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ABSTRACT

In this work we study the propagation of a phase-transformation front induced by

an impact loading. Our main goals in this paper are to demonstrate the wave structure of

the solution to the impact loading and to estimate the velocity of phase front propagation

using a thermodynamically based constitutive model for SMAs with internal variables.

First, we study the impact problem in an isothermal setting; this study provides an

important insight into the wave structure of the solution. The non-uniqueness issue

inherent to such problems due to nonconvex SMA constitutive models is thoroughly

discussed.  Then we develop the solution for an adiabatic approximation for a simplified

SMA model. Several numerical examples based on a first order Lax-Friedrichs finite

difference scheme are presented.

1. INTRODUCTION

A polycrystalline Shape Memory Alloy (SMA) body subjected to external impact

loading will experience deformations that will propagate along the SMA body as stress

waves. Loading that produces stresses below the critical values for stress-induced phase

transformation generates only elastic waves. Impact loading that results in stresses less

than the SMA plastic yield limit but above the critical stresses for stress-induced phase
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transformation generates phase transformation waves in addition to the purely elastic

waves.

Extensive study of 1-D dynamic phase front propagation in materials with

transformation softening behavior has been conducted by James [7], Pence [8],

Abeyaratne and Knowles [9, 10, 11, 55] and Truskinovsky [12, 13]. The non-uniqueness

issue inherent in the Riemann problem for such materials has been thoroughly discussed.

In these studies, the phase front is represented by a jump discontinuity separating the

different austenite (A) and martensite (M) branches of the N-shaped stress-strain curve.

In contrast to the present work the constitutive models employed by the above authors are

rate dependent and include an additional constitutive assumption about a driving force [9,

10, 11] that establishes the speed of the transformation front. In the papers mentioned

above, a 1-D analysis of the phase front propagation is carried under the assumption that

the change in cross-sectional area of the 1-D body can be neglected. Changes in density

can then be post-calculated using the already computed strain field, as Abeyaratne and

Knowles [11] did. A new approach on defining driving force in inelastic materials is

proposed by Levitas [66].

The main focus of this article is the construction of the wave structure of the

solution to the impact loading problem for a 1-D SMA body and the determination of the

velocity of phase front propagation. An extensive study on the uniqueness problem is also

performed. The SMA materials of consideration have transformation hardening behavior

and are modeled by a phenomenological rate independent macro-constitutive law with an

internal state variable, the martensite volume fraction as developed by Tanaka [1, 2],

Bekker [3], Bekker and Brinson [4, 5] and Boyd and Lagoudas [6]. Recently there have

been numerous developments in SMA constitutive modeling. The early

phenomenological rate independent models [1-6] have been unified in a constitutive

model [23] based on the selection of appropriate thermodynamic potentials. A recent

work by Chen and Lagoudas [44] explored an impact problem similar to the one
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discussed in this paper but using the unified model [23]. In a further development of the

model, Qidwai and Lagoudas  [57] extended it by incorporating the principle of

maximum transformation dissipation. They also generalize the transformation surfaces in

order to capture the tension/compression asymmetry observed in the mechanical behavior

of most SMAs.

There has also been extensive research on constitutive models based on

micromechanics. In the works of Patoor et al., [64]; Sun and Hwang [26]; Tokuda et al.

[65] the macroscopic response of a polycrystalline SMAs is derived by modeling single

crystals and averaging their response over a representative volume element. In more

recent developments, Gao Hunag and Brinson [58,59], building on a previous work [62]

developed a mutlivariant model based on micromechanics of martensitic variants. The

model takes into account the stress induced phase transformation as well as the

detwinning of martensite. Sittner and Novak [60] present a theoretical study on the

effects of single crystal orientations in a polycrystalline CuAlNi SMAs on the

macroscopic compression/tension asymmetry. Gall et al. [62] study the effects of grain

boundaries on the macroscopic properties of polycrystalline NiTi SMAs with the help of

a micromechanical finite element model. A similar numerical tool is used by Kitajima et

al. [63] to simulate the micromechanical behavior of the different martensitic variants in

complex thermomechanical loads.

After a brief introduction to the SMA constitutive model in Section 2, the

mathematical model for the impact problem is presented in Section 3. The

incompressibility constrained is incorporated into the 1-D field equations and the

isothermal and adiabatic approximations are developed. The solution to the initial

boundary value problem under isothermal conditions is formulated in Section 4.1.

Section 4.2 establishes the wave structure of the solution to the impact problem for SMA

materials with transformation hardening behavior and presents a detailed analysis on the

uniqueness of the solution. The study of the isothermal approximation is concluded by
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two numerical examples in section 4.3 using a finite difference scheme. The adiabatic

case is finally investigated in section 5. For a detailed discussion of the constitutive

model, the isothermal approximation with various other cases such as convex, concave

and bilinear isotherms the reader is referred to [56].

2. SMA CONSTITUTIVE MODEL

Our constitutive model is  based on a 1-D, rate-independent constitutive law [2, 5]

of the form

( )0
dT Tσ ε ξ= Ε + Θ − + Ω (2.1)

or

( )0 ,EL TH TR dT Tε ε ε ε σ α ξ= + + = Κ + − + Λ (2.2)

where σ  is the uniaxial stress, T is the temperature, ε EL is the elastic strain, ε TH is the

thermal strain, and ε TR  is the transformation strain. The Young’s modulus is given by Ε ,

while Ω  and Θ  are the transformation and thermoelastic coefficients of the 1-D SMA

body. For simplicity 1−Κ = Ε  (elastic compliance), 1α −=−ΘΕ  (thermal expansion

coefficient), and 1−Λ = ΩΕ  (maximum transformation strain) are assumed to be

constant. Note that 0Λ >  for tensile and 0Λ <  for compressive loading.

The variable dξ  ( 0 0dξ≤ ≤ ) represents the volume fraction of the material

transformed to a detwinned martensitic state and serves as the internal state variable in

the constitutive law (2.1). Due to the diffusionless character of the stress-induced phase

transformation on a macroscopic level, ξd  is determined by the current values of

temperature and stress, T and σ , and prior loading history. In this work, we employ the

kinetic law previously developed in [3], [4] and [5], which is essentially based on the

experimentally defined σ −Τ  phase diagram shown in Figure 1. In [3], [4] and [5], the

phase diagram shown was described in detail. Here we present only the features

necessary for the present study. The phase diagram is divided by the transformation strips

[A], [M], [d] and [t] into the four major regions A, Md, Mt,d and Mt,dA. In region A,
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only austenite can exist. In region M d, only detwinned martensite can exist. In region

Mt,d, both twinned and detwinned martensite can exist. In region Mt,dA, all phases can

coexist. Transformation from one phase to another occurs in the strips when a point

( , )T σ  representing a local state of the 1-D SMA moves across a strip in the direction

indicated by the director vectors 1 2( , )i i in n n=  (i = A, M, d) in the phase diagram. Note

that the transformation regions (strips) are bounded by the parallel lines σ σ= S
i T( )  and

σ σ= f
i T( )  (i =A, M, d) (start and finish boundaries). Similarly, we define the start and

finish critical temperatures ( )i
ST σ  and ( )i

fT σ , i =A, M, which are the inverse functions

to the critical stress functions. For convenience, we introduce the following temperatures:

0 0 0

0 0 0

 (0) ( )

 (0) ( )

M M t M t M
S S S S S

M M t M t M
f f f f f

T T T T k

T T T T k

σ

σ

= = −

= = − (2.3)

where 1 2
M M Mk n n= − . Then the equations of the start and finish boundaries σ S

M T( )  and

σ f
M T( )  of strip [M] can be expressed as σ j

M M
j
MT k T T j fS( ) ( ), ,= − =0 .

The presence of the coexistence regions and transformation strips on the phase

diagram makes it clear that the transformation state of an SMA material is path-
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Figure 1. Shape memory alloy stress-temperature phase diagram
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dependent. In this paper, we focus on SMA behavior in the subregion of the phase

diagram (Figure 2) where the stress induced phase transformation follows the path

a b→ (isothermal loading) or a c→  (adiabatic loading). Since the transformation

process considered in this paper is always from austenite to a detwinned martensite (i.e.,

forward from A  to dM ), we will drop the superscript d from now on; for example, we

will write A M→  and ξ  instead of A M d→  and ξd .

^
σ

T

[M]

M

M A

℘
0

M

(Τ,σ)
℘M

σ

T0 Tm0
M

b c

a

Figure 2: Magnified region of the stress-temperature diagram representing the

thermomechanical loading paths of interest.

 Due to the simplicity of the thermomechanical loading ‘paths’ for the impact

problem, the global kinetic law for the volume fraction of martensite may be written

simply as [4, 5]

 0 ,                ( , )

( , ) ( , ),    ( , ) [ ] ,
1 ,                  ( , )

M

if T

T F T if T
if T

σ

ξ σ σ σ
σ

∈


= Ξ = ∈
 ∈

MA

M
M
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where ( )( , ) ( , ) .M M MF T f Z Tσ σ=  The function F f ZM M M= o  is a local kinetics law

(M-branch) that represents the change in the phase fraction across the strip [M], f M is

the M-transformation function, and Z M T( , )σ  is the normalized distance from a point
( , ) [ ]T σ ⊂ M  to the start boundary of the [M] strip given by

0

( , )
( , ) ,

M
M

M

T
Z T

σ
σ

℘
=

℘ (2.5)

where 0( )M M M
Sk T T σ℘ = − − , 0 0 0( )M M M M

f Sk T T℘ = −  and the normalized distance Z M  is a
linear function of T  and σ :

0

0 0 0

( , ) ( ( )) ( )

( ) , 1 ( ), .

M M M M M M
S S

M M M M M M M M M
S S f S

Z T a T T a T T b

T T k a T T b a k

σ σ σ

σ σ

= − = − +

= + = − = −

In the first approximation, one can assume that the phase diagram for compressive

loading is symmetric to the tensile phase diagram with respect to the T-axis [4] (see

Figure 1), so that M Mk k→ −  when σ σ→ − , and therefore

( ) ( ), , .
M Mk k

T Tσ σ
→ −

Ξ = Ξ − (2.6)

So the kinetic law (2.4) is invariant under the transformation , M Mk kσ σ→ − → − .

The most popular transformation functions (kinetics) are:

Linear function

( )M M Mf Z Z= (2.7)

Exponential function

f Z ZM M M( ) exp( ), ln .= − =1 001γ γ (2.8)

Cosine function

f Z ZM M M( ) cos( )= −
1
2

1 πe j (2.9)

Any of the kinetic laws (2.7-9) can be viewed as a particular case in the

framework of a constitutive model based on thermodynamics [23]. It has been shown

there that these three kinetic laws can be obtained by specific selection for the form of the

Gibbs free energy.
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3. FIELD EQUATIONS

We consider the boundary value problem of the tensile impact loading of a 1-D,

semi-infinite SMA rod that is initially in an austenitic phase and that has uniform cross-

sectional area A0  and temperature T0 . The rod occupies the positive part if the real axis

x ∈ 0 ∞[ , )  and the boundary x = 0  is subjected to the tensile shock loading

ˆ(0, ) ( )t H tσ σ=   for   0t > (3.1)

where H t( )  is the Heaviside function and $σ > 0  is below the plastic yield limit of the

material σ Y  but higher than the critical transformation stress σ σf
M

f
M T= ( )0  for the initial

temperature T0 : σ σ σY f
M> >$ .

For a one-dimensional rod approximation we assume uniaxial displacement

( , )u x t , strain ( , )x tε , stress ( , )x tσ  and temperature ( , )T x t . Initially the rod has a

uniform cross-section 0A  but due to lateral deformations it will become a nonuniform

function ( , )A x t . All field variables are assumed averaged over the cross-section of the

rod. Since we consider fast processes associated with impact induced wave propagation,

we ignore heat transfer through the lateral surface of the rod. In this paper we assume

infinite small strain ( , )xu x tε = 1. The conservation of mass, linear momentum and energy

read (e.g. [53],[54]):

( )
( )0

t t

tt x

t t x x

A A

Au A

AU A AT

ε

ρ σ

ρ σ ε κ

= −

=

= +

(3.2)

where  ( , )U x t  is the internal energy per unit mass. The continuity equation can be

integrated to yield 0A A e ε−= . Then we can write the dynamic equation of motion and the

conservation of energy in the form:

tt x xuρ σ σε= − (3.3)

0 0t t xx x xU T Tρ σε κ κ ε= + − (3.4)

                                                                

1 Here a subscript indicates a partial derivative, i.e. x

u
u

x
∂

=
∂

, t

u
u

t
∂

=
∂

, etc.
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Here we consider the density ρ  and thermal conductivity 0κ  to be constant2 along the

length of the rod.

In this paper we consider only the isothermal and adiabatic approximations to the

system of equations (3.3) and (3.4) for the reasons explained below.

In the isothermal case, the temperature is constant (T T= 0 ), and one only needs

to consider the balance of linear momentum (3.3) where σ σ ε= ( , )T0  is the isothermal

stress-strain relationship for SMAs. The isothermal condition is not realizable for fast-

moving phase front propagation unless the latent heat of the transformation is very small.

The isothermal solution will serve as a natural starting point that provides an important

insight to the wave structure of the solution of the impact loading problem, which later

will be used for the adiabatic case.

In the adiabatic approximation heat conduction is disregarded and the energy

equation in (3.4) takes the form

.t tUρ σε= (3.5)

We want to express this equation in terms of the entropy S. For this purpose we

need to introduce the Gibbs free energy ( , , )G G Tσ ξ= . We have

, ,
G G G

S
T

ε ρ π ρ
σ ξ

∂ ∂ ∂
= − = − = −

∂ ∂ ∂
(3.6)

where S is the entropy and π  is the driving force for the transformation. Now, using a

standard Legendre transform 1U G TS ρ σε−= + +  one rewrites (3.5) as:

t tTSρ πξ= (3.7)

Further, the particular form of the entropy for SMA materials given in [23] is:

( )ln A
R R RS C T T S Sασ ρ ξ= + − ∆ + (3.8)

where C is the heat capacity (assumed equal for Austenite and Martensite) and
A M

R R RS S S∆ = −  is the difference in entropies of the two phases (in the reference state).

The reference temperature is denoted by RT . Substituting (3.8) in (3.7) on finds that
                                                                
2 The martensitic phase transition is essentially volume conserving which justifies the assumption that ρ  is
constant.
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( ) ,t t R tCT T S Tρ α σ π ρ ξ= − + + ∆ (3.9)

According to [27] and [28] RS Tπ ρ∆=  for most SMAs (e.g. for NiTi the precise values

yield 1.3%RS Tπ ρ∆ < ) so we can approximate (3.9) by

,t t R tCT T S Tρ α σ ρ ξ= − + ∆ (3.10)

which is equivalent to the isentropic condition

0.tS = (3.11)

Furthermore, if we compare the two heat sources (α σ ασ ζT Tt Y t= ( ) ,

ζ σ σ= <Y 1  due to thermoelasticity and ( )ρ∆ ξS TR t  due to phase transformation), it

becomes clear that the thermoelastic heat-generation term can be disregarded, since

Y RSασ ρ∆=  (typically for NiTi-based SMA, 66.10 1 K ,α −= 600 MPaYσ =  and

30.46 MJ/m KRSρ∆ = ). Therefore, Equation (3.10) reduces further to

t R tCT S Tξ= ∆ (3.12)

and the temperature changes only due to the phase transformation; that is, it is enslaved to

the martensitic volume fraction ξ . Equation (3.12) can be integrated to yield

0 exp( ),T T ωξ= (3.13)

where ω = ∆S CR  and 00
T T

ξ =
= . Thus, the maximum attainable temperature due to the

phase transformation is given by

T T TM
m0 = ==ξ ω1 0 exp( ) . (3.14)

4. ISOTHERMAL CASE

4.1 Solution development. For isothermal loading paths the field equation (3.3)

is complemented by the constitutive and kinetic law (2.2) and (2.4). For a constant

temperature T T= 0  they take the form

( )0 ,T

ε σ ξ

ξ σ

= Κ + Λ

= Ξ
(4.1)

and define the isotherm ( ) ( )0 0, ,I T Tε σ σ σ= = Κ + ΛΞ . As we stated before, we will

concentrate here on the tensile loading case: σ ε, , Λ > 0 . By definition, an isotherm for
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SMA materials with transformation hardening behavior is a monotone increasing

function of σ , and therefore the inverse function σ σ ε ε= = −( ) ,I T1
0b g  is also monotone

increasing. The momentum equation (3.3) can be rewritten as

( )( ) ( ) ( )tt x x xxu u uρ σ ε σ ε ε φ′ ′= − = (4.2)

where
′ = ′ −φ ε σ ε σ ε( ) ( ) ( ) (4.3)

( ) ( ) ( ) ( ) ( ).
o

e de
ε

φ ε σ ε σ σ ε εσ ε= − ≅ −∫ (4.4)

The second term in the right hand side of (4.3), (4.4) represents the geometrical softening

effect due to the change in cross-sectional area of the rod during transformation and is

negligible for small strains ε < 1% , so that ( ) ( )φ ε σ ε′ ′≅ , ( ) ( ).φ ε σ ε≅  For our case

0.05ε < Λ ≅ . However, for SMA materials with very large transformation strains

( 0.1Λ ≥ ), these terms can become significant.

As we stated above, we consider SMA materials with transformation hardening

behavior; that is, with monotone increasing isotherms ( )σ ε  such that 0σ ′ > . We further

restrict the class of materials even more, and from now on we will only consider SMA

materials with strong hardening transformation behavior and with monotone increasing

( )φ ε  that is, ( ) 0φ ε′ > . This ensures that all initial boundary value problems that will be

considered are hyperbolic and well posed.

Finally, due to the symmetry of the isotherm if one disregards the change in the

cross-sectional area of the rod all results obtained below for tensile loading are equally

applicable to tensile loading.

Shock loading problem. We can rewrite the original wave equation (4.2) as a first

order hyperbolic system
ε
ρ φ

t x

t x

=
=
v

v
(4.5)
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This system, together with the initial
( ,0) 0

v ( ,0) 0
x

t

u x
u x

ε = =
= =

(4.6)

and boundary conditions

ˆ(0, ) (), 0,t H t tε ε= ≥ (4.7)

define the isothermal impact problem. Here (4.7) is nothing else but the boundary

condition (3.1) expressed in terms of the stress:
1

0ˆ ˆˆ ( ) ( , )I Tσ σ ε ε−= = (4.8)

The acoustic velocity is clearly

c( )
( ) ( ) ( )

ε
φ ε

ρ
σ ε σ ε

ρ
=

′
=

′ −
(4.9)

with real characteristic curves given by

: ( )

: ( ).

x c

x c

ε

ε

+

−

=

= −

&
&

C

C
(4.10)

We can reject left-going waves and integrate the first of these equations to yield

: ( ) ( )( ).x c t const c tε ε τ+ = + = −C (4.11)

The characteristics C+  are a family of straight lines and the parameter τ  is the time at

which the line (4.11) intersects the Ot axis. The slope of this line is determined by the

boundary condition (0, ) ( ).ε ε τ τ= = Ε

Two types of discontinuities can develop as the wave propagates in the rod. One

is due to the shock character of the boundary condition (4.7a). The other is due to the

convex-concave structure of the function ( )φ ε . The later are true nonlinear shock that

develop because of increasing wave velocity as the strain ε  increases and reaches the

region where ( )φ ε  is convex down, that is ''( ) 0φ ε > . For a stress-strain discontinuity S

with trajectory x s t= ( )  we need the Rankine-Hugoniot jump conditions (see e.g., [51]):

( ) ( )
( ) ( )

v v 0

v v 0,

D

D

ε ε

ρ φ φ
− + − +

− + − +

− + − =

− + − =
(4.12)
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where ( )D s t= &  is the velocity of the shock, f f s t± = ±( ) 0b g  and f = v, ,ε φ . From

(4.12), we obtain

( )
D

φ φ
ρ ε ε

− +

− +

−
=

−
(4.13)

for forward-moving discontinuities 
v
S .

It is easy to see that when the amplitude of a shock wave is very small

(ε ε ε− +→ = ) and that the velocity of the shock reduces to the acoustic velocity

( ( )D φ ε ρ′→ ) at the points where φ ε( )  is differentiable.

The solution procedure given below is essentially based on the one employed by

Barenblatt [32] for the impact loading problem for a half-space with a nonlinear elastic

material. As in [32], we introduce the dimensionalized function
2( ) ( ) .Vε φ ε ρΦ =

where V is a characteristic velocity. Then Equation (4.2) takes the form
2 ( ) .tt x xxu V u u′= Φ (4.14)

Since the formulation of our problem given in Equations (4.2), (4.6) and (4.7)

contains no characteristic time or length scales, it follows from the dimensional analysis

[33] that a solution of the problem must have the form

.
u x

f
Vt Vt

 =  
 

Let us denote 
x

Vt
ζ =  and  g f ′= . The field variables for the above solution take the

form ( )gε ζ= , ( )( )gσ σ ζ=  and v ( ) ( )Vf V gζ ζ ζ= −  and upon substitution into (4.14),

we obtain

( )2 ( ) 0.g gζ′ ′− Φ = (4.15)

Equation (4.15) for a monotone increasing function Φ  with 0′Φ >  admits two types of

continuous solutions ε ζ= g( )  that satisfy the equations

2

0

( ) 0

g

gζ

′ =

′− Φ = (4.16)
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correspondingly. These solutions are constant state C and centered simple wave (centered

fan) F:

1 2

:

: ( ): ( ) ( ).

const

l

ε

ε ζ ζ−

=

′= = Φ

C

F
(4.17)

Therefore, a solution of the shock loading problem for a monotone increasing function

φ ε( )  is a combination (nonlinear superposition) of these two elementary solutions.

Before we turn our attention to SMA materials with a nonconvex function φ ε( ) ,

we briefly review the results [32] for the cases where the function φ ε( )  is strictly convex

up or convex down.

4.2. Analytical Results

4.2.1 Smooth isotherms . First, we consider the shock loading problem for an SMA

material with cubic-like convex-concave functionφ ε( )  (i.e. one that has a single

inflection point). Let us denote by ε  the inflection point of the function φ ε( ) , and by ~ε

the point (other than the origin) where the line that is tangent to the curve φ ε( )  at the

origin again intersects the curve φ ε( )  (that is, such that ′ =φ ε φ ε( )~ (~)0 ). Note that ε ε< ~ .

We consider only low-intensity impact loading with relatively small amplitude $ε  for

which ε̂ ε≤ % . In this case, all shocks in the SMA material are weak (underdriven) and, as

we shall see later, are either linear elastic shocks or phase transformation fronts.

If the shock loading amplitude $ε  is such that $ε ε≤ , then waves emitted from the

left end will propagate with continually decreasing velocities. The solution will resolve in

a centered fan 
v
F . The front of the centered fan propagates into the undisturbed region of

the rod with speed 0 (0)c V ′= Φ , so that ε ζ= =l( )0 0 where 0 0 (0)c Vζ ′= = Φ . The

tail (last characteristic, C+ ) of the fan 
v
F  has speed ˆˆ ( )c V ε′= Φ , so that ε ζ ε= =l($) $ ,

where ˆ ˆˆ ( )c Vζ ε′= = Φ . The solution can be written

( )
ˆ ( )

ˆ ( )

ˆ ˆv ( ) ( ),

L

L

V L V L

ε ε ζ

σ σ ε ζ

ε ζ ε ζ ζ

=

=

′= −
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where

1
0

0,

ˆ1              if [0, )
ˆˆ( ) ( )    if [ , ] .

0              if [ )
L l

ζ ζ

ζ ε ζ ζ ζ ζ
ζ ζ

−

 ∈
= ∈
 ∈ ∞

The function l( )ζ  (4.17) is monotone decreasing on [ $ , ]ζ ζ 0 , since ( )ε′Φ  is a monotone

decreasing function ( ( ) 0ε′′Φ < ) on [ , $]0 ε .

The structure of the solution can be symbolically represented as ˆ ,A M AC FC/
o

v

where {0, =0}ξ=AC Co  is the initial constant state (the superscript indicates the material is

in the austenitic phase), ˆˆ[{0,0} { , }]ε ξ↑=F F
v v

 is the forward-propagating fan, and

ˆ ˆˆ{ , }ε ξ=A MC C/ is the final constant state (the material is in an austenite/martensite

mixture) and $ ( , $ )ξ σ= F TM
0 . The trajectory { }( ( ) , ( ) ) , [0, )t t tσ σ ε ∈= ∞T  of the solution

lies on the A and A/M branches of the static stress-strain curve σ ε( ) . Recall that the

material on the gently sloping transformation branch of the isotherm σ ε( )  was

previously identified as the A/M mixture. Since the stress profile in the centered fan, 
v
F  is

spreading with time, so is the martensite fraction profile. Thus the A/M two-phase zone is

becoming wider as it propagates along the rod.

 If the shock loading amplitude $ε  is such that ε ε ε≤ ≤$ ~ , then the initial stress-

strain discontinuity 
v
S0  formed due to the shock boundary condition (4.7) will split into a

combination of a centered fan 
v v
F F= [ 0,0 ]{ } { *, *}A ε ξ 1 and a shock 

v
S* { *, *} $ , $}{[ ]ε ξ ε ξA ,

where ξ σ* ( , *)= F TM
0  and $ ( , $ )ξ σ= F TM

0  (see Figure 3). The shock 
v
S*  represents

the phase transformation front of a full or partial transformation, depending on values of
ˆ* and ξ ξ . The solution has the structure * *

o
ˆ ,ACS C FC
v v

 where $ $ $C C CM A/M= or  and

C C* A/M= . To fully define the solution, we need to find the point ε ε* <  where the fan
v
F  and the phase front 

v
S*  match; that is, to determine the velocity D* (or ζ *) of the

front 
v
S* .

                                                                
1 The centered fan (F-solution) can be continued beyond the point ε  where ′ ′ =Φ ( )εb g 0  (see (4.21)).
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Uniqueness. Unfortunately, there is no unique solution to this problem. One of the

possible solutions is the one depicted in Figure 4 when the velocity of the shock 
v
S*  is

sonic with respect to the material before the front, and therefore the constant state *C is

absent. This type of solution has the structure *
o

ˆ ACSFC
v v

 and was first suggested by Bethe

ζ

ε

*S

F

ε̂

oζ

*ε

*ζ

Figure 3. Strain profile for the $ *CS C FC*
o
Av v

 solution

ζ

ε

*ζ

*
S

S

F

oζ

ε̂

*ε

Figure 4. Strain profile for the $ *CS FCo
Av v

S  solution

[34] in the gas dynamics framework. It was given explicitly by Barenblatt [32] for

nonlinear elastic material (see also [35, 36]). We will refer to it as the Bethe-Barenblatt
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solution and to the discontinuity 
v
S* as the sonic shock (or phase front) 

v
SS

* . The velocity

D* of the sonic shock coincides with the acoustic velocity

c* ( *)= ′φ ε ρ

on the tail (last) characteristic of the centered fan F
v

. In other words, the trajectory of a

sonic shock 
v
SS

*  in the x-t plane coincides with the tail characteristic +C  of the fan F
v

.

According to Equation (4.13),
ˆ( ) ( *)

* ,
ˆ( *)

D
φ ε φ ε

ρ ε ε
−

=
−

and hence ε *  is defined implicitly by the equation
ˆ( ) ( *)

( *) ,
ˆ *

ε ε
ε

ε ε
Φ − Φ′Φ =

−
(4.18)

which allows a matching point ζ * to be found from Equation (4.16):

* ( *).ζ ε′= Φ (4.19)

There is a simple geometric interpretation of Equation (4.18): the velocity of a

sonic shock (phase front) *
SS

v
 is given by a tangent line construction (see Figure 5),

namely, the *
SS

v
-Rayleigh chord

R D( ) * ( $ ) $ , $ ( $ )ε ε ε φ φ φ ε= − + = ,

where the final point ( $, $ )ε φ  is tangent to the curve φ ε( )  at the point ( *, *)ε φ . The

equation for the Rayleigh chord can then be written as

ˆˆ( ) ( *)( ) .R ε φ ε ε ε φ′= − +

We will henceforth refer to the sonic discontinuity
v
SS

*  as the tangent shock tS
v

. The sonic

phase front S
*S

v
 in the Bethe-Barenblatt solution S

*ĈS FCo

v v
 satisfies the generalized Lax

stability condition [37, 12]

c D c( ) ( )ε ε− +≥ ≥ ,

since, at the endpoints of the S
*S

v
-Raleigh chord,

ˆ ˆ( ) * ( *), , *.c D cε ε ε ε ε ε− +> = = =
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It is important to note that a similar solution with a supersonic phase front
v
SSP

with D c> +( )ε  (see Figure 5) is impossible. Heuristically, this can be explained in the

following way: a phase front 
v
SSP  with a supersonic velocity will be overtaking the tail of

the fan
v
F  until it reaches the characteristic that has slope c( )ε , where ( )D c ε= .

From now on, to simplify the discussion, we disregard change in cross-sectional

area of the rod, so that ( ) ( ) and CD Dφ ε σ ε≡ ≡ . Then the condition given by (4.18)

takes the form

ˆ( ) ( *)
( *) .

ˆ *
σ ε σ ε

σ ε
ε ε

−′ =
−

(4.20)

For example, for the cubic stress-strain law of the form 3 2( )σ ε γε βε αε= − +  the

matching point ζ* *= D V  can be found from (4.19) and (4.20) to be

2* 2 21 ˆ(3 ) 4(3 ) .
12

ζ ηε µ η µ
η

 = − + − 

The velocity scale V has been chosen here so that
2 ,V α ρ=

so that

0
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S
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Figure 5. Isotherm for an SMA with a cubic constitutive relation and
Rayleigh lines for sonic and subsonic shocks.

*
SBS

*
SS
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2 3

2 2

( ) ,

,V V

ε ε µε ηε

µ β ρ η γ ρ

Φ = − +

= =

and l( ) ( )ζ
µ
η

η ζ µ= + − −LNM OQP3
1 3 1 12 .

 It was shown in [39] that for an isothermal case, the second law of

thermodynamics is equivalent to the following condition on any forward-moving ( 0D ≥ )

stress-strain discontinuity [ ]ε ε+ −↑S
v

:

( ) ( )
( , ) ( ) ( ) 0,

2
P e de

ε

ε

σ ε σ ε
ε ε σ ε ε

−

+

+ −
+ − − +

+
= + − ≥∫

where Ρ Ρ= + −( , )ε ε  is the thermodynamic driving force for the transformation and

0
S

S

PD TdS D T SD
−

+

 
= ∆ ≥ 

 
 
∫ =

 is the dissipation rate. It is easy to see that Ρ ( , )ε ε+ −  represents the difference between

the area under stress-strain isotherm σ ε( )  and the 
v
S -Raleigh chord R( )ε  on the interval

[ , ]ε ε− + . It follows immediately from Figure 5 that a sonic phase front 
v
SS

*  dissipates

mechanical energy and hence is thermodynamically admissible.

In the above-discussed Bethe-Barenblatt solution $ *C S FCM
o
Av v

S , the velocity of the

sonic interface 
v
SS

*  is uniquely defined by the geometry of the isotherm 0( , )I Tε σ= ; that

is, by the constitutive and kinetic laws given by (4.1). This is not the case for other

thermodynamically admissible solutions $ *C S C FCM *
o
Av v

SB  with subsonic moving phase

fronts 
v
SSB

*  (see Figures 3 and 5). For the subsonic interfaces, the additional kinetic

relation is required to single out a unique solution (the velocity of the interface 
v
SSB

* ). The

kinetic relation expresses the velocity D  of a subsonic interface as a function of the

thermodynamic driving force [39, 40]:

( ( , )).D P ε ε+ −= Ψ (4.21)

In our case,

ˆ* ( ( *, )),D P ε ε= Ψ (4.22)
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where
ˆ( ) ( *)

ˆ* ( *, ) .
ˆ *

D
σ ε σ ε

ε ε
ε ε

−
=

−
(4.23)

Equation (4.22) replaces Equation (4.20) and, for a given amplitude of shock loading $ε
(i.e., strain behind the interface), allows us to uniquely determine a strain ε *  in front of

the interface if the kinetic function ( )Ψ i is monotone.

As emphasized in [40], on a phenomenological level, the kinetic relation should

be considered as an additional constitutive assumption for the SMA material that, in

principle, can be obtained experimentally. On the other hand, it is shown that, using a

viscosity-capillarity augmentation of the hyperbolic system given by (4.5), one can derive

the kinetic relation (4.21) from the analysis of the internal structure of a subsonic

discontinuity (solvability condition). For a thorough discussion of this subject, we refer to

recent works [13, 41].

If one accepts the generalized Lax condition, the viscosity/Oleinik chord criteria

or the Dafermos maximum dissipation criteria, then the Bethe-Barenblatt solution with

the sonic shock (phase front) is unique [42, 13]1. However, one can argue that, for phase

transition fronts, the criteria listed above are too restrictive. Therefore, the subsonic

interfaces are widely accepted and studied in the phase transformation literature [39, 43,

41]. Sometimes subsonic phase fronts are called kinks to distinguish them from the

conventional shocks that satisfy the Lax criteria.

We also note here that, in a recent work by Chen and Lagoudas [44], the use of

jump conditions in conjunction with the second law of thermodynamics rendered unique

subsonic solutions for a similar problem of impact loading on an SMA rod. However, we

would like to suggest here that perhaps both the sonic and subsonic front solutions are

physically meaningful, and represent two different regimes of transformation propagation

(as suggested by [12] in a slightly different framework).

                                                                
1 for strictly convex-concave φ ε( ) (i.e., for the conventional shocks) all these criteria are equivalent.
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Figure 6. Stress-strain curves for linear SMA kinetics. The critical points are

marked for the T=400K isotherm.

4.2.2 Isotherms with kinks . Most SMA materials exhibit nearly elastic behavior in

the purely austenite and martensite phases. For such materials, usually modeled by linear,

exponential or cosine kinetics, the start of the phase transformation at the point 0 0( , )M M
S Sε σ

on the isotherm and the finishing point 0 0( , )M M
f fε σ  (see (2.3)) are points of discontinuity

of (4.3). Here we used the notation σ σS
M

S
M T0 0= ( ) , 0 0( )M M

f f Tσ σ=  and by virtue of (4.1)

we have ε S
M

S
M

0 0= Κσ , 0 0
M M
f fε σ= Κ +Λ . Figure 6 shows a sample of several linear

isotherms at different temperatures. The critical points are shown for the 400T K=

isotherm.

As the critical stress level 0
M
Sσ  is reached, the stress-strain isotherms ε σ= I T( ,0 )

have a convex portion P at least in a small vicinity of the critical point ( , )ε σS
M

S
M

0 0 . In

this case, the front part of the centered fan 
v v
F F= [ ]0 Aε*  degenerates into a linear elastic

shock = [0 *]ε↑ELS S
v

 (elastic precursor). The solution thus has the two-shock structure:

T= 340K

T= 360K

T= 380K

T= 400K

T= 320K

T= 300K

0
M
Sσ

0
M
Sε

0
M
fσ

0
M
fε
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SB
* *ˆ .M A EL AC S C S Co

v v

In other words, the initial shock 
v
So[0 ]A $ε  for a large enough amplitude of loading splits

in two: the linear elastic precursor [0 *]ε↑ELS
v

 and the subsonic shock/phase front
v v
S SSB [ * ]* $= Aε ε . In this case, two types of solutions are possible:

Lee-Tupper solution: ε ε σ σ* , *= =S
M

S
M

0 0

 The Rayleigh line for a front 
v
SSB

*  starts at the corner (critical) point ( , )ε σS
M

S
M

0 0  of

the isotherm ε σ= I T( ,0 ) . Hence, the velocity of the isothermal phase transformation

front is given by

0

PT S0

S0

ˆ
.

ˆ( )

M

M
T T

D
σ σ

ρ ε ε=

−
=

−
(4.24)

Note that PT
S0 S0

1
ˆ( , ) ( 0)M MD cε ε ε

ρ
< −

Κ
= .

We will call such a front (shock) the corner front (shock) 
v
Sc . The constant state

*
0 0{ , , 0}M M

S Sε σ ξ= =C C  will be called the critical state cC . This two-shock configuration

of the solution for materials with nonconvex stress-strain curves with a corner (kink)

point was first discussed by Lee and Tupper [46] in the framework of plastic wave

propagation. Therefore, we refer to this configuration as the Lee-Tupper solution. Almost

at the same time, Bancroft et al [47] considered the two-shock configuration that resulted

from the splitting of strong shock waves in iron. The splitting is caused by a kink point on

the Hugoniot curve, which is due to shock-induced phase transition in iron.

Obviously, a corner shock 
v
Sc  can be considered as a limiting case for a tangent

shock 
v
St .  In this connection, we note that the Lee-Tupper solution can be considered a

good approximation to the Bethe-Barenblatt solution for an SMA with cosine kinetics

(2.9) if the transformation strip is sufficiently wide. Note that the velocity of a corner



23

shock (as the velocity of a tangent shock) is fully defined by the geometry of the curve

σ ε( ) , and no additional kinetic relation is needed.

Abeyaratne-Knowles type solution: ε ε σ σ* , *< <S
M

S
M

0 0

In this case, the 
v
SSB

* -Rayleigh line starts at some point ( *, *ε σ )  on the A-branch

of the isotherm below the critical point ( , )ε σS
M

S
M

0 0 . The point ε *  can be determined

from the system of equations (4.22, 4.23), and the velocity of phase front is given by

(4.22). Note that Abeyaratne-Knowles type solutions deviate from Lee-Tupper type

solutions only for large enough amplitudes of loading $ε ε> f
M

0 .

Since the linear kinetics model is widely used, we will provide some details of the

Lee-Tupper type solution for SMA with a trilinear isotherm σ ε= −IL T1
0( , )  given by:

( ) ( )

1
0

11
0 0 0 0

1
0

  

, ( )   

( )   

M
S

M M M
L S S f

M
f

if

I T if

if

ε ε ε

ε ε κσ κ ε ε ε

ε ε ε

−

−−

−

 Κ <


= + Κ + < <
 + Λ Κ >

(4.25)

Depending in the amplitude of the impact load we have three cases:

1. If $ε ε< S
M
0 , then the solution has the structure

ˆ ,A EL A
oC S C

v

where 
v v
S SEL = A[ ]0 $ε  is a linear elastic shock with velocity

EL 1
.D

ρ
=

Κ

For NiTi SMA material (see data in Table 1), the velocity of the elastic precursor
EL 33.3 10 m sD = ⋅ .

2. If $ε ε> f
M

0 , then the solution has the structure

 ˆ ,M c c EL A
oC S C S C

v v

where

0

0

[0 ]

ˆ[{ , 0} { ,1}],

M
S

M
S

ε

ε ξ ε

↑

↑

=

= =

EL

c

S S

S S

v v
v v
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and where the velocity of the phase transformation front 
v
Sc  given by (4.24) can be

rewritten as

0

PT

S02

1 ˆ ˆ, ( ) ( ) .
ˆ( )( )

M

T T
D χ σ σ σ

ρ χ σ=
= = Λ −

Κ +
(4.26)

Note that the velocity PT
2D essentially depends on the loading amplitude $σ . The 

v
Sc -

Rayleigh line starts at the corner point ( , )ε σS
M

S
M

0 0  of the isotherm ε σ= IL T( ,0 )  and

ends at the point ($ , $ε σ ) of the M-branch of the isotherm. Material behind the phase

front is fully transformed to martensite.

3. If ε ε εS
M

f
M

0 0< <$ , then the solution has the structure

$C S C S Co
A/M c c EL Av v

0
ˆˆ[{ ,0} { , }],M

Sε ε ξ↑=cS S
v v

where $ ( , $ )ξ σ= Z TM
0 . The velocity of the phase transformation front 

v
Sc  is given by

0

PT

3

1
, ,

( )
M

T T
D bκ

ρ κ=
= = Λ

Κ +
(4.27)

and is independent of the loading amplitude. In other words, 
v
Sc  is a linear shock; the

v
Sc -Rayleigh line starts at the corner point ( , )ε σS

M
S
M

0 0  of the isotherm ε σ= I T( ,0 )

and lies on the linear A/M-transformation branch of the isotherm. Material behind the

front is partially martensite (two-phase A/M mixture). For NiTi SMA material (see

Table 1), the velocity of the phase transformation front 
0

PT 3

3
0.65 10 m s

T T
D

=
= ⋅ . Note

that, for the trilinear constitutive law, the locus points on the ( ,ε σ )  plane that can be

reached by the shock loading of an unstressed 1-D SMA body with initial temperature

T0  (shock-isotherm) coincide with the static isotherm ε σ= IL T( ,0 ) .

Thorough discussion of a solution of the impact loading problem with a subsonic

shock (kink) SB
* ˆ[{ *,0} { ,1}]ε ε↑=S S

v v
 with ε ε* < S

M
0  can be found in [11]. Even though the

authors consider a trilinear material with transformation softening behavior (N-shaped

constitutive relation), their solution is fully applicable to our case (trilinear material with
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transformation hardening behavior) for $ε ε> f0
M , since the intermediate phase (falling

branch of the isotherm) does not appear in the solution.

Note that the expression (4.31) gives the lower limit for the velocity of an

isothermal phase front of partial transformation for both Lee-Tupper and Abeyaratne-

Knowles solutions.

Finally, we mention that the splitting instability of strong shock waves associated

with first-order phase transformation in gases (vapors) and solids has been studied

extensively in a hydrodynamic framework [18, 48, 49, 19]. In both cases, only the

tangent and corner shocks have been considered. Since these phase transitions can be

induced generally only by strong shock waves, an adiabatic approximation has been

employed, but not an isentropic one.

4.3 Numerical results. As a conclusion to this section we give two numerical

experiments of the above theoretical results. For both cases we used a standard Lax-

Friedrichs finite difference scheme [45] applied to the finite difference version of

equation (4.5). The domain is the rectangle ( , ) [0, ] [0, ]x t L T∈ × , L being the length of the

rod and [0, ]T  the time interval for which we want a solution.  The solution is obtained on

a uniform grid with points ( , )i jx t , where ix ih=  and jt jτ= for 0,1,..., Li h= and

0,1,...,Tj τ= . The primitive variables are the strain ( , )x tε  and velocity v( , )x t  and we

approximate all spatial derivatives by the central finite difference -
1 1 2( , ) ( , )

( , ) ( )
2

i j i j
x i j

f x t f x t
f x t O h

h
+ −−

= +  and all time derivatives by

( )1
1 1 12( , ) ( , ) ( , )

( , ) ( )i j i j i j
t i j

f x t f x t f x t
f x t O τ

τ
+ + −− +

= + , where v,f ε= , at the nodes

( , )i jx t . At the end of each time step when the values for the strain and velocity are

already computed we update the stress using the return mapping algorithm presented in

[52]. The material properties used are given in the next table.
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Table 1. Material data for NiTi Shape Memory Alloy used in calculations.
E=EA= EM 70.0E9 Pa T0 42 °C

Λ 0.05 m/m TS
M
0 18 °C

kM 5.25E6 Pa TF
M
0 -2 °C

α 10.0E-6 1/°C ρ 6450.0 kg/m3

ρ∆SR 0.35E6 Pa/°C C 328.68 J/kg°C

We solved the impact problem (4.5,6,7) first with a cubic isotherm (see Figure 5).

Results are depicted in Figure 7. As one might expect, due to the large numerical

viscosity introduced by the scheme, the finite difference approximation picked up the

Bethe-Barenblatt solution with the sonic shock (phase front).

The second problem we solved was for an SMA material with a linear

transformation behavior (see Figure 6). It is easy to see that the finite difference solution

is the Lee-Tupper solution with a corner shock (front) 
v
Sc . The strain profile of the

numerical solution is shown on Figure 8. The numerical velocity of the phase front 
v
Sc

coincides with the velocity given by the analytical expression (4.27) within 1%, Thus the

numerical solution is in perfect agreement with the analytical results developed

previously.
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Figure 7. Numerical strain profile for the impact loading of an SMA with a cubic constitutive
relation, ˆ 400 MPaσ =  (Lax-Friedrichs scheme)
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Figure 8. Numerical strain profile for the impact loading of an SMA with a trilinear constitutive
relation, $σ = 400 MPa (Lax-Friedrichs scheme)

5. ADIABATIC CASE

5.1 Analytical Results. To simplify the study in this section we disregard the

change in cross-sectional area of the rod during the impact loading. Then the system of

equations (3.3,8) for the adiabatic case takes the form

0
tt x

t

u
S

ρ σ=
= (5.1)

The initial and boundary conditions for the impact problem are

0

( ,0) v( ,0) 0, 0
( ,0) , 0

ˆ ˆ(0, ) ( ), 0; ( 0).

x x x
T x T x

t H t t

ε

σ σ σ

= = ≥
= ≥
= ≥ >

IC:

BC:
(5.2)

The entropy given by (3.8) stays constant (5.1) along the rod during the impact

process:

0( , ) ( ,0) S , , 0,S x t S x x t= ≡ ≥ (5.3)

where ( )0 0S ln .A
R RC T T S= +

CS
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In this section, we will use the combined constitutive and kinetic laws in the form

0 0( ; , ) : ( ) ( , ).T T T T Tε σ σ α σ= = Κ + − +ΛΞE

Note that

0 0

0 0 0

( ; , ) ( , ) ( ) and
( ; , ) ( , ).
T T T T T
T T T

σ σ α
σ σ

= + −
=

E
E

I
I

In order to simplify the equations and obtain analytical results, we limit our

consideration to a linear kinetic law only (see 2.4,7). Since Z TM ( , )σ  is a monotone

increasing function of σ  in [M], we can write Equation (5.3) as

S C T T S T S SR R L R
A= + − + =ασ ρ σln ( , )b g ∆ Ξ 0 (5.4)

and invert it to find T T SL= ( , )0 σ . Then the strain is given by

0S

0 0( , ): ( ; ( , ), ).
A
RS

C
L R LS T e T Sε σ σ σ

−

= =E E (5.5)

The function ε σ= EL S( ,0 )  can be inverted to find the isentrope σ ε= −EL S1
0( , ) , which

has a form very similar to that of the trilinear isotherm (4.25). It is easy to see that the

isentrope has an A-branch that is almost identical to that of the isotherm and that the

isentrope has a kink at the starting point of transformation, just as the isotherm does (see

Figure 9 and 10). We will return to the discussion of the isentrope later.

The isentropic system of equations (5.1) is equivalent to

,tt xxu uρ σ ′= (5.6)

where ′ = ∂σ σ εε ( , ).S0  For the linear kinetic law considered here, we have that

′ = ∂ −σ εεEL S1
0( , ) , which can easily be found in an explicit form by differentiating

Equations (5.4 and 5.5) to obtain

( )

1

S0
11

0 S0 m0

1
m0

if  
( , )           if  

if  

M

M M
L

M

Sε

ε ε
σ ν ε ε ε ε

ε ε

−

−−

−

Κ <
′ = ∂ = Κ + < <
 >Κ

E (5.7)

where

m0 0 m 0 m 0 0( , ) and ( ).M M M M M
L f f f mS Tε σ σ σ= =E (5.8)
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The quantity T M
m0  is the maximum achievable M-transformation temperature (3.14). In

Equation (5.7), we disregarded the very small thermoelastic terms in the pure A and M

phases. Note that we do not need here the concrete form of the function ν ν ε= ( , )S0 ;

what is important is that this function is positive, monotone increasing and almost

constant (ν ν≅ >0 0 ), so that Equation (5.6) is hyperbolic and ′′ = ∂ >−σ ε
2 1 0E L  for

ε ε ε∈[ , ]S0 m0
M M . Therefore, the results obtained in the previous section can be directly

applied here. Particularly, the solution of the shock-impact problem (5.3) is piece-wise

constant and has a two-shock structure * *
0

ˆ ,ELCS C S C
v v

 with the elastic precursor
v v
S SEL = A[ *]0 ε  and the subsonic shock (phase front) 

v v
S S* { , * , {$ , $, $= = A[ * } }]ε ξ ε ξ0 0T T .

Hence, we need to consider only the Rankine-Hugoniot jump conditions (4.12) at the

phase transition front 
v
S*  along with a continuity condition for the entropy:

ˆ * 0.S S− = (5.9)

We obtain results similar to (4.13,23):

PT ˆ *
ˆ( *)

D
σ σ

ρ ε ε
−

=
−

(5.10)
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Figure 9. Rayleigh line for the isentropic partial transformation front 
v
Sc
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( )PT ˆv̂ v* *  andD ε ε= − − (5.11)

( )0
ˆˆˆ( *) ln 0.RC T T S

α
σ σ ξ

ρ
− + − ∆ = (5.12)

From the condition of constancy of entropy across the phase front in (5.12), we find that

0
ˆˆ ˆexp( ( *))

, ,R R

T T

S S

ωξ θ σ σ

ω α ρ θ α ρ

= − −

= ∆ = ∆
(5.13)

which means that the temperature in the phase front changes (reversibly) only due to the

latent heat release and the thermoelastic heat generation. As before, we will disregard the

very small change in temperature caused by thermoelastic heat generation, but we will

take into account the thermoelastic strain due to the significant increase in temperature

produced by the latent heat release. If we omit in (5.13) the small thermoelastic term

θ σ σ( $ *)− , we recover expression (3.13)

1
0 0

ˆ ˆˆ ˆexp( ) or ln( ),T T T Tωξ ξ ω −= =

and the maximum attainable temperature behind the front is given

by $ exp( )$T T T M
ξ

ω
=

= ≡
1 0 m0  (see (3.14)). Then, obviously, we have $ [ , ]T T T M∈ 0 m0 . For

convenience, we will introduce here the corresponding maximum achievable M-

transformation stress

m0 m 0 0 0( )M M M
f mT Tσ σ= + Θ − + Ω

and the maximum achievable M-transformation strain (cf. (5.8))

0 0 0 m 0( ; , )).M M M
m m fT Tε σ= E

As in the previous section, we will discuss here only the Lee-Tupper type solution

0
ˆ * * EL ACS C S C
v v

 with a corner shock (front) 
v v
S Sc = *  with 0* M

Sε ε=  and 0* M
Sσ σ= . For the

Abeyaratne-Knowles solution having the subsonic interface 
v
SSB

*  with ε ε* ,< S
M
0  we refer

again to [11]. In the following lines, we will provide the details of the Lee-Tupper type

solution.
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1. If $σ σ< S
M

0, then ˆ 0ξ =  and 0T̂ T=  (austenite material behind the linear elastic shock);

the solution is isothermal and has the structure  0
ˆ ,A EL AC S C

v
 where

0 0ˆ ˆ ˆ[{0,0, } { ,0, }] with .T T Kε ε σ↑= =ELS S
v v

 

2. If $σ σ> m
M

0  then ˆ 1ξ = , 0
ˆ M

mT T=  and 0
ˆˆ ˆ( ; , )T Tε σ= E  (fully heated martensite material

behind the phase front). The solution has the Lee-Tupper structure 0
ˆ ,M c c EL AC S C S C

v v
 where

v v
v v
S S

S S

EL

c

= A
A

[{ ,0, }]

= [ } }]

0 0

0 1
0 0 0

0 0

T T

T T
S
M

S
M

} { , ,

{ , , {$ , , $
ε

ε ε  

The 
v
Sc -Rayleigh line starts at the corner point ( , )ε σS

M
S
M

0 0  of the initial cold isotherm

ε σ= IL T( ,0 )  and ends at the point ($ , $ε σ )  of the M-branch of the hot isotherm

ε σ= IL m
MT( ,0 )  (see Figure 10). Note that the A-branches of both isotherms overlap, and

their M-branches are also almost indistinguishable, since the thermoelastic strain caused

by latent heat release is quite small.
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Figure 10. Shock adiabat-isentrope $ ( , $ ( , $ε σ σ= ≅SL LT S0 0) )E  for the Lee-

Tupper type  solution (dashed line) and Rayleigh line for the isentropic front 
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3. If σ σ σS
M

m
M

0 0< <$ , then ˆ0 1ξ< < , 0 0
ˆ M

mT T T< < , 0
ˆˆ ˆ( , , )T Tε σ= E  and 0

ˆˆ exp( )T T ωξ=

(heated two-phase mixture of phases behind the front); and the solution again has the

Lee-Tupper structure 0
ˆ ,A/M c c EL AC S C S C

v v
 where

v v
S Sc = [ } }]{ , , {$ , $ , $ε ε ξS

M T T0 00 A
 

The 
v
Sc -Rayleigh chord begins at the critical point ( , )ε σS

M
S
M

0 0  of the initial cold isotherm

ε σ= IL T( ,0 )  and ends at the point ($ , $ε σ )  of the A/M-branch of the hot isotherm

ε σ= IL T( $, ) (see Figure 9).

Let us give some estimates for the shock velocity in cases 2 and 3. The phase

fraction $ $( $ )ξ ξ σ=  is given implicitly by two equations

0

ˆ ˆˆ( , )
ˆˆ exp( )

MZ T

T T

ξ σ

ωξ

=

=

Since ω  is of the order of 10 1−  for SMA materials and 0 1< <$ξ  we can expand ˆˆ ( )T ωξ

in a Taylor series which, along with (2.5,7) and (2.2) results in:

( )
( )

2
0

21
0 0 0 0

ˆ ˆ ˆˆˆ ˆ ˆ( ) ( ( )) (1 ( ) ) ( )

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ))

M M M M
S S

M M
S S

a T T a T O T

O

ξ σ σ ωξ ωξ σ

ε σ σ ν σ σ ωλ σ σ−

= − = + + −

= Κ + − + −
(5.14)

where 0
0

0 0 0( )M M M
S f

T
k T T T

αω
ν

ω
+ Λ

=
− +

. Therefore, disregarding higher order terms we obtain

linear relationship for ξ̂ :

0

0 0 0

ˆˆ ˆ( )
( )

M
S

M M M
S fk T T T
σ σ

ξ σ
ω

−
=

− +
(5.15)

for 0 m0ˆ [ , ]M M
Sσ σ σ∈ . The isentropic curve $( $ )ε σ  begins at the critical point ( , )ε σS

M
S
M

0 0  of

the cold isotherm ε σ= IL T( ,0 )  and ends at the inner corner point (kink) ( ,ε σm
M

m
M

0 0 )  of

the hot isotherm 0( , )M
L mTIε σ= . Our calculation shows that the second-order term is at

least 108  times smaller than the linear term and, for all practical purposes, may be

omitted. The curve $( $ )ε σ  is a straight line up to the second order in ωξ$ :

S0

0 0 0 0 S0 m0

0 0 m0

ˆ ˆ

ˆ ˆ ˆ ˆ( , ) ( )( )     .

ˆ ˆ( )    

M

M M M M
L S S

M M
m

T

T T

σ σ σ

ε σ ν σ σ ε σ σ σ

σ α σ σ

 Κ <


= = Κ + − + < <
 Κ + − + Λ >

S (5.18)
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Hence, the 
v
Sc -Rayleigh chord coincides with ˆ ˆ ˆ( )ε ε σ=  up to the second-order

term and the Lee-Tupper solution for the shock isentrope $ ( , $ε σ= SL T0 )  coincides with

the trilinear isentrope ε σ= E L S( ,0 ) to the second order in shock intensity. Therefore, we

can now easily evaluate ν ε( , )S0  from Equation (5.10) as

0
0 0

0 0 0 0 0 0

( , )
( ) ( )M M M M M M

S f S f

T
S

k T T T k T T T
αω

ν ε ν
ω ω

+ Λ Λ
≅ = ≅

− + − +

where 0 0exp((S ) )A
R RT T S C= − . Using (5.18) for the shock isentrope and using 0* M

Sε ε=

in (5.10), it is easy to find the velocity of an isentropic phase transformation front.

For m0ˆ Mσ σ> , the temperature behind the phase front is independent of $σ  and is

given by the constant $T T M= m0 , while the velocity of the phase transformation front is

given by

( )0

PT
S0

2
m0 0 S0

ˆ 1
ˆ( ( ) ) ˆ( )

M

M M
S S

D
T T
σ σ

ρ σ α ε ρ χ σ=

−
= ≅

Κ + − + Λ − Κ +
. (5.19)

The velocity of the phase front depends essentially on the applied stress $σ , and is

independent of the thermodynamic parameters. In other words, for intense loading

( $σ σ> m0
M ), the latent heat release does not affect the front velocity (up to the small

thermoelastic term α ( )T TM
m0 − 0 ), and therefore it is approximately the same as the

isothermal shock velocity (4.26):

0 0

PT PT

2 2S S T T
D D

= =
≅ .

 The material velocity behind the phase transformation front can now be found easily

using (5.11).

For 0 0ˆM M
S mσ σ σ< < , the velocity of the phase front is given by

( )( )0

PT

3 1
0

0 0 0

1 1
( ) ( )S S M M M

S f

D
k T T Tρ ν ρ ω

−=
= ≅

Κ + Κ + − + Λ
. (5.20)
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In this case, the velocity of the phase front is independent of the impact stress $σ  and

depends only on the mechanical (Λ ) and thermodynamic parameters (ω ) of the phase

transformation. It also depends on the initial temperature T0  and the kinetic parameters
Mk , 0

M
ST  and 0

M
fT . Note that this expression (5.20) gives a lower limit for the velocity of

an isentropic phase front of partial transformation for both the Lee-Tupper and

Abeyaratne-Knowles solutions. The temperature behind the front is given by (5.14) and

depends on the impact stress $σ  and on the parameters 0 and ω λ . For NiTi SMA

materials (see data in Table 1), the velocity of the phase front is 
0

PT

3
740m s

S S

D
=

= . Note

that the front velocity is higher in the isentropic case than in the isothermal case:

0 0

PT PT

3 3
.

S S T T
D D

= =
>

5.2 Numerical results. As an example to the theory developed in this section we

used the Lax-Fridriechs scheme to solve the adiabatic shock-loading problem (2.1),(3.2)

and (3.5) along with the initial and boundary conditions (5.2). The three field varibales -

strain ( , )x tε , velocity v( , )x t  and temperature T( , )x t  were discretized in the same

manner as in section 4.3. The material parameters used are the one shown in Table 1 and

the applied stress was ˆ 600MPaσ = . This stress level was sufficient to induce almost full

transformation ( 0.99ξ ≅  in the transformed region of the rod) so we are in the case

0 0ˆM M
S mσ σ σ< < . As in the isothermal case, the finite difference solution is the Lee-Tupper

solution with a corner shock. The strain profile at t=10 sµ  is given on Figure 11 while the

profile of the martensitic volume fraction and temperature are given on Figures 12 and

13, respectively. The numerical value for the velocity of the phase front is 810m s≅

which is within 10% of the analytical value for PT
3D . This result comes to illustrate the

fact that the isentropic approximation (3.11) that we used to obtain analytical results is

close enough to the adiabatic one (3.5).
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Figure 12. Numerical martensite fraction profile for SMA adiabatic
impact problem: $σ = 600 MPa  (Lax-Friedrichs scheme)
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SUMMARY AND CONCLUSIONS

In this paper we developed the solution to the impact loading problem for an

SMA rod in an isothermal and adiabatic setting. Several different kinetic laws were

considered and a well-defined transformation front was found for each one of them.

Analytical expressions for the velocity of phase transformation front were obtained. It

was found that without additional thermodynamic assumptions (e.g. [44]) non-unique

solutions are possible. Numerical examples were presented based on Lax-Friedrichs finite

difference scheme for both the isothermal and adiabatic cases. It was found that this

numerical approach renders a unique solution due to the numerical viscosity introduced

by the solver. Results from these numerical solutions were found to be in very good

agreement with the predicted analytical solutions.
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