md

transformation, stress is zero during heating). However, as more complicated loading paths
are considered (3a,b,c, for example) certain non-physical behavior becomes possible, mostly
in the intermediate regions where a mixture of the three phases can exist. In particular,
there is no agreement how the M t → Md strip looks in that intermediate region and what
is the shape of the M t → A strip. Depending on the thermomechanical loading paths of
interest different assumptions and modifications are used by subsequent studies (Leclercq
and Lexcellent, 1996; Lagoudas and Shu, 1999; Juhasz et al., 2002). As a result there is no
unambiguous understanding of how the phase diagram should look like.
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The phase diagram proposed in this work (Figure 4) follows the established literature in
assuming three regions where only the pure phases A, M t and Md can exists (c.f. Figure 3).
These regions are shaded and labeled A, M t and Md, respectively. The three regions are
separated by transformation strips which are labeled according to the transformations (A →
M t, A → Md, M t → A, Md → A, M t → Md) which take place. Note that some of these
strips overlap and in an overlap region multiple transformations are possible. In the non-
shaded region of the phase diagram various mixtures can exist. The critical temperatures
for the start and finish of the A → M t transformation are denoted by Ms and Mf . Based
on the experimental results of Section 2, the critical start and finish temperatures at zero
stress for the M t → A transformation are denoted by At

s and At
f . They are assumed different

from the corresponding critical temperatures at zero stress for the Md → A transformation
which are denoted by Ad

s and Ad
f . The start and finish lines for the forward and reverse

transformations A ↔ M t are vertical and pass through the critical temperatures Ms, Mf ,
At

s, At
f , respectively. The start and finish lines for the reverse strip Md → A pass through

the critical temperatures Ad
s and Ad

f and exhibits a temperature dependence, defined by
the positive slope k. The critical uniaxial start and finish stresses at T = Ms required for
detwinning of twinned martensite (M t → Md) are denoted by σs and σf , respectively. The
transformation strip M t → Md exhibits a mild temperature dependence characterized by a
negative slope kd. The start and finish lines for the forward A → Md transformation exhibits
the same temperature dependence as the reverse transformation Md → A. The finish line
for A → Md passes through or below the point (Ms, σf ).

The modifications of this phase diagram compared to, for example, the one by Brinson
(1993), are several. First, and most importantly, based on the experimental results of the
previous Section 2, the critical start and finish temperatures at zero stress for the M t → A
are assumed different from the corresponding critical temperatures ate zero stress for the
Md → A transformation. Secondly, the M t → Md strip is a single, well-defined strip for the
entire temperature range T < At

f . The original work of Brinson (1993) assumes that the
detwinning strip M t → Md has the same form as the one assumed here for temperatures
T < Ms but coincides with the strip for stress induced martensite A → Md at temperatures
T > Ms. This can lead, for example, to the existence of twinned martensite at high stress
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levels (above σf , c.f. path 3b in Figure 3), which is not physically realistic. This problem is
critically examined in Section 3.2. With the help of the experimental study of Cross et al.
(1969), it is shown that a single transformation strip extending to temperatures as high as
At

s and possibly to At
f , as done in this work (Figure 4), is a more natural assumption.

Secondly, there is a disagreement in the literature on the shape of the reverse M t → A strip.
In the work of Brinson (1993) and later papers, it is assumed to coincide with the Md → A
strip while other authors (Leclercq and Lexcellent, 1996; Lagoudas and Shu, 1999; Juhasz
et al., 2002) have used a vertical M t → A strip, which is independent of stress. An argument
can be made (Section 3.1) that the latter is a more natural choice. Furthermore, there is an
ambiguity in the definition of the A → Md strip at low stresses and temperatures (T < Ms

and σ < σs). Some authors have extended it to zero-stress level (Bekker and Brinson, 1997),
while others (Lagoudas and Shu, 1999) suggest, that in the region T < Ms the dependence on
temperature disappears and there is a critical stress below which A → Md does not occur.
There are two possible ways of completing it, depending mainly on the training history
of the material. In this work, for trained materials, it will be assumed that the A → Md

transformation strip extends all the way to zero stress level. For untrained SMA materials a
critical stress the respective lines in Figure 4 are labeled accordingly and the start and finish
lines (below Ms) for the untrained case are also marked with a dashed line.

To fully define the phase diagram one also has to consider the relationship between the
A → Md, A → M t and M t → Md strips in the vicinity of Ms. The general assumption by
most authors is that there exists a triple point (Ms, σs) where the three onset lines intersect
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and another point (Ms, σf ) where the three finish lines intersect (Brinson, 1993; Leclercq and
Lexcellent, 1996; Lagoudas and Shu, 1999; Bekker and Brinson, 1997; Juhasz et al., 2002).
The experimental evidence cited is usually inconclusive at drawing such a strong relation
between the three transformation strips. However, if the finish line for A → Md passes above
the intersection point of the other two finish lines then one can find a particular isobaric
cooling path which leads to jump discontinuities in the strain as the temperature is lowered.
This is demonstrated in Section 4.5.2. Therefore one has to assume that the finish line for
the A → Md transformation passes through or is below that intersection of the other two
lines. In the absence of sufficiently clear experimental data we assume that the A → Md

finish line is below the intersection of the other two (in Figure 4 the extreme case of a
triple point is shown). This, along with other restrictions on the relative locations of the
transformation strips which arise in the development of the thermodynamically consistent
model are discussed in Sections 4.5.2. The remainder of this section presents a detailed
description of the proposed extensions and modifications of the phase diagram of Figure 4

3.1 Austenite to martensite (A ↔ M t, A ↔ Md).

An early observation in quasi-static isothermal loading tests was that the transformation
surfaces for A ↔ Md exhibit a strong temperature dependence (Cross et al., 1969; Jackson
et al., 1972; Otsuka and Wayman, 1999). These and many other experimental results show
that the critical transformation stress required for initiation and completion of both the
A → Md and Md → A forward and reverse transformations increase, more or less linearly,
with increase in temperature. The reason for this dependence on temperature is the develop-
ment of transformation strain during the transformation and the associated work expended
by the SMA. The theoretical derivation of the precise functional dependence of the critical
transformation stress for detwinning is based on a Clausius-Clapeyron relation (Wollants
et al., 1979). After some simplifying assumptions such as equal stiffness and thermal expan-
sion coefficient of austenite and martensite, a linear dependence on temperature is obtained
(Wollants et al., 1979; Otsuka and Wayman, 1999). This has been observed consistently by
many experimentalists ever since the work of Cross et al. (1969). Virtually any constitutive
model for pseudoelastic SMA response, including the current work, takes this into account.

Unlike the A ↔ Md transitions, the phase transformation from A to M t does not involve
generation of macroscopic strains. At zero stress level, the A → M t phase transformation
begins when a critical temperature Ms is reached and is completed when a second, and lower,
critical temperature Mf is reached. Due to the lack of transformation strain, a Clausius-
Clapeyron argument suggests that there is no dependence of the critical temperatures Ms

and Mf on stress. As a consequence one can expect that the transformation strip A → M t

is nearly vertical when plotted in the stress-temperature space (Figure 4). This fact has
been used in most models that take into account the separate development of twinned and
detwinned martensite (c.f. e.g. Brinson, 1993; Leclercq and Lexcellent, 1996; Bekker and
Brinson, 1997; Lagoudas and Shu, 1999; Juhasz et al., 2002). There is however disagreement
on what the shape of the reverse transformation strip M t → A should be. Brinson (1993);
Bekker and Brinson (1997) assume the same stress-temperature dependence as for the Md →
A transformation. Others (Leclercq and Lexcellent, 1996; Lagoudas and Shu, 1999; Juhasz
et al., 2002) take the M t → A strip to be stress independent.

There are not many experiments reported in the literature, which aim at determining the
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shape of the A ↔ M t strips. Note that, due to lack of macroscopically observable mechanical
quantities, such as inelastic strains, it is very difficult to experimentally detect the formation
of twinned martensite under applied stress. Differential scanning calorimetry measurements,
which are usually employed for revealing the transformation temperatures at zero stress
level, cannot be directly used under applied stress. The two direct methods of measuring the
progress of martensitic transformation under applied load that have been used by researchers
are electrical resistivity measurements (Šittner et al., 2000; Kotil et al., 2003) and in-situ
neutron diffraction measurements (Šittner et al., 2003). In both cases, sophisticated testing
procedures in a precisely controlled thermal environment in a MTS-type testing frame are
required. The focus of these and other direct measurement studies however was not the stress
dependence of the critical temperatures for the A ↔ M t transformation.

An alternative indirect method, used specifically for determining the M t, Md → A transfor-
mation temperatures at nonzero stress levels during heating and cooling cycles has recently
been performed by Tsoi et al. (2003). The experiment is done by first loading an SMA wire
and embedding it in a epoxy matrix, as loaded. After the epoxy has cured it keeps the SMA
deformed without the need for external apparatus. The composite can further be cut into
small enough specimen, suitable for DSC measurements. The tests included pre-strain levels
low enough that only M t → A transformation can be expected during heating. While the
DSC results are difficult to interpret conclusively, it can be inferred that the M t → A tem-
peratures do not depend on applied stress. Thus, due to the implications of lack of inelastic
strains associated with the M t → A transformation, and based on the experimental indica-
tions of Tsoi et al. (2003), in this paper, it will be assumed that both M t → A and A → M t

are stress independent. In Section 6.1 a different indirect experimental method, based on the
different stiffness of the pure martensitic and austenitic phases will be proposed.

3.2 Detwinning of self accommodated martensite (M t → Md)

The three pure phases regions (A, M t and Md) are separated by transformation strips that
indicate which transformation occurs (A → Md, A → M t, etc). In the original phase diagram
of Brinson (1993) the transformation strip M t → Md is not defined at temperatures above
T > Ms. If the initial conditions are such that M t is not present and once it is produced,
the temperature is never increased beyond Ms, this will not cause problems. This is the case
with a major class of SME paths where all the M t is depleted via the M t → Md deformation
before the temperature is increased above Ms (c.f. e.g. path 2 in Figure 3). Since these
types of SME loading paths are quite important in characterization and testing of SMAs
the possibility that M t may be present at temperatures in the range Ms < T < At

f (for
example by detwinning only part of the M t) has generally been overlooked. Brinson (1993)
has assumed for simplicity that the transformation strip for M t → Md coincides with the
A → Md strip in this temperature range. This assumption creates the inconvenience of having
a concave transformation surface in stress-temperature space. Furthermore, at T > Ms and
high stress it is not clear how a single transformation surface can be used to determine the
evolution of a two phase mixture which involves two transformation - M t → A and Md → A.
It can also be argued that the detwinning of martensite is an inelastic deformation process
and does not involve change in the crystal lattice. Therefore the temperature dependence
of the detwinning surface should not change drastically as suggested, that is, from slightly
decreasing yield stress as the temperature is raised in the range T < Ms to rapidly increasing
with increase of temperature for Ms < T < At

f ).
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More importantly though, it does not seem to be supported by experimental results. A
careful review of the pioneering work of Cross et al. (1969) suggests that it extends to
temperatures higher than Ms. The reader is referred specifically to Figure 16 on page 26
of (Cross et al., 1969), which reports two sets of experiments. In both cases the material
is loaded mechanically, under isothermal conditions at several different temperatures. The
difference is that prior to the mechanical loading, in the first set, the material is cooled from
high temperature and once the prescribed temperature is reached, it is fixed and the SMA
is mechanically loaded. In the second set, the material is heated from low temperature, and
then loaded. The initial yield stress is recorded in both cases. A look at the transformation
temperatures reported by the authors shows that for the first set of experiments the initial
material state is A, while for the second it is M t. The later implies that the initial yield stress
measured in the second set corresponds to the beginning of the M t → Md deformation over
the entire range T ≤ At

s. The results in the range At
s ≤ T ≤ At

f cannot be easily interpreted
since in this range the material before loading is a mixture of A and M t. The observed values
for the critical stress for detwinning exhibit only very slight dependence on temperature,
decreasing slowly as temperature is increased. Since for the first experimental set the initial
material state is A, then a transformation surface for M t → Md can be inferred from the
yield stress results only in the range T ≤ Mf . Observe that the measured yield stress in the
range T ≤ Mf for both sets of experiments is the same. This is a consistent experimental
result since at these temperatures, the material for both experimental sets is pure M t when
the loading begins.

Based upon this analysis, it is assumed in this work that the shape of the M t → Md has the
same dependence on temperature, both for temperatures below and above Ms (Figure 4).
Note that the region of the phase diagram covered both by the M t → Md and M t → A (to
be discussed next) completely surrounds the region where pure M t can exist. Therefore there
is no possibility that a loading path may lead to the existence of M t at high temperature or
high-stress regions of the phase diagram.

3.3 Combined austenite to detwinned martensite (A → Md) at low stresses

As was explained in the previous section, it is difficult to determine experimentally when the
transformation to twinned martensite is occurring. Therefore another outstanding question,
for which there is little experimental information, is what is the shape of the A → Md surface
at low stress σ < σs and temperatures. In this region of the phase diagram it can be expected
that both A → Md and A → M t occur. Note that the A → Md is measured experimentally
by observing the critical transformation stress required for the A → Md transformation.

Bo and Lagoudas (1999a); Miller (2000) have measured the development of transformation
strain during isobaric heating and cooling of annealed NiTiCu wires at different, constant,
stress levels. Such a test can be represented by a horizontal line on the phase diagram
and allows to determine the location of the A → Md (during cooling) and Md → A (during
heating) transformation surfaces. The results for untrained specimen suggest that there A →
Md does not take place at stress levels below 40MPa. They therefore argue that there is a
critical stress level, below which detwinned martensite cannot form. This has usually been
incorporated into SMA models (Brinson, 1993; Lagoudas and Shu, 1999) by assuming the
Md → A surface is independent of temperature below T < Ms.
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This SMA behavior at low temperatures and stresses however is heavily influenced by the
material composition, manufacturing process (e.g. cold work), heat treatments, etc. If a wire
is trained for pseudoelastic regime, then development of transformation strain is observed
even at zero stress level, which implies that the Md → A surface should extend to zero
stress. In order to take into account both types of behavior, the model developed here will
include both the capability to proceed with the A → Md transformation at arbitrary stress
level and the possibility of a critical stress below which production of Md does not happen.
In the first case, the A → Md transformation strip would reaching zero stress (dotted line
in Figure 4), while in the second, it becomes horizontal at T < Ms

4 Description of the constitutive theory

In order to simplify the presentation, the term ”transformation” will be used to denote both
the phase transformation from austenite to twinned and detwinned martensite as well as
the detwinning deformation of self-accommodated martensite. We start with the volume
fractions ci, i = 1, 2, 3 of the self accommodated martensite M t, stress-induced martensite
Md and austenite A, respectively. The volume fractions are subject to the constraints:

c1 + c2 + c3 = 1, (1)

0 ≤ ci ≤ 1, for i = 1, 2, 3. (2)

While the state of the material is represented completely by the three volume fractions ci,
it is also useful to know how this state was achieved. To do this, the total amount ξ1 of
M t produced from A, the amount ξ2 of Md produced from A, and the amount ξ3 of Md,
produced from M t, are introduced. They are connected to the three volume fractions ci by:

c1 = c10 + ξ1 − ξ3, (3)

c2 = c20 + ξ2 + ξ3, (4)

c3 = c30 − ξ1 − ξ2, (5)

where ci0, i = 1, 2, 3 are the initial volume fractions of the three phases, subject to the
constraint

c10 + c20 + c30 = 1.

These two representations of the phase state of the material are schematically portrayed
in Figure 5. The two phase transformation A ↔ M t and A ↔ Md can proceed both ways,
hence, ξ̇1, ξ̇2 can take arbitrary real values. The detwinning deformation M t → Md however is
assumed irreversible, e.g. the rubberlike effect (see Otsuka and Wayman (1999) for definition)
is not considered. Therefore ξ̇3 ≥ 0. Observe that equations (3)-(5) automatically satisfy the
constraint (1).

With these preliminary definitions, we now move to the question of selecting the inelastic
internal variables. In this work, the internal variables that describe the phase state of the
material are selected to be:

ξi, i = 1, 2, 3. (6)

This selection of three independent internal variables requires further discussion. A common
choice in the literature is to select two of the three volume fractions ci, say c1 and c2. Such
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Fig. 5. Schematic of the three phases and the possible transitions between them.

a choice is appropriate when the phase diagram does not change during cyclic loading and
when three simultaneous transformation cannot occur (for example A → Md, A → M t,
M t → Md). Observe that, if the three rates ċi, i = 1, 2, 3 are known, equations (3)-(5)
cannot be used to determine how exactly the three species transformed, that is, the rates ξ̇i,
i = 1, 2, 3. Therefore, if three simultaneous transformations occur, one has to use the three
rates ξ̇i to have complete knowledge how the species transformed. This may be necessary,
for example, during a simultaneous transformation A → Md, A → M t and M t → Md. In
such a case the inelastic strains associated with the A → Md and M t → Md processes may
evolve differently from each other and therefor it is needed to keep track of the individual
transformations. While some authors (Juhasz et al., 2002) argue that such situations should
be forbidden, this in itself is an additional assumption that should not be excluded apriori.

Another reason to use ξi is that they provide a complete loading history of the material
and as such, can be used to account for various cyclic loading effects. For example, at any
instance of time, ξ3 denotes the total amount of detwinned martensite produced from self-
accommodated martensite. So if one has a cyclic SME path and wants to account for plastic
strains accumulated over all cycles, ξ3 would be a suitable variable. Similarly,

∫ T
0 |ξ̇2|dt is a

suitable indicator the total amount of A ↔ Md transformation. The later variable has been
used, for example, by Bo and Lagoudas (1999a,b,c); Lagoudas and Bo (1999) to account
for transformation induced plasticity. This issue of modeling cyclic effects is related to the
choice of hardening functions and will be revisited in Section 4.3.1.

4.1 Kinematic assumptions

A large class of applications involving SMAs can easily be accommodated within the frame-
work of small deformations. Thus, for the sake of simplicity, the constitutive theory is for-
mulated for linearized strains, that is, the total strain tensor ε is given by:

ε =
1

2

(
∇u +∇uT

)
, (7)

where u is the displacement. Examples of SMA models formulated in terms of finite strains
can be found, for example, in Auricchio and Taylor (1997); Qidwai and Lagoudas (2000b);
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Anand and Gurtin (2003). The theory is presented from a macroscopic point of view, there-
fore all quantities involved are macroscopic ones, considered over a suitable representative
volume element. Further, it is assumed that the strain can be decomposed additively into
elastic εel, thermal εth and inelastic strain εin components:

ε = εel + εth + εin.

The inelastic strain εin is produced during the forward and reverse stress induced phase
transformations (ξ̇2 6= 0) and during the detwinning deformation (ξ̇3 > 0). Consequently, it
can be further decomposed into:

εin = εt + εd, (8)

where εt is the stress induced transformation strain (produced during A → Md transforma-
tion) and εd is the inelastic strain generated during detwinning (M t → Md). Note that while
the formation of martensitic twins in the A → M t transformation does involve local strain
fields, the macroscopic strain (averaged over a large representative volume element) is zero.
Since this paper deals only with macroscopic description of the SMA, the transformation
A ↔ M t is associated with zero (macroscopic) strain.

Finally, it is assumed that the transformation and detwinning strains obey the following two
transformation/detwinning flow rules:

ε̇t = Λtξ̇2, (9)

ε̇d = Λdξ̇3, (10)

where Λt is the transformation tensor for the stress-induced martensitic transformation (A ↔
Md) and Λd is the inelastic flow tensor for the detwinning of twinned martensite (M t →
Md). In general, the transformation tensors Λt and Λd are different (Lagoudas and Shu,
1999). Their specific form is discussed in Section 4.4 in conjunction with the definition of
transformation surfaces.

The last assumptions (9) and (10) allow the formulation of the constitutive theory in terms
of ξi, i = 1, 2, 3 as the only internal variables. It is convenient to use vector notation ξ =
(ξ1, ξ2, ξ3)

T for the internal variables. The internal variables can be thought of as a time-like
parameter because of the following relations:

εin =
∫ t

0

(
Λtξ̇2 + Λdξ̇3

)
dτ =

∫ ξ2

0
Λtdη +

∫ ξ3

0
Λddη, (11)

that is, the inelastic strain εin can be considered as a path dependent functional of ξ.

4.2 Free energy for Polycrystalline SMA

The following form of the Gibbs energy, based on the works of Bo and Lagoudas (1999a);
Lagoudas and Shu (1999) is assumed:

G
(
σ, T, ξ, sgn

(
ξ̇1

)
, sgn

(
ξ̇2

))
=(c1 + c2)G

M(σ, T, ξ) + c3G
A(σ, T, ξ)

+ Gmix
(
σ, T, ξ, sgn

(
ξ̇1

)
, sgn

(
ξ̇2

))
, (12)
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where GM is the thermoelastic free energy of both martensitic phases (twinned and de-
twinned), GA is the thermoelastic component of the free energy of austenite, and Gmix is the
free energy of mixing, which is responsible for the transformation behavior of the SMA. The
mixing energy and thus the entire free energy depends also on the direction of the A ↔ M t

and A ↔ Md transformations which is expressed through the sign function sgn (·):

sgn (x) =

 1 if x ≥ 0

−1 if x < 0
(13)

This kind of dependence allows the model to take into account the different material behavior
during forward (ξ̇i > 0) and reverse (ξ̇i < 0) phase transformation, i = 1, 2.

In the pseudoelastic SMA literature this is often done implicitly, without including sgn
(
ξ̇2

)
in the list of parameters of G (c.f. e.g Lagoudas et al., 1996) in order to provide for different
hardening during loading and unloading. An argument is then made that such a free energy
is allowed to take values form two distinct, possibly discontinuous branches (one for loading,
one for unloading) and the laws of thermodynamics should be verified for each branch alone.

This argument is made mathematically rigorous in the current work by including sgn
(
ξ̇2

)
explicitly in the parameter list (c.f. the discussion after equation (19)). This is also generalized

to the A ↔ M t transformation by including dependence on sgn
(
ξ̇1

)
. 1

Next, the two thermoelastic components are given by:

GA(σ, T, ξ) =− 1

2ρ
σ : SA : σ − 1

ρ
αA : σ(T − T0)−

1

ρ
σ : εin

+ cA
[
(T − T0)− T ln

(
T

T0

)]
− sA

0 T + uA
0 (14)

GM(σ, T, ξ) =− 1

2ρ
σ : SM : σ − 1

ρ
αM : σ(T − T0)−

1

ρ
σ : εin

+ cM
[
(T − T0)− T ln

(
T

T0

)]
− sM

0 T + uM
0 (15)

Si, αi, ci, si
0 and ui

0 are the compliance tensor, thermal expansion coefficient tensor, specific
heat, specific entropy and the specific internal energy at the reference state of the individual
phases with the superscript i = A for austenitic and i = M for martensite, respectively. It
is assumed that the material properties of the two martensitic phases are the same. Note
that this assumption, and correspondingly, the selection of the same energy for M t and Md

is guided by the fact that from a metallurgical point of view, the two phases are indistin-
guishable (Leclercq and Lexcellent, 1996). As however was discussed in the beginning of this
section, it is the macroscopic mechanical behavior of twinned and detwinned martensite that
is different, which is reflected in the kinematic considerations of Section 4.1.

1 Regardless of whether the dependence is implicit or explicit, continuum thermodynamics of ir-
reversible processes dictates that all fields, including G, should be independent of the rates of the
internal variables. However, this classical result (c.f. e.g. Coleman and Gurtin, 1967) is applicable
only to smooth functions G, that is functions that are continuous and all their partial deriva-
tives are also continuous. In the current case G is not smooth since sgn (·) is a discontinuous,
non-differentiable function.
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Note that in light of equation (11), the two free energies GA and GM and consequently, G
are path dependent functionals of ξ. Note that this approach of making G a path dependent
functional is chosen for convenience (as is done by many other authors c.f. e.g. Bo and
Lagoudas, 1999a; Lagoudas and Entchev, 2004), and does not lead to any mathematical
inconsistencies in the thermodynamic treatment of the constitutive model.

Further, upon substituting equations (14) and (15) into (12) and by using equations (3)-(5)
and the constraint (1), the following expression is obtained for the free energy:

G =− 1

2ρ
σ : S(c1 + c2) : σ − 1

ρ
σ :

[
α(c1 + c2)(T − T0) + εin

]
+ c(c1 + c2)

[
(T − T0)− T ln

(
T

T0

)]
− s0(c1 + c2)T + u0(c1 + c2) + Gmix, (16)

where S(c1 +c2), α(c1 +c2), c(c1 +c2), s0(c1 +c2) and u0(c1 +c2) are the effective compliance
tensor, thermal expansion coefficient tensor, specific heat, specific entropy and the specific
internal energy at the reference state, respectively. These effective material properties are
calculated in terms of the total martensitic volume fraction c1 +c2 using the rule of mixtures:

S(ξ) = S(c1 + c2) = SA + (c1 + c2)(SM − SA) = SA + (c1 + c2)∆S, (17a)

α(ξ) = α(c1 + c2) = αA + (c1 + c2)(α
M −αA) = αA + (c1 + c2)∆α, (17b)

c(ξ) = c(c1 + c2) = cA + (c1 + c2)(c
M − cA) = cA + (c1 + c2)∆c, (17c)

s0(ξ) = s0(c1 + c2) = sA
0 + (c1 + c2)(s

M
0 − sA

0 ) = sA
0 + (c1 + c2)∆s0, (17d)

u0(ξ) = u0(c1 + c2) = uA
0 + (c1 + c2)(u

M
0 − uA

0 ) = uA
0 + (c1 + c2)∆u0. (17e)

A detailed discussion of the functional form (16) for the free energy and the resulting rule
of mixtures (17), based on micromechanical averaging over a representative volume element
of the polycrystalline SMA can be found in (Bo and Lagoudas, 1999a). Note that, in view
of relations (3)-(5), the effective parameters can be viewed either as functions of the total
volume fraction of martensite (c1 + c2) or as functions of the internal variables ξ. The later
notation is more convenient when performing the algebraic manipulations of this section,
while the former gives a better physical understanding of the quantities involved.

The mixing term Gmix in the free energy (c.f. equations (12), (16)) is defined as follows:

Gmix
(
ξ, sgn

(
ξ̇1

)
, sgn

(
ξ̇2

))
=

1

ρ

∫ t

0

(
f1(ξ; sgn

(
ξ̇1

)
)ξ̇1(τ) + f2(ξ; sgn

(
ξ̇2

)
)ξ̇2(τ) + f3(ξ)ξ̇3(τ)

)
dτ , (18)

where the yet to be defined functions fi, i = 1, 2, 3 are responsible for the hardening during
the A ↔ M t, A ↔ Md and M t → Md transformations, respectively (see next section). Since
many SMAs exhibit different hardening behavior during loading and unloading (Lagoudas
et al., 1996) it is necessary to allow f1 and f2 to take different values depending on whether

one has forward or reverse transformation, hence the dependence on sgn
(
ξ̇1

)
, sgn

(
ξ̇2

)
. It

should be noted that the in the case of pseudoelasticity only (ξ̇1 = ξ̇3 = 0) the above mixing
energy leads to free energy which is equivalent to the one used by (Lagoudas et al., 1996).

In order to apply the second law of thermodynamics to the constitutive theory (next section)
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it is necessary to derive the rate of change of the free energy (12). It is given by

Ġ = σ̇
∂G

∂σ
+ Ṫ

∂G

∂T
+ ξ̇ · ∂G

∂ξ
(19)

The derivation of this relation is not straightforward. The usual way to derive such identities
is to consider G as a function of time and apply the chain rule to the definition of G, in
our case, equations (12) and (18). However in the current case G is not a smooth function
of all its internal variables. Indeed, consider a point in the state space, where the A ↔ M t

or A ↔ Md transformation changes sign. At such a point of transformation reversal, G is
not differentiable with respect to the two rates ξ̇1 and ξ̇2, (c.f. equation (13)). Moreover,
the derivatives ∂ξ1G and ∂ξ2G are discontinuous when ξ̇1 or ξ̇2 change sign, respectively (see
equation (A-3) in Appendix A). As a result, the chain rule cannot be applied directly to
equation (12). To obtain (19), first consider a point in state space where both ξ̇1 and ξ̇2 do
not change sign. In the neighborhood of this point G does not depend on ξ̇ and it is clearly
smooth. Then, (19) is obtained using the chain rule. At points of transformation reversal,
where G is not smooth, one has to differentiate directly G with respect to time, the details
for which are given in Appendix A. This result demonstrates that the explicit inclusion of
sgn

(
ξ̇1

)
and sgn

(
ξ̇2

)
in the list of parameters of G does not introduce derivatives with

respect to ξ̇i in the expression for Ġ.

4.3 Thermodynamics and constitutive relations

Every thermomechanical process must satisfy the second law of thermodynamics, which,
written in terms of the Gibbs free energy reads (c.f. e.g. Malvern, 1969):

ρĠ + σ̇ : ε + ρsṪ +
q · ∇T

T
≤ 0. (20)

Now, by substituting equation (19) into (20), the inequality becomes:

(
ε + ρ

∂G

∂σ

)
: σ̇ + ρ

(
s +

∂G

∂T

)
Ṫ + ρ

∂G

∂ξ
· ξ̇ +

q · ∇T

T
≤ 0

Following a standard argument (c.f. e.g. Truesdell and Noll, 1965) the following two consti-
tutive relations are established for the strain and entropy:

ε = −ρ
∂G

∂σ
, (21)

s = −∂G

∂T
, (22)

With the help of equations (16) and (18), the above relations are explicitly written as:

σ = S(ξ)−1 :
(
ε−α(ξ)(T − T0)− εin

)
, (23)

s =
1

ρ
α(ξ)T + c(ξ) ln(T/T0) + s0(ξ). (24)
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Further, the entropy inequality (20) also implies:

ρ
∂G

∂ξ
· ξ̇ +

q · ∇T

T
≤ 0. (25)

In this work it will be further assumed (Qidwai and Lagoudas, 2000b) that the SMA material
is strongly dissipative, that is, the two terms in the last inequality (25) hold separately 2 :

ρ
∂G

∂ξ
· ξ̇ ≤ 0, (26)

q · ∇T

T
≤ 0. (27)

Let the thermodynamic forces, conjugate to ξ be denoted by π = (π1, π2, π3)
T . With the

help of (16), (17) and (A-3) they are given by:

π1 = −ρ
∂G

∂ξ1

= π̃(σ, T )− f1

(
ξ, sgn

(
ξ̇1

))
, whenever ξ̇1 6= 0, (28)

π2 = −ρ
∂G

∂ξ2

= σ : Λt + π̃(σ, T )− f2

(
ξ, sgn

(
ξ̇2

))
, whenever ξ̇2 6= 0, (29)

π3 = −ρ
∂G

∂ξ3

= σ : Λd − f3(ξ), whenever ξ̇3 > 0. (30)

where π̃ is:

π̃(σ, T ) =
1

2
σ : ∆S : σ + ∆α : σ(T − T0)

− ρ∆c
[
(T − T0)− T ln

(
T

T0

)]
+ ρ∆s0T − ρ∆u0. (31)

4.3.1 Transformation hardening functions

The hardening function f1 for the A ↔ M t transformation is assumed to depend on c1, and
may be different for the forward and reverse transformation:

f1 =

∆+
1 f+

1 (c1) for ξ̇1 > 0

∆−
1 f−1 (c1) for ξ̇1 < 0

. (32)

Here f±1 (c1) are two arbitrary monotonously increasing functions in the interval [0, 1] for
the forward and reverse transformations A → M t and M t → A respectively which can be
determined from experimental measurements. The two material constants ∆±

1 serve as a
scaling factors for f±1 (c1) respectively, so that

f±1 (0) = 0, f±1 (1) = 1. (33)

The hardening function f±2 , f3 for the stress induced martensitic transformation A ↔ Md

and the reorientation of twinned martensite M t → Md respectively are assumed to depend

2 Note that the last assumption is equivalent to assuming that q is independent of ξ̇.
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on the volume fraction of twinned martensite c2:

f2 =

∆+
2 f+

2 (c2) for ξ̇2 > 0

∆−
2 f−2 (c2) for ξ̇2 < 0

, f3 = ∆3f3(c2) for ξ̇3 > 0. (34)

Similarly to equation (32), the material constants ∆±
2 and ∆3 are scaling factors for the

monotonous functions f±2 and f3, respectively, and:

f±2 (0) = 0, f±2 (1) = 1, (35)

f3(0) = 0, f3(1) = 1. (36)

Several things should be noted about this selection of hardening functions. The choice of c2

as the independent variable for f±2 and f3 has generally been accepted in the literature. The
choice of c1 as the unknown variable for f±1 , while often used (Juhasz et al., 2002; Leclercq
and Lexcellent, 1996; Brinson, 1993) is not the only possible option. The total amount of
austenite c3 may be an equally suitable choice for certain classes of SMA materials.

The specific form of the functions fi (e.g. polynomials, trigonometric functions, exponents,
etc.) is material dependent and should be treated as part of the material specifications.
Through the rest of this paper, for the sake of simplicity, it is assumed that the hardening
functions are linear:

f±1 (c1) = c1, f±2 (c2) = c2, f3(c2) = c2. (37)

This selection 3 is typical for the pseudoelastic and detwinning response of polycrystalline
NiTi SMAs (Lagoudas et al., 1996). In principle however, the model allows for arbitrary
monotonous functions that can be curve-fitted from experiments (Section 4.5).

Finally, the hardening functions depend indirectly on ξ through the volume fractions ci

(equations (3)-(5)). The volume fractions ci have fixed bounds (c.f. equation (2)). Hence,
a hardening function which depends explicitly on ci will have the property that the trans-
formation strips (see next section) will not change with cyclic thermomechanical loading.
It should be kept in mind that the position of the transformation strips in the phase dia-
gram do evolve with cyclic repetition of thermomechanical loading paths. Such effects can
be accounted for by specifying an explicit dependency of f±i on ξ1, ξ2 and ξ3. For example,
if f+

1 = ξ1 − (1 + λ)ξ3 is selected, with λ > 0 is a small positive parameter, every full SME
cycle will increase the Ms and Mf temperatures by fixed amount. This type of modeling the
evolution of SMA material response however was outside the scope of this work.

3 This choice of f2 is consistent with the hardening function of Boyd and Lagoudas (1994); Qidwai
and Lagoudas (2000a), who used the derivative of a quadratic polynomial, which is a linear function.
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4.4 Transformation surfaces and flow rules

It is assumed that a closed elastic domain is associated with each possible transformation,
bounded by a transformation surface. The five surfaces are:

Φ+
1 (σ, T, ξ) = 0, whenever the A → M t tranformation takes place, (38a)

Φ−1 (σ, T, ξ) = 0, whenever the M t → A tranformation takes place, (38b)

Φ+
2 (σ, T, ξ) = 0, whenever the A → Md tranformation takes place, (38c)

Φ−2 (σ, T, ξ) = 0, whenever the Md → A tranformation takes place, (38d)

Φ3(σ, T, ξ) = 0, whenever the M t → Md deformation takes place, (38e)

and the elastic domains in stress-temperature space, for given ξ, with respect to ξ̇i are
defined implicitly by the inequalities:{

(σ, T )|Φ+
i (σ, T, ξ) ≤ 0, ξ̇i > 0

}
, for i = 1, 2, (39){

(σ, T )|Φ−i (σ, T, ξ) ≤ 0, ξ̇i < 0
}

, for i = 1, 2, (40){
(σ, T )|Φ3(σ, T, ξ) ≤ 0, ξ̇3 > 0

}
. (41)

The first two inequalities describe the elastic domains of the two forward transformations,
the second two inequalities the elastic domains of the two reverse transformations. The last
inequality describes the elastic domain for the M t → Md transformation. In contrast to
conventional plasticity, the phase transformation terminates, whenever the constraints (2)
are violated. Therefore, the elastic domain associated with given phase transformation is
assumed to be the entire space, when the transformation is complete or there is no more
material to transform.

Following Lagoudas and Shu (1999); Qidwai and Lagoudas (2000b), the following form of
the transformation surfaces is suggested:

Φ+
1 (σ, T, ξ) = π1 − Y +

1 , Φ−1 (σ, T, ξ) = −π1 − Y −1 , (42)

Φ+
2 (σ, T, ξ) = π2 − Y +

2 , Φ−2 (σ, T, ξ) = −π2 − Y −2 , (43)

Φ3(σ, T, ξ) = π3 − Y3, (44)

where and Y ±1 , Y ±2 , Y3 are measures of internal dissipation of the respective transformations.
In this work it is assumed that Y ±i , i = 1, 2, 3 are constants, independent of σ, T and
ξ. This, due to the inequalities (39)-(41), implies that the appropriate conjugate forces πi

remain constant during the transformation. It also implies that the entropy production due
to a phase transformation is proportional to ξ̇i, with Y ±i being the proportionality constant
(c.f. equation (26)).

The functions fi defined by (32), (34) appear in the definition of the transformation func-
tion (42)-(44) through the constitutive relations (28)-(30). They are the only terms in the
transformation functions dependent on the internal variables ξ, hence they are responsible
for the transformation hardening.

In order to complete the model, the transformation tensors in the flow rules (9) and (10)
should be specified. Let dev(σ) be the deviatoric stress and ‖·‖ the usual tensor norm,
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respectively:

dev(σ) = σ − 1

3
tr(σ)I, ‖v‖ =

√
v · v.

The detwinning flow tensor is taken to be of the form

Λd =

√
3

2
Hd dev(σ)

‖dev(σ)‖
, (45)

where Hd is the maximal uniaxial inelastic strain, assumed to be a material constant.

For the sake of simplicity, the flow rule used for the A ↔ Md transformation is, following
Lagoudas et al. (1996); Qidwai and Lagoudas (2000a) taken to be

Λt =



√
3

2
H t dev(σ)

‖dev(σ)‖
for ξ̇2 > 0√

3

2
H t dev(εin)

‖dev(εin)‖
for ξ̇2 < 0

, (46)

where H t is a material constant having the meaning of maximal uniaxial transformation
induced strain. It should be noted that the forward flow rule is a simple J2 based one,
which has been used in many of the early works on modeling pseudoelasticity (c.f. e.g.
Lagoudas et al., 1996). A number of alternative transformation surfaces have been proposed
in the literature (c.f. e.g. Auricchio et al., 1997; Gillet et al., 1998; Huang, 1999; Qidwai and
Lagoudas, 2000b; Lexcellent et al., 2002), which account for the observed tension-compression
asymmetry of SMA materials as well as the development of a small volumetric strain during
the A → Md phase transformations. Due to the large number of different SMA alloys the
selection of an appropriate transformation surface can be a difficult task and is specific
for each alloy. The simple choice of transformation surface also helps in the next section
and in Appendix B, where the necessary relations are found for the material parameters
so that the model is consistent with the selected phase diagram. Since the main goal of
the current research is the formulation of a consistent model capable of accounting for phase
transformation and detwinning of self accommodated martensite over a wide range of stresses
and temperatures, the choice of more accurate transformation surfaces/flow rules was not
addressed in detail.

The reverse transformation tensor of the last equation (46) also deserves some attention. The
reason why two different transformation flow tensors are used for loading and unloading is
the need to account for reorientation in multiaxial loading path. In general, if the direction
of the stress state is changed, some martensitic variants will reorient in the new direction,
thus changing the direction of the inelastic strain. A constitutive model with a single volume
fraction for all detwinned variants of martensite cannot account for this process. If the
same transformation tensor is used for forward and reverse transformations it may happen
that residual inelastic strain is present after unloading to austenite (e.g. c3 = 1 and the
stress becomes zero) from a non-proportional loading path. The unloading criterion used
above ensures that when c3 = 1, the inelastic strain becomes zero. It reduces to the same
transformation tensor used by (Qidwai and Lagoudas, 2000a) when ξ̇3 = 0.
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4.5 Determination of material parameters

A successful implementation of a material model depends on the ability to express the
material parameters from physically observable quantities. The material parameters entering
the present model can be divided into two groups. The first group is parameters with direct
physical interpretation:

Si, αi, ci, si
0, u

i
0, H

t, Hd, (47)

and parameters related to the structure of the phase diagram and the transformation hard-
ening of the material:

f±1 , f±2 , f3, Y
±
1 , Y ±2 , Y3, ∆

±
1 , ∆±

2 , ∆3. (48)

In both groups, the index i takes the values A, M for austenite and martensite, respectively.

The first group of parameters can be measured directly. A polycrystalline SMA, unlike the
single crystal SMAs, is an isotropic material. Therefore the compliances SA, SM are deter-
mined if the Young’s modulus EA, EM and Poisson’s ratio νA, νM of the two phases are
available. These can be determined from standard mechanical tests. The thermal expansion
coefficient αA, αM for an isotropic material are scalars and are determined from isobaric
tests. The specific heats cA, cM , the change in specific entropy ρ∆s0 between the two phases
and the change of specific internal energy ∆u0 can be determined from calorimetric measure-
ments (Bo and Lagoudas, 1999a,b). The maximum uniaxial transformation strain H can be
obtained from either an isothermal test or from an isobaric test (Bo and Lagoudas, 1999a).

The remaining parameters (48) are related to the position of the transformation strips in the
uniaxial phase diagram (Figure 4). The key to determining them is to measure the critical
temperatures Ms, Mf , At

s, At
f , Ad

s, Ad
f as well as the critical stresses σs and σf . Then f±1 , f±2 ,

f3, Y ±1 , Y ±2 , Y3, ∆±
1 , ∆±

2 and ∆3 are obtained by simulating several simple thermomechanical
paths on the phase diagram for a uniaxial stress state. The calculations are straightforward,
and for the sake of brevity are given in Appendix B. The critical temperatures can be mea-
sured in the following way: The transformation temperatures Ms, Mf , At

s, At
f are easily

determined from a DSC test such as the one shown in Figure 2. Knowing the critical tem-
peratures at zero stress is sufficient to determine the A → M t and M t → A transformation
strips. The Ad

s, Ad
f temperatures on the other hand can be found by first loading a specimen

in detwinning conditions until the specimen has entirely detwinned. It is then mechanically
unloaded in a way which preserves the material state and then a DSC test is performed as
described in Section 2. To do the DSC test it is necessary to perform the mechanical loading
and the subsequent preparation of a DSC sample from the loaded specimen at tempera-
tures below Ad

s, which may not always be possible. A more direct approach relies on several
isothermal test above At

f , which will allow to construct both the A → Md and Md → A
strips and therefore, also the Ad

s, Ad
f temperatures. Isothermal tests at temperatures below

Mf can be used to determine σs and σf and hence the M t → Md strip.

The presentation of the current model is concluded in the next two sections by demonstrating
that the it reproduces the phase diagram of Figure 4 and by discussing certain restrictions
on the relative position of the phase transformation strips.

4.5.1 The uniaxial transformation strips and the phase diagram

The one dimensional reduction of the model (Appendix B) resulted in the inequalities (B-3)-
(B-7) for the elastic domains of the respective transformations. It is clear from equation (B-9)
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that the transformation strip in stress-temperature space for the M t → Md deformation is
the horizontal strip

σs ≤ σ ≤ σf ,

which is consistent with the assumptions of Section 3.

Next, assume for a moment that the elastic moduli of the two phases, the thermal moduli
and the specific heats of the two phases are equal:

SA = SM , αA = αM , ca = cM .

In this case, equation (B-8) reduces to

π̂ = ρ∆s0T − ρ∆u0.

Then, equation (B-10) implies that the transformation strip for the A → M t is defined by

Mf ≤ T ≤ Ms

and from equation (B-13), the transformation strip for the M t → A is the vertical region

At
s ≤ T ≤ At

f .

It can also be seen form equations (B-19) and (B-16) that, for any given c2, the transformation
line for both A → Md and Md → A transformation is linear and has slope

k = −ρ∆s0

H
.

Therefore, the A → Md and Md → A strips have the shape shown in Figure 4, and the slope
k is given by the above formula 4 .

When the moduli for the two phases are different, the transformation lines for the A ↔ M t

and A ↔ Md depart from the above linear relationships. However, the terms ∆Sσ2, ∆ασ
and ρ∆c

[
(T − T0)− T ln

(
T
T0

)]
which will now appear in (B-8) are all an order of magnitude

smaller than the leading term ρ∆s0T . The departure from a linear shape is therefore visible
for high stress (several hundred MPa) for A ↔ M t transformation and for both higher
stresses and away from the equilibrium temperature T0 for the A ↔ Md transformation. It
is easy to show, that in the general case of different elastic and thermal moduli, the meaning
of the slope k becomes now the tangent to the transformation surface at zero stress.

4.5.2 Relative position of the transformation surfaces

As mentioned in Section 3 the current model does not assume any triple point as often
done in the literature Brinson (1993). As a result, the A → Md strip can be translated
according tho experimental measurements. However, certain restrictions, which result from
the assumed functional dependence of f1, f2 and f3 are still valid. To the best of the authors
knowledge, two of these exist and will be mentioned briefly here. Both of them occur for

4 This last formula is frequently used (for example, by Qidwai and Lagoudas, 2000a) as an alter-
native method to determine the difference in specific entropies ∆s0.
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certain specific material parameters and it may happen that such classes of SMA materials
do not exist in practice.

First, the transformation strips M t → A, Md → A and M t → Md must have a zero
intersection. It is easy to show, that if they do, the three inequalities (B-4), (B-6) and (B-7)
cannot be satisfied simultaneously. In other words, a simultaneous transformation M t → A,
Md → A and M t → Md is not possible. In light of the experimental results of Section 2, it
seems unlikely that such a situation can occur. Also, it is physically difficult to explain why
some twinned martensite will transform to austenite through an intermediate detwinned
phase, while the rest of the twinned martensite will transform directly to austenite. This
limitation can be removed by assuming a different functional dependence of f1, for example
on c3. Note that if such a transformation is allowed, it is necessary to use all the tree internal
variables ξ, as just knowing the rate of change of ci is not sufficient to determine exactly
how the species transformed (c.f. equations (3)-(5)).

The second limitation of the theory is associated with a bifurcation in some loading paths
(in σ−ε−T space) and certain material parameters. Suppose that a material is cooled from
pure austenite at constant stress, which is higher by a finite amount than the critical stress
for the M t → Md deformation. As there is no available M t, no Md can be produced so that
the inequality (B-7) is turned to equality. Suppose further, that as the cooling proceeds, the
A → M t surface is reached and there is still some available A. That is, Φ+

1 = 0, Φ+
2 = 0

and Φ3 > 0. As the Φ1 surface is first activated, some (small) amount of M t is produced
so that (B-3) becomes equality. This Md must all be detwinned via M t → Md (ξ̇3 > 0) in
order to relax the violation of (B-7). As this happens, c1 again becomes 0, thus (B-3) is again
violated, hence more M t must be produced, and so forth, until all the austenite is exhausted
via this transformation A → M t → Md. Thus an infinitesimal drop in the temperature,
which activates Φ+

1 (c.f. equations (42) and (B-3)) and produces the first M t, will result in
a finite amount of A → Md. This implies a finite production of transformation strain and
thus will results in strain discontinuity, which to the best of the our knowledge has not been
observed in practice. Clearly, this situation is possible if the finish line for the A → Md

transformation pass above the point (Ms, σf ) in stress temperature space. Then, as long as
f1 is a function of c1 and f3 a function of c2, and regardless of the functional form of fi (c.f.
equation (37)), a simple isobaric path at stress equal to σf will result in the above situation.

Hence, to prevent such behavior, it is necessary (but not sufficient) to require that the
finish A → Md line passes at or below the point (Ms, σf ). It is easy to see that for the
selected linear form of the hardening function (37) the above loading path discontinuity is
not possible if the finish A → Md line passes at or below the point (Ms, σf ) and ∆3 > ∆+

2 .
For nonlinear functions fi it is more difficult to derive sufficient conditions for which there
is no discontinuity. Whether such materials, for which the finish A → Md line passes above
the point (Ms, σf ), exist is an open question. Related to this is if loading path discontinuity
(in σ − ε− T space) should be prohibited. Note that, for such class of materials a different
functional dependence of f1 may provide a solution to the discontinuity problem.

5 Numerical Implementation of the model

When solving numerically boundary value problems (for example by finite elements) one is
presented with the following problem: at a given material point, the history as well as the
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current material state (strain, temperature, internal variables) is known and new values are
given for the strain and temperature. One has to find numerically the corresponding stress
and internal variables at this particular material point. To do this, an extension of the closest
point projection algorithm of Qidwai and Lagoudas (2000a) is used. Qidwai and Lagoudas
(2000a) implemented the class of SMA models of Boyd and Lagoudas (1996a) which have
only one active transformation surface (either A → Md or Md → A). The numerical scheme
described in this section is adapted to the multiple transformation surfaces present in the
current model. The scheme belongs to the general family of return mapping algorithms of
(Ortiz and Popov, 1985; Simo and Hughes, 1987, 1998) which couple in a natural with a
displacement based finite element methods. In this section, the major steps of the numerical
implementation of the SMA constitutive model are presented, while the details can be found
in Popov (2005).

Consider a single material point. First, rewrite equation (23) as:

ε = S(ξ) : σ + α(ξ)(T − T0) + εin. (49)

The evolution equations (9) and (10) and the decomposition (8) imply that the total inelastic
strain εin can be written as

ε̇in = Λt(σ)ξ̇2 + Λd(σ)ξ̇3, (50)

where Λt(σ) and Λd(σ) are defined by equations (46) and (45) respectively. It is also conve-
nient to write the consistency conditions imposed by the transformation surfaces (39)–(44)
for the evolution of the internal variables ξ in the following compact form:

ξ̇1 ≥ 0, Φ+
1 ≤ 0, Φ+

1 ξ̇ = 0, (51a)

ξ̇1 ≤ 0, Φ−1 ≤ 0, Φ−1 ξ̇ = 0, (51b)

ξ̇2 ≥ 0, Φ+
2 ≤ 0, Φ+

2 ξ̇ = 0, (51c)

ξ̇2 ≤ 0, Φ−2 ≤ 0, Φ−2 ξ̇ = 0, (51d)

ξ̇3 ≥ 0, Φ3 ≤ 0, Φ3ξ̇ = 0. (51e)

Thus, at each material point, the state variables satisfy the nonlinear system of differential-
algebraic equations (49), (50) along with the constraints (51).

Assume now, that the history of all field and internal variables at the material point is known.
In particular, the values of εn, Tn, σn, εin

n , and ξn are known. The subscript n is used to
denote a history/time parameter 5 . The new values of εn+1 and Tn+1 for the strain and
temperature respectively are also given 6 . The Closest Point Projection Return Mapping
Algorithm is a numerical method which computes the values for σn+1, εin

n+1 and ξn+1 by
solving equations (49)–(50) along with the constraints (51). This is done by first discretizing
the evolution equation (50):

εin
n+1 = εin

n + (ξ2n+1 − ξ2n)Λt(σn+1) + (ξ3n+1 − ξ3n)Λd(σn+1), (52)

5 For a quasi-static problem, this would be the values at the n-th loading step, while in a dynamic
problem this would be the values of the field and internal variables at some discrete instance of
time tn.
6 Alternatively, the increments ∆εn+1 = εn+1 − εn and ∆Tn+1 = Tn+1 − Tn may be given, which,
of course, is equivalent to knowing εn+1 and Tn+1.
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For a geometric interpretation of this backward Euler discretization, see Qidwai and Lagoudas
(2000a). The stress-strain relation (49) is then written as:

σn+1 = S(ξn+1)
−1 :

(
εn+1 − εin

n+1 −α(ξn+1)(Tn+1 − T0)
)
. (53)

In order to solve the discrete system (52), (53) subject to the constraints (51), first substitute
εin

n+1 from equation (52) into (53) and then rearrange the terms to obtain:

S(ξn+1)σn+1 − εn+1 + α(ξn+1) (Tn+1 − T0)

+εin
n + (ξ2n+1 − ξ2n)Λt(σn+1) + (ξ3n+1 − ξ3n)Λd(σn+1) = 0. (54)

Note that in the above equation, all members with subscript n as well as εn+1 and Tn+1 have
known values. It is convenient to introduce the residual F:

F(σ, ξ) =S(ξ)σ − εn+1 + α(ξ) (Tn+1 − T0)

+ εin
n + (ξ2 − ξ2n)Λt(σ) + (ξ3 − ξ3n)Λd(σ). (55)

Observe, that the system (52), (53) is now equivalent to

F(σn+1, ξn+1) = 0. (56)

The Closest Point Projection method, like most return mapping algorithms, first performs a
linear thermoelastic loading using equation (53), called thermoelastic prediction. It then
determines, using (51), if phase transformation occurs or not. If it does not, then the solution
is accepted. If it does, it determines which one and performs a transformation correction.
Without loss of generality, suppose that during the loading step the forward stress-induced
phase transformation occurs and the rest of the phase transitions do not happen. This implies
ξ2n+1 − ξ2n > 0 and (51) reduces to

Φ+
2 (σn+1, Tn+1, ξn+1) = 0. (57)

The Closest Point Projection method then does nothing else but to solve (56) and (57)
by Newton’s method in order to obtain a consistent material state. These two steps are
explained in details below. Both the predictor and corrector steps can be viewed as part of
an iterative process which solves the nonlinear algebraic system of equations (56), subject
to the constraints (51), by constructing a converging sequence

σ
(k)
n+1 −→

k→∞
σn+1, ε

in(k)
n+1 −→

k→∞
εin

n+1, ξ
(k)
n+1 −→

k→∞
ξn+1. (58)

5.1 Thermoelastic prediction

As the first step, a thermoelastic prediction is performed during which, the internal
variables do not change:

ε
in(0)
n+1 = εin

n , (59)

ξ
(0)
n+1 = ξn, (60)

σ
(0)
n+1 = S(ξn)−1 :

[
εn+1 − εin

n −α(ξn)(Tn+1 − T0)
]
. (61)
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It should be noted, that this first step corresponds to purely thermoelastic loading without
any transformation (ξ̇ = 0), hence its name thermoelastic prediction. The corresponding
values of the five transformation functions are then evaluated:

Φ(0)
α = Φα(σ

(0)
n+1, Tn+1, ξ

(0)
n+1). (62)

The subscript α is understood in the sense Φα ∈
{
Φ+

1 , Φ−1 , Φ+
2 , Φ−2 , Φ3

}
. If the value of all

transformation functions satisfy Φ(0)
α ≤ 0 then all equations and constraints are satisfied and

the iteration is terminated for k = 0.

5.2 Transformation correction

The predictor step assumed that ξn = ξn+1, hence (51) are satisfied if and only if all Φα ≤ 0.
Therefore, if at least one of the transformation functions Φα > 0 then the corresponding
consistency condition is violated. Such surfaces will be referred to as inconsistent. The ex-
istence of inconsistent surfaces implies that during the loading step, phase transformation
takes place and a transformation correction is needed (Qidwai and Lagoudas, 2000a).
During this step, the stress and the internal variables are modified in accordance with the
transformation flow rules so that the consistency conditions are satisfied.

The consistency condition(s) which correspond to the phase transformation(s) taking place
will be called active. The same term will be used for the respective transformation surfaces.
The consistency conditions that the elastic predictor violates are not necessarily the active
ones, nor are they necessarily the only ones active. For examples of such cases, as well as an
approach how to find the active surfaces, the reader is referred to Popov (2005).

So, assume that it is known which transformation(s) are active during the load step. We will
consider the case of a single or two simultaneous active surfaces. Suppose first, that only
one transformation is active, say Φα. This implies that the corresponding volume fraction,
denoted also by ξα, has nonzero rate 7 . That is, ξ̇α 6= 0, and the corresponding consistency
conditions (51) is satisfied, if and only if,

Φα(σn+1, Tn+1, ξn+1) = 0. (63)

Therefore, during the transformation correction, one has to solve (56) along with the last

equation. This is done by Newton’s method: For the given k-th iterate of σ
(k)
n+1, ε

in(k)
n+1 and

ξ
(k)
n+1, find the k +1 iterates by linearizing F and Φα around

(
σ

(k)
n+1, ξ

(k)
n+1

)
and requiring that:

F(k) +
∂F(k)

∂σ
: ∆σ(k) +

∂F(k)

∂ξα

∆ξ(k)
α = 0, (64)

Φ(k)
α +

∂Φ(k)
α

∂σ
: ∆σ(k) +

∂Φ(k)
α

∂ξα

·∆ξ(k)
α = 0. (65)

The shortcut notation for F(k) = F
(
σ

(k)
n+1, ξ

(k)
n+1

)
, Φ(k)

α = Φα

(
σ

(k)
n+1, Tn+1, ξ

(k)
n+1

)
and all their

derivatives is used. When the increments ∆σ(k) and ∆ξ(k)
α are determined from the above

7 If Φα ∈
{
Φ+

1 ,Φ−1
}

then the internal variable responsible is ξα = ξ1, if Φα ∈
{
Φ+

2 ,Φ−2
}

then
ξα = ξ2 and if Φα = Φ3 then ξα = ξ3
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system of linear equations, the stress and the internal variable are updated according to

σ
(k+1)
n+1 = σ

(k)
n+1 + ∆σ(k), ξα

(k+1)
n+1 = ξα

(k)
n+1 + ∆ξ(k)

α ,

and ε
in(k)
n+1 is updated according to equation (52).

If two of the transformations are active, say Φα and Φβ, then during the correction, equation
(56) along with

Φα(σn+1, Tn+1, ξn+1) = 0, (66)

Φβ(σn+1, Tn+1, ξn+1) = 0, (67)

is being solved, again by a Newton’s method: For the given k-th iterate of σ
(k)
n+1, ε

in(k)
n+1 and

ξ
(k)
n+1 find the k + 1 iterates by linearizing F, Φα and Φβ around

(
σ

(k)
n+1, ξ

(k)
n+1

)
and requiring

that:

F(k) +
∂F(k)

∂σ
: ∆σ(k) +

∂F(k)

∂ξα

∆ξ(k)
α +

∂F(k)

∂ξβ

∆ξ
(k)
β = 0, (68)

Φ(k)
α +

∂Φ(k)
α

∂σ
: ∆σ(k) +

∂Φ(k)
α

∂ξα

·∆ξ(k)
α +

∂Φ(k)
α

∂ξβ

·∆ξ
(k)
β = 0, (69)

Φ
(k)
β +

∂Φ
(k)
β

∂σ
: ∆σ(k) +

∂Φ
(k)
β

∂ξα

·∆ξ(k)
α +

∂Φ
(k)
β

∂ξβ

·∆ξ
(k)
β = 0. (70)

When the increments ∆σ(k), ∆ξ(k)
α and ∆ξ

(k)
β are determined from the above system of linear

equations, the stress and the internal variable are updated according to

σ
(k+1)
n+1 = σ

(k)
n+1 + ∆σ(k), ξα

(k+1)
n+1 = ξα

(k)
n+1 + ∆ξ(k)

α , ξβ
(k+1)
n+1 = ξβ

(k)
n+1 + ∆ξ

(k)
β ,

and ε
in(k)
n+1 is updated according to equation (52).

This completes the outline the numerical implementation of the model. Several important
aspects of the numerical implementation will not be given here. These include the details
of solving the linear system (64)-(65) or (68)-(70), including the functional form of the
derivatives involved; an approach to finding the active surfaces; the important aspect of
completing the transformations (the internal variables ξ are bounded by the constraints
(2), so they cannot evolve indefinitely); algorithmic tangent moduli that are useful when
coupling this numerical scheme with a finite element method (c.f. e.g. Simo and Hughes,
1998); integration of the closest point projection algorithm into a displacement based FEM.
For details, the reader is referred to Popov (2005).

It is important to note that when Φ±2 is the only active surface, the iteration (64),(65)
reduces to the Closest Point Projection method of Qidwai and Lagoudas (2000a). In the
later work, the algorithm is formulated by defining a residual for the flow rule (52), instead
of (54). It is easy to show that the two lead to the same algorithm. The current approach
has the advantage that by taking the residual of Hooke’s law the algorithm generalizes for
the twinning transformation A ↔ M t in which no transformation strain is generated.
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Table 1
Material parameters used in the SMA model

Material Value Material Value Material Value
constant constant constant

EA 70× 109 Pa H 0.05 At
f , Ad

f 315 ◦K

EM 30× 109 Pa k 4.5× 106 Pa/(m3K) At
s, Ad

s 295 ◦K

αA 22× 10−6/K Mf 275 ◦K σs 100 MPa

αM 10× 10−6/K Ms 291 ◦K σf 200 MPa

6 Numerical examples

The numerical examples in this section were selected so that complex loading paths in
stress-temperature phase space could be tested. First, a uniaxial example (Section 6.1) of
a constrained SMA rod is considered. One-dimensional setting allows to easily determine
the loading path in stress-temperature space, and solve the relevant equations by symbolic
software. In the example, an SMA rod is cooled from the austenitic phase to low temperature
while the strain is kept constrained. This problem allows to demonstrate the cut-off of the
A → Md transformation in untrained SMA materials and the predominant development
of M t from A at low stress levels. Secondly, the constitutive model was then numerically
implemented in the full 3-D setting and was tested on a plane strain problem. An SMA
block with a square hole was loaded at low temperature and then heated while constrained,
so that multiple transformations could take place. The results are described in Section 6.2.
The basic material parameters used in both examples are given in Table 1 and represent
a generic SMA properties (Qidwai and Lagoudas, 2000a). The selection of same critical
temperatures for Md → A and M t → A was done in order to maximize the intersection
region of the two transformation strips (c.f. the phase diagram of Figure 4) and thus to test
the model for multiple transformation in the most severe case from numerical point of view.

6.1 Constrained cooling of an SMA rod

In order to get a feeling of the thermomechanical response predicted by this model first a
very simple example is presented. Consider a rod in uniaxial stress state (B-1), (B-2). The
rod is first loaded mechanically to 200MPa from a stress free, fully austenitic configuration,
at a constant temperature of 320 ◦K. Then the two ends of the rod are fixed and it is cooled
to a temperature of 260 ◦K which is well below the Mf temperature. The loading process is
plotted in the stress-temperature space (Figure 6).

Due to the uniform stress state this problem is simple enough and can be solved semi-
analytically. The stress in the rod is related to the strain by (c.f. equations (17), (23) and
(B-1)):

σ = E(c1 + c2)
(
ε− α(c1 + c2)(T − T0)− εin

)
(71)

The maximal detwinning and transformation strains are the same, e.g. H t = Hd = H (see
Table 1). In the uniaxial case, the inelastic strain is proportional to the volume fraction of
detwinned martensite c2 (c.f. equations (8)-(10) and (B-2)):

εin = Hc2. (72)
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Fig. 6. A constrained cooling path in stress-temperature space. The rod is loaded in tension at the
austenitic phase to a stress lower than required for phase transformation. The strain is then fixed
and the rod is cooled. The rapid drop of the stress during the phase transformation is caused by the
development of inelastic strains. Since the total achievable inelastic strain is an order of magnitude
larger than the initial elastic strain, very little A → Md transformation occurs. For clarity, only
the A → Md, A → M t, M t → Md and transformation strips are shown.

For the particular example under consideration, the rod is initially in the austenitic phase up
to a stress σ0 = 200MPa, which is below the critical stress required to initiate the forward,
A → Md phase transformation. Without loss of generality, let this be a tensile stress. Then
the inelastic strain is identically zero:

εin = 0.

and from equation (71), the rod has developed uniform elastic strain

ε0 = σ0/E
A.

At this point of the loading path, the strain is then fixed and the SMA is gradually cooled. At
first, a thermoelastic contraction of the rod slightly increases the stress. When the A → Md

transformation surface is reached, transformation strains begin to develop. At this point
one has to solve equations (71) and (72), along with the rule of mixtures (17) and the
relevant transformation surfaces (51). This is done using symbolic software (Mathematica).
The material state during the entire loading path is plotted in stress-temperature space in
Figure 6 and the relevant transformation strips are also shown.

Now, as the transformation strains becomes nonnegative it will relax the stress state. Observe
that the maximum possible value of the transformation strain H is an order of magnitude
larger than the elastic strain ε0 (which is kept fixed during the cooling). Therefore, very little
phase transformation is required to produce transformation strains comparable with ε0 and,
thus to drastically reduce the stress. In this example the A → Md surface terminates at some
finite value of stress σs (which, as discussed before is material dependent). Slightly before
this point the A → M t transformation surface is also reached and the material undergoes
combined transformation.
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As the stress decreases below the critical stress σs, only the A → M t transformation proceeds.
In the process, no further transformation strain is produced, however the stiffness changes.
The stiffness of the martensite EM is less than the stiffness of austenite EA, so the effective
stiffness decreases (c.f. equation (17)). On the other hand, the total strain is fixed. Therefore,
neglecting the thermal strains, and noting that very small amount of A → Md has occurred,
from equation (71) it follows that the stress in the rod will decrease by a factor of EA/EM .
This is clearly visible in Figure 6. Upon completion of the transformation, the a material
again exhibits thermoelastic contraction, which causes small increase in stress. For additional
uniaxial examples which illustrate multiple transformations while heating a constrained rod,
the reader is referred to Popov (2005).

6.2 Complex thermomechanical loading path

The numerical example in this section involves a complex thermal and mechanical loading
path applied to an SMA block with a cylindrical hole. A 2D cross-section of the geometry is
shown in Figure 7(a). It is assumed that in the off-plane direction the body is constrained,
so that plane strain conditions are achieved in the cross-section. As is usual for plane strain,
the stress is still three-dimensional, and in light of equations (46), (45) and (11) so are the
inelastic strains (8). This, combined with both thermal and mechanical loading applied to
the body, allows to test the SMA model during a complex loading path. In addition, it will
be shown in this section, the thermal loading in conjunction with the plane strain conditions
also leads to evolution of non-proportional stress state in the body.

SMA

=Tn 0

=Tn 0

=Tn 0

u 1
 =

 0

u 1
 =

 ∆
u

∆u

0.6 m0.2 m 0.2 m

(a) Problem geometry and initial bound-
ary conditions

Loading step

Displacement
Temperature

10 2

T0

∆u, T1

(b) Loading path followed for the boundary
conditions and temperature

Fig. 7. A plane strain perforated square model problem

The numerical example is solved using a displacement based Finite Element Method (FEM).
The constitutive model was implemented numerically using return mapping algorithms (Sec-
tion 5). All discretizations use triangular meshes and standard linear Lagrangian finite ele-
ment spaces. The SMA material properties used represent generic NiTi SMA material used
previously in the literature (Qidwai and Lagoudas, 2000a) and are given in Table 1.

Initially, the SMA block is stress free and in the self-accommodated phase, i.e. c1 = 1
everywhere in the domain. The thermomechanical loading that the square is subjected to
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(a) Mesh, h ∼ 0.01, 9274 DOF (b) σ11

Fig. 8. The triangular FEM mesh selected for the entire computation and associated stresses and
internal variable at the end of first loading step (T = 260 ◦K).

is shown on Figure 7(b). The block is first loaded mechanically at constant temperature
T = 260 ◦K as follows: the left side of the square is fixed against horizontal displacement,
but is allowed to roll in the vertical direction; the right side is pulled uniformly by the
amount of 0.002m in the horizontal direction and the side is again allowed to move in the
vertical direction; the remaining part of the boundary (including the hole) is stress free. The
second loading step consists of keeping the horizontal component of the displacement fixed
and uniformly raising the temperature to T = 350 ◦K.

The first loading step was used to determine a suitable mesh size for the entire simulation.
This was done by starting with a very coarse mesh and consecutively refining it. Due to
obvious symmetry consideration, only one quarter of the domain was used in the calculations.
The solution was judged to be accurate enough when the non-smoothed, piece-wise constant
stress components in each element showed little variation over element boundaries. Based
on this, the mesh shown in Figure 8 (8964 elements, 9274 DOF) was selected for the rest of
the computation.

It can be seen from this first part of the simulation that stress concentrations develop near the
top and bottom edge of hole. The effective stress in these locations become sufficiently high
for the detwinning of small amounts of self-accommodated martensite as shown on Figure 9.
If the stress concentrations are compared to a pure elastic solution, the development of
inelastic strains in the detwinning process tends to reduce this stress concentration.

During the heating process, the material undergoes two distinct processes - first simultane-
ous M t → A, Md the transformations then followed by a Md → A transformation. When
the second loading step begins, the material first experiences initial linear thermoelastic ex-
pansion. The conditions are of plane strain, the horizontal component of the displacements
is fixed and the vertical displacements are not constrained during the heating. Hence any
thermal expansion will results in a nonhomogeneous change in the stress state. During the
linear thermoelastic expansion (T < At

s) this results in small relaxation of the effective stress
(Figure 9(c)). As the critical temperature for the M t → A transformation is reached. The
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(a) c2 at T = 260, 280 ◦K (b) Von-Mises Stress, T = 260 ◦K (c) Von-Mises Stress, T = 280 ◦K

Fig. 9. The martensitic volume fraction (a) and the Von-Mises stress (b) at the completion of
the initial loading. As the heating begins the material undergoes only thermal expansion and no
transformation occurs. As a result the Von-Mises stress decreases slightly by T = 280 ◦K and the
internal variables do not change.

(a) Von-Mises stress (b) c1 (M t) (c) c2 (Md) (d) c3 (A)

Fig. 10. Solution for square hole problem at T = 310 ◦K. As the material is slowly heated, the
reverse transformation M t → A occurs (c). Since the austenite is considerably stiffer than marten-
site, and the material is constrained, the stresses also increase. This results in a simultaneous
M t → A,Md transformation, which is manifested in increase in the volume fraction of Md (a,b).

self-accommodated martensite begins to transform to austenite. The stiffness of austenite
is approximately 2.3 times that of martensite (see Table 1) and due to the fixed horizontal
displacement the stresses increase throughout the block. The effective stress increases cor-
respondingly and this causes further detwinning of martensite in some areas of the block,
resulting in a simultaneous M t → A, Md transformations, mostly near the top and bottom
parts of the hole (Figure 10). This is manifested in further increase in c2 in comparisons to
the amount that was produced during the first loading step. The effective stress and c2 after
the completion of the M t → A transformation are shown on Figure 11.

The areas, where detwinned martensite is present have generally higher effective stress (above
σs), compared to the rest of the domain. Hence, the reverse transformation of detwinned
martensite (Md → A) does not happen until much higher temperature, due to the fact
that the corresponding transformation surfaces exhibit stress dependence (see Figure 4).
Around T = 335 ◦K, the Md → A transformation begins in areas with lowest effective stress.
During this phase, the inelastic strains decrease according to the transformation rule (9),(46).
Again, due to the constraint on the displacements, imposed by the boundary conditions, the
elastic portion of the stress generally increases which leads to a corresponding (non-uniform)
increase in the stress during the reverse transformation (Figures 12-14).
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(a) Von-Mises Stress (b) c2 (Md) (c) c3 (A)

Fig. 11. By T = 320 ◦K the twinned martensite is depleted. The volume fraction of Md (b) has
reached approximately 11% and the rest is in the austenitic phase (c).

(a) Von-Mises Stress (b) c2 (Md) (c) c3 (A)

Fig. 12. Around T = 335 ◦K the temperature is sufficient for the reverse, Md → A transformation
to begin.

(a) Von-Mises Stress (b) c2 (Md) (c) c3 (A)

Fig. 13. Further heating (T = 340 ◦K causes further Md → A transformation and subsequent
decrease in c2 (b) and the inelastic strain εin, and increase of c3 (c). Due to the constrained
displacement and the decrease of the inelastic strain, the stresses begin to increase (a)

7 Conclusions

A new 3-D constitutive model for polycrystalline SMAs based on thermodynamic potentials
is presented. The model can account for both development of stress induced martensite
directly from austenite (pseudoelasticity) as well as detwinning of twinned martensite. This
is accomplished by describing the material state as a mixture of three phases - twinned
martensite, detwinned martensite and austenite and by using the three possible ”reactions”
between these phases as internal variables.
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(a) Von-Mises Stress (b) c2 (Md) (c) c3 (A)

Fig. 14. The Md → A is complete almost everywhere in the domain (c) by the time the temperature
reaches T = 350 ◦K. Note that the maximum value for the effective stress has reached increased
to approximately 166MPa (a).

The model is made consistent with a modified phase diagram in stress-temperature space. A
key new experimental finding is the existence of separate reverse transformation temperatures
for detwinned and twinned martensite. This is obtained through a series of calorimetric
measurements and is incorporated in the model. The phase diagram incorporates a single
transformation strip for the M t → Md inelastic deformation over the temperature range
T ≤ At

f . It also assumed the same temperature independent transformation regions for the
A → M t and M t → A phase transformations.

The constitutive model was numerically implemented using return mapping algorithms. The
implementation was integrated into an numerical implementation and tested for several
model problems. Presented in this work two cooling/heating loading paths of a rod in uniaxial
stress state. In order to demonstrate the 3-D capabilities of the model a complex loading
path for a perforated square under conditions of plane strain was also presented.

There are several areas for future work on this types of models. On the experimental side it
is necessary to further characterize the differences between Md → A and M t → A transfor-
mations for different material compositions and different material training, and the evolution
of this difference with cycling loading. Also Sakamoto (2002) suggests a size effect, so it will
therefore be of particular interest to correlate the observed difference of the M t → A and
Md → A transformation temperatures with the diameter of the SMA wires.

On the modeling side, the selection made for the variables the hardening functions depend
on are not the only possible ones. The current selection imposes certain constraints on the
arrangement of the transformation regions in the phase diagram. Other choices, for example
a dependence of f1 (the A ↔ M t hardening function) on c3, rather than c1 is possible and
should be explored. Further, the model should be tested for the classes of SMA materials for
which the critical temperatures Ms, Mf , At

s, At
f define overlapping regions.

Also, the phase diagram itself evolves as the material is cycled through a certain thermo-
mechanical loading path. The evolution is fairly well understood in the special case of pseu-
doelastic loading paths. More general cases however are not explored either from a modeling
or an experimental point of view. It should me noted that translational movements of the
transformation strips of the phase diagram can be accomplished by using ξi instead of ci as
the independent variables for the hardening functions.
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Appendix A: The time derivative (rate) of the free energy

We consider the set of thermodynamical processes for which the functions f1, f2 and f3

are smooth in their first argument (ξ). Further more we assume that either of the phase
transformation from A to M t and Md can be reversed a countable number of times. That is,
there exist (possibly infinitely many) occasions in time T0 < T1 ≤ T3 · · · ≤ T2n < T2n+1 . . .
where ξ̇i = 0, for i = 1 and/or i = 2 and is strictly positive or strictly negative on each
interval (T2n, T2n+1). Observe that only the term Gmix in the definition of the free energy
(16) is not a smooth function of its variables. Therefore, to show the identity (19), it is
sufficient to show that:

Ġmix =
3∑

i=1

∂Gmix

∂ξi

ξ̇i(t). (A-1)

First, using the definition of Gmix given by equation (18), its rate is directly computed as:

Ġmix
(
ξ, sgn

(
ξ̇1

)
, sgn

(
ξ̇2

))
=

1

ρ

3∑
i=1

[
fi

(
ξ; sgn

(
ξ̇i

))
ξ̇i(t)

]
. (A-2)

Assume now that t ∈ [T2n, T2n+1] and let the values of ξi at the beginning of this interval be
denoted by Ξi, i = 1, 2, that is, Ξ1 = ξ1(T2n) and Ξ2 = ξ2(T2n). Without loss of generality,
suppose that ξ̇i > 0 in the interval [T2n, T2n+1]. Then one has:∫ t

T2n

fi

(
ξ, sgn

(
ξ̇i

))
ξ̇i(τ)dτ =

∫ ξi

Ξi

fi (..., η, ..., 1) dη,

On the other hand,

∂

∂ξi

∫ ξi

Ξi

fi (..., η, ..., 1) dη = fi (ξ1, ξ2, ξ3, 1) , for all ξi ∈ [Ξ1, ξi(T2n+1)].

Now, Gmix is a path-dependent functional of ξ. Therefore, the derivative ∂ξi
Gmix with respect

to the current state ξ (and the path which lead to it) can only be meaningfully defined by
continuing the current path through ξ and allowing only ξi to change. That is, ξ̇i 6= 0 and
ξ̇j = 0, j 6= i for times greater then t. For such paths only the term containing ξ̇i in the
integral expression in equation (18) will change past the point ξ and therefore:

ρ
∂Gmix

∂ξi

=
∂

∂ξi

[∫ t

0
fi

(
ξ; sgn

(
ξ̇i

))
ξ̇i(τ)dτ

]
=

∂

∂ξi

[∫ t

Ξi

fi

(
ξ; sgn

(
ξ̇i

))
ξ̇i(τ)dτ

]
= fi

(
ξ; sgn

(
ξ̇i

))
. (A-3)

The last equation, combined with equation (A-2), leads to the identity (A-1). Note that one
may want to avoid defining the derivatives ∂ξi

Gmix along specific paths altogether and instead
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split the free energy G into a potential part (in our case, (c1+c2)G
M(σ, T, ξ)+c3G

A(σ, T, ξ))
and a path dependent functional (Gmix). The path dependent part is then defined as a
function of time only, i.e. Gmix(t) := Gmix(ξ(t)), whose rate can be explicitly calculated.
Thus the rate Ġ is known and can be used in the entropy inequality (20).

Appendix B: Uniaxial reduction of the model

In order to express the model parameters in terms of the physical quantities defining the
phase diagram, it is necessary to write the transformation surfaces explicitly in the uniaxial
stress case. Assume a stress state

σ11 = σ, σ12 = ... = σ33 = 0. (B-1)

Since uniaxial loading is always proportional, any combination of detwinning M t → Md,
forward A → Md or reverse Md → A by virtue of (45) and/or (46) will result in a transfor-
mation direction tensor:

Λt,d
11 = H, Λt,d

22 = Λt,d
33 = −1

2
H, Λt,d

12 = Λt,d
13 = Λt,d

23 = 0. (B-2)

With this in mind, and in light of equations (28)-(30) and (42)-(44), the inequalities (39)-(41)
take the form:

π̂(σ, T )−∆+
1 f+

1 (c1) ≤ Y +
1 (B-3)

−π̂(σ, T ) + ∆−
1 f−1 (c1) ≤ Y −1 (B-4)

σH + π̂(σ, T )−∆+
2 f+

2 (c2) ≤ Y +
2 (B-5)

−σH − π̂(σ, T ) + ∆−
2 f−2 (c2) ≤ Y −2 (B-6)

σH −∆3f3(c2) ≤ Y3 (B-7)

where,

π̂(σ, T ) =∆Sσ2 + ∆ασ(T − T0)

− ρ∆c
[
(T − T0)− T ln

(
T

T0

)]
+ ρ∆s0T − ρ∆u0. (B-8)

The material constants ∆S, ∆α, ∆s0 and ∆u0, entering the expression for π̂, are known from
either mechanical or calorimetric measurements (See Section 4.5), hence π̂ is a well defined
function of σ and T . Whenever one or more transformations are taking place (that is, ξ̇i 6= 0,
i = 1, 2, 3) the respective inequalities (B-3)-(B-7) turn into equalities (c.f. conditions (38)).

The unknown quantities to be determined are Y +
1 , Y −1 , Y +

2 , Y −2 , Y3, ∆+
1 , ∆−

1 , ∆+
2 , ∆−

2 , ∆3

which are responsible for the relative position and width of the transformation strips in the
phase diagram. The transformation strips on the other hand are completely determined by
the start and finish detwinning stresses σs and σf , the transformation temperatures Ms,
Mf , At

s, At
f , Ad

s, Ad
f , as well as the start and finish temperatures Ts(σf ) and Tf (σf ) for the

A → Md transformation at constant (uniaxial) stress σ = σf
8 . Finally, the functional form

of fi has to be determined as well.

8 In this model there is no assumption of a triple point, so the A → Md strip can be located at or to
the right of the intersection point of the finish lines for the A → M t and M t → Md transformations
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The model parameters are then established as follows. Consider a loading path in which
a purely twinned SMA (c1 = 1, c2 = c3 = 0 is loaded at temperature below Mf . As the
detwinning deformation progresses, ξ̇3 > 0, and the inequality (B-7) becomes an equality:

σH −∆3f3(c2) = Y3, (B-9)

Therefore, at the beginning of the detwinning deformation one has σ = σs, c2 = 0, and the
last equation, together with (36) implies:

Y3 = σsH.

Similarly, upon completion of the deformation, one has σ = σf , f3(1) = 1 and Φ3 = 0, hence:

∆3 = H(σf − σs).

The function f3 itself is curve-fitted from a stress-strain relationship obtained in a standard
isothermal loading test at some fixed temperature below Mf .

The material parameters Y ±1 , ∆±
1 for the A ↔ M t are determined with the help of a zero

stress cooling/heating cycle. During cooling, the forward transformation surface (B-3) turns
into equality:

π̂(σ, T )−∆+
1 f+

1 (c1) = Y +
1 , (B-10)

which, in conjunction with (33) yields:

Y +
1 = π̂(0, Ms) =

− ρ∆u0 + ρ
(
Ms∆s0 −∆c

[
(Ms − T0)−Ms ln

(
Ms

T0

)])
, (B-11)

∆+
1 = π̂(0, Mf )− Y +

1 = π̂(0, Mf )− π̂(0, Ms)

= ρ
(
(Mf −Ms)∆s0 −∆c

[
Mf −Ms + Ms ln

(
Ms

T0

)
−Mf ln

(
Mf

T0

)])
. (B-12)

Similarly, during the heating (B-4) becomes:

−π̂(σ, T ) + ∆−
1 f−1 (c1) = Y −1 , (B-13)

hence Y −1 and ∆−
1 can be determined:

Y −1 = −π̂(0, At
f )

= ρ∆u0 − ρ

(
At

f∆s0 −∆c

[
(At

f − T0)− At
f ln

(
At

f

T0

)])
, (B-14)

∆−
1 = π̂(0, At

s) + Y −1 = π̂(0, At
s)− π̂(0, At

f )

= ρ

(
(At

s − At
f )∆s0 −∆c

[
At

s − At
f + At

f ln

(
At

f

T0

)
− At

s ln

(
At

s

T0

)])
. (B-15)

Determining the parameters for the stress-induced martensitic transformation is done by
considering two loading paths. First, assume a fully detwinned state at some temperature
below Ad

s and at zero stress (this can be obtained by loading isothermally at T ≤ Mf until
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all the material has detwinned and then unloading until zero stress us reached) and heat,
while maintaining the material stress free. Then ξ̇2 < 0 and (B-6) becomes an equality:

−σH − π̂(σ, T ) + ∆−
2 f−2 (c2) = Y −2 . (B-16)

Noting that σ = 0 throughout the loading path, and with the help of (35), Y −2 and ∆−
2 are

found to be:

Y −2 = −π̂(0, Ad
f )

= ρ∆u0 − ρ

(
Ad

f∆s0 −∆c

[
(Ad

f − T0)− Ad
f ln

(
Ad

f

T0

)])
, (B-17)

∆−
2 = π̂(0, Ad

s) + Y −2 = π̂(0, Ad
s)− π̂(0, Ad

f )

= ρ

(
(Ad

s − Ad
f )∆s0 −∆c

[
Ad

s − Ad
f + Ad

f ln

(
Ad

f

T0

)
− Ad

s ln

(
Ad

s

T0

)])
. (B-18)

Finally, in order to determine Y +
2 and ∆+

2 , load the material in austenite to some stress level,
for example, σf and then cool the material. Let the critical temperatures for the A → Md

transformation at this stress level be Ts(σf ) for the start and Tf (σf ) for the finish. Then the
constraint (B-5) becomes:

σH + π̂(σ, T )−∆+
2 f+

2 (c2) = Y +
2 (B-19)

which results in

Y +
2 = σfH + π̂(σf , Ts(σf )), (B-20)

∆+
2 = σfH + π̂(σf , Tf (σf ))− Y +

2 . (B-21)

Note that it is necessary to load to a stress equal or higher then σf , in order to avoid
development of twinned martensite.

With this last equation, all the material parameters, except for the functional form of f±i are
expressed from physically observable quantities. While in this model only linear functions
are considered, the model allows for arbitrary monotonous functions which can be curve-
fitted from experiments. The curve-fit for f±2 can be done from a single uniaxial loading
(Lagoudas et al., 1996, c.f., e.g.) and a curve-fit for f±1 (c1) can be obtained by using a DSC
measurement in conjunction with the balance of energy. These issues, however, will not be
discussed further.
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