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Abstract In this study, the topics of grid generation and FEM applica-
tions are studied together following their natural synergy. We consider
the following three grid generators: Triangle, NETGEN and Gmsh. The
quantitative analysis is based on the number of elements/nodes needed
to obtain a triangulation of a given domain, satisfying a certain minimal
angle condition. After that, the performance of the MIC(0) precondi-
tioned conjugate gradient (PCG) solver is analyzed for both conforming
and non-conforming linear FEM problems. If positive off-diagonal entries
appear in the corresponding matrix, a diagonal compensation is applied
to get an auxiliary M-matrix allowing a stable MIC(0) factorization. Uni-
form estimates of the related relative condition numbers are derived.
The presented numerical experiments for elliptic and parabolic problems
well illustrate the similar PCG convergence rate of the MIC(0) precon-
ditioner for both, structured and unstructured grids. The comparative
analysis of the performance for the cases of conforming (Courant) and
non-conforming (Crouzeix-Raviart) finite elements is among the contri-
butions of this paper.
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1 Introduction

Mesh generation techniques are now widely employed in various scientific and
engineering fields that make use of physical models based on partial differential
equations. While there are a lot of works devoted to finite element methods
(FEM) and their applications, it appears that the issues of meshing technologies
in this context are less investigated. Thus, in the best cases, this aspect is briefly
mentioned as a technical point that is possibly non-trivial. In this study, the
topics of grid generation and FEM applications are studied together following
their natural synergy.

⋆ The authors gratefully acknowledge the support provided via EC INCO Grant BIS-
21++ 016639/2005. The second author has also been partially supported by the
Bulgarian NSF Grant I1402.
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Let Ω ⊂ IR2 be a bounded domain with boundary ∂Ω = Γ = ΓD ∪ ΓN . The
following elliptic

−∇ · (a(x)∇u(x)) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ ΓD,

(a∇u(x)) · n = g(x), x ∈ ΓN

(1)

and parabolic

∂u(x, t)

∂t
−∇ · (a(x, t)∇u(x, t)) = f(x, t), (x, t) ∈ Ω × [0, T ],

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = uD(x, t), (x, t) ∈ ΓD × [0, T ],
(a∇u(x, t)) · n = gN (x, t), (x, t) ∈ ΓN × [0, T ]

(2)

problems are considered. Let us introduce the triangulation Th of Ω and the
uniform mesh ωτ with a time step τ in [0, T ]. The finite element method (FEM)
associated with Th and the FEM with Crank-Nicholson time stepping on Th×ωτ

are used to discretize the problems (1) and (2) respectively. Then, the elliptic
problem is reduced to the system

Kuh = fh, (3)

where K stands for the stiffness matrix. At each Crank-Nicholson time step, the
following linear system is to be solved

(

M +
τ

2
K

)

un+1
h =

(

M −
τ

2
K

)

un
h + τ f

n+ 1

2

h , (4)

where the upper index of the unknown vector indicates the number of the current
time step, and M stands for the mass matrix. The modified incomplete Cholesky
factorization MIC(0) is used for the preconditioned conjugate gradient (PCG)
solution of the systems (3) and (4).

The implementation of two variants of finite elements defined on Th is studied,
namely, conforming (Courant) and non-conforming (Crouzeix-Raviart) linear fi-
nite elements.

We investigate the following three grid generators: Triangle, NETGEN and
Gmsh. The quantitative analysis is based on the number of elements/nodes
needed to obtain a triangulation of a given domain, satisfying a certain mini-
mal angle condition. Let us remind that the minimal angle directly reflects on
the accuracy of the FEM approximation as well as on the condition number of
the related stiffness matrix. Some advantages of Triangle are observed in this
respect.

The reminder of the paper is organized as follows. Some needed background
about MIC(0) factorization is given in the next section. Section 3 contains a
condition number analysis of the diagonal compensation. The comparison of
the considered mesh generators is summarized in Section 4. Numerical tests for
structured (model) and unstructured (general) grids are presented in Section 5.
Some concluding remarks are given at the end.
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2 MIC(0) Preconditioning

We recall some known facts about the modified incomplete Cholesky factoriza-
tion MIC(0) [4, 5]. Let A = (aij) be a symmetric N × N matrix and let

A = D − L − LT , (5)

where D is the diagonal and −L is the strictly lower triangular part of A. Then
we consider the factorization

CMIC(0) = (X − L)X−1(X − L)T , (6)

where X = diag(x1, . . . , xN ) is a diagonal matrix, such that the sums of the rows
of CMIC(0) and A are equal, i.e.,

CMIC(0)e = Ae, e = (1, . . . , 1) ∈ IRN . (7)

Theorem 1. Let A = (aij) be a symmetric N × N matrix and let

L ≥ 0,

Ae ≥ 0,

Ae + LT e > 0, where e = (1, . . . , 1)T .

(8)

Then there exists a stable MIC(0) factorization of A, defined by the diagonal
matrix X = diag(x1, . . . , xN ), where

xi = aii −

i−1
∑

k=1

aik

xk

N
∑

j=k+1

akj > 0. (9)

It is known, that due to the positive offdiagonal entries of the stiffness matrix
K, the MIC(0) factorization is not directly applicable to precondition the FEM
system. The diagonal compensation is a simple general approach to avoid this
problem.

Remark 1. The numerical tests presented in the last section are performed using
the perturbed version of MIC(0) algorithm, where the incomplete factorization
is applied to the matrix Ã = A + D̃. The diagonal perturbation D̃ = D̃(ξ) =
diag(d̃1, . . . d̃N ) is defined as follows:

d̃i =

{

ξaii if aii ≥ 2wi,

ξ1/2aii if aii < 2wi,

where 0 < ξ < 1 is a parameter and wi =
∑

j>i −aij .
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3 Diagonal Compensation: Condition Number Estimate

The stiffness matrix K corresponds to a certain FEM discretization of the elliptic
problem (1) on the triangulation Th. When there are some positive off-diagonal
entries in the matrix, the stability conditions for MIC(0) factorization are not
satisfied. The diagonal compensation is a general procedure to substitute K by a
proper M-matrix K̄, to which the MIC(0) factorization is applied. The standard
FEM procedure of freezing the coefficient a(x) on each finite element (integral
mean value approximation) leads to the consideration of a piece-wise Laplacian
problem. The global stiffness matrix reads as

K =
∑

e∈Th

Ke, (10)

where Ke is the current element stiffness matrix, and the summation sign stands
for the FEM assembling procedure. When necessary we will use the notations

K(c), K
(c)
e , K(nc), K

(nc)
e , where (c) and (nc) indicate the cases of conforming

and non-conforming elements. The following important geometric interpretation

of the element stiffness matrix K
(c)
e is well known (see, e.g., in [3])

K(c)
e = te





α + β −α −β

−α α + 1 −1
−β −1 β + 1



 , (11)

where θ1 ≥ θ2 ≥ θ3 ≥ τ > 0 are the angles of the triangle e ∈ T , a = cot θ1,

b = cot θ2, c = cot θ3, α =
a

c
and β =

b

c
. Since |a| ≤ b ≤ c, the element-by-

element diagonal compensation is mandatory applied if and only if a < 0. Then,
the related modified element and global stiffness matrices read respectively as
follows

K̄(c)
e = te





β 0 −β

0 1 −1
−β −1 β + 1



 , K̄(c) =
∑

e∈T

K̄(c)
e . (12)

Note that K̄
(c)
e ≡ K

(c)
e if a ≥ 0.

Now, let us turn on to the case of Crouzeix-Raviart non-conforming finite el-
ements. The related test functions are piece-wise linear with interpolation nodes
at the mid-points of the sides of the triangle element instead of the vertices (as
is for the standard Courant elements). Then, the following important relation is
readily seen,

K(nc)
e = 4K(c)

e . (13)

Theorem 2. The relative condition number κ(K̄−1K) is uniformly bounded by
a constant, depending on the minimal angle τ only. More precisely

κ = κ(K̄−1K) ≤ c(τ) = t2, (14)

where t = cot τ . The estimate (14) holds for both, conforming and non-conforming
linear finite elements.
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The proof was originally derived for linear conforming finite elements, see [6].
The extension to the case of Crouzeix-Raviart non-conforming elements straight-
forwardly follows from (13). The important point here is, that the condition
number estimate (14) is independent of the size of the discrete problem, as well
as, of the number of the positive off-diagonal entries of the global stiffness ma-
trix K. When the Crank-Nicholson scheme is implemented solving the parabolic

problem (2) we have to get a preconditioner for the matrix M +
τ

2
K. Then,

a diagonal compensation for K in combination with lumping the mass for M

is applied before the MIC(0) factorization. At this point, an advantage of the
non-conforming Crouzeix-Raviart elements is, that the related mass matrix is
diagonal. This follows easily from the fact, that the quadrature formula on a
triangle with nodes in the midpoints of the edges is exact for second degree
polynomials.

4 Comparison of Mesh Generators

In this section, we briefly compare the following three mesh generators:

– Triangle (http://www.cs.cmu.edu/˜quake/triangle.html);
– NETGEN (http://www.hpfem.jku.at/netgen/);
– Gmsh (http://geuz.org/gmsh/).

As was shown in the previous section, the minimal angle of the triangulation
controls the stability conditions for the MIC(0) factorization. We will also

(a) (b) (c)

Fig. 1. Meshes generated by: (a) Triangle; (b) NETGEN; (c) Gmsh.

Table 1. Mesh properties.

Generator Minimal angle Elements Nodes

Triangle 33.122 ◦ 386 229
NETGEN 27.4256 ◦ 440 256
Gmsh 31.8092 ◦ 688 380
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remind that the minimal angle (or the mesh regularity) directly reflects on the
accuracy of the FEM approximation as well as on the condition number of the
related stiffness matrix. Since a larger minimal angle usually leads to a larger
number of elements and nodes in the resulting mesh, it is natural to compare
the generators based on the number of elements and nodes, needed to obtain a
mesh with a certain minimal angle. The domain we chose for this comparison is
a disk. The generated meshes, the related minimal angles, and the numbers of
elements and nodes are shown in Figure 1 and Table 1 respectively.

The presented results clearly show that the biggest minimal angle is achieved
by Triangle, in which triangulation the number of elements and nodes is the
smallest. Triangle is also the only one of the compared generators that accepts
the minimal angle as a parameter.

Remark 2. Triangle’s documentation states that the algorithm often succeeds
for minimum angles up to 33 ◦ and usually doesn’t terminate for larger angles.

5 Numerical Experiments

The presented numerical tests illustrate the MIC(0)–PCG convergence rate. A
relative PCG stopping criteria in the form rT

k C−1rk ≤ ε2rT
0 C−1r0 is employed.

Here rk is the residual vector at the k-th iteration and C is the MIC(0) precon-
ditioner. We compare the obtained results in the cases of linear conforming and
non-conforming finite elements. The considered model elliptic and parabolic test
problems, and the two variants for domains and meshes are given below.

– Elliptic model problem:

−∆u = f, ΓD ≡ ∂Ω,

with exact solution

u(x, y) = x3 + y4 + sin(y − x).

– Parabolic model problem:

∂u

∂t
− ∆u = f, ΓD ≡ ∂Ω,

t ∈ [0, 1], τ = 0.01, with exact solution

u(x, y, t) = sin(x − y) + sin(y − t) + sin(t − x).

– Structured grid:

– Unstructured grid:

The obtained numbers of iterations are presented in both table and graphic
form. When parabolic problems are considered, the iteration count is the average
value per time step. The asymptotic behavior of the MIC(0)–PCG solver is well
expressed in all cases.
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Remark 3. A generalized coordinate-wise ordering is used to ensure the condi-
tions for a stable MIC(0) factorization.

5.1 Structured Grids

The results for the model problems on the unit square with uniform structured
grids are presented in next two tables. They contain the numbers of iterations
for conforming and non-conforming elements respectively.

The convergence rates are graphically presented in Figures 2–3. The solid
and dashed lines correspond to the cases of conforming and non-conforming
finite elements. The plots give a better opportunity to compare the increase of
the iteration counts with the size of the problem. The logarithmic scale more
transparently illustrates the asymptotic behavior of the number of iterations.
The missing data in the tables (parts of the plots) corresponds to some larger
sizes of the discrete problems for which the RAM of the used computer has not
been enough.

5.2 Unstructured Grids

The presentation in this section strictly follows the introduced setting from the
previous one. Tables 4–5 and Figures 4–5 contain the numerical results for the
elliptic and parabolic test problems on the related unstructured grids.

Table 2. MIC(0)–PCG iterations in the unit square: conforming FEM, ε = 10−6.

Mesh Degrees of Freedom Elliptic Parabolic

1 1089 16 5
2 4225 22 7
3 16641 30 10
4 66049 42 13
5 263169 59 16
6 1050625 82 22
7 4198401 115 –

Table 3. MIC(0)–PCG iterations in the unit square: non-conforming FEM, ε = 10−6.

Mesh Degrees of Freedom Elliptic Parabolic

1 800 16 5
2 3136 22 7
3 12416 30 9
4 49408 43 12
5 197120 60 16
6 787456 84 22
7 3147776 119 29
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Fig. 2. Number of iterations for the elliptic model problem in the unit square: linear
scale (left) and logarithmic scale (right).
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Fig. 3. Number of iterations for the parabolic model problem in the unit square: linear
scale (left) and logarithmic scale (right).

5.3 Concluding Remarks

The rigorous theory of MIC(0) preconditioning is applicable only to the model el-
liptic problem in the unit square when discretized by standard linear conforming
finite elements. For this simplest case, the reported number of iterations fully
confirms the estimate nit = O(N1/4). Here, we observe the same asymptotic
of the PCG iterations for all remaining problems, which are not supported by

Table 4. MIC(0)–PCG iterations in the disk: conforming FEM, ε = 10−6.

Mesh Degrees of Freedom Elliptic Parabolic

1 844 17 7
2 3232 26 11
3 12640 40 16
4 49984 58 22
5 198784 79 32
6 792832 106 45
7 3166720 142 –
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Table 5. MIC(0)–PCG iterations in the disk: non-conforming FEM, ε = 10−6.

Mesh Degrees of Freedom Elliptic Parabolic

1 615 19 10
2 2388 29 13
3 9408 44 18
4 37344 62 25
5 148800 89 36
6 594048 128 50
7 2373888 179 72
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Fig. 4. Number of iterations for the elliptic problem in the disk: linear scale (left) and
logarithmic scale (right).
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Fig. 5. Number of iterations for the parabolic problem in the disk: linear scale (left)
and logarithmic scale (right).

the theory up to now, including the case of Crouzeix-Raviart non-conforming fi-
nite elements. As we see, the considered algorithms have a well expressed stable
behavior for the unstructured meshes (see Figure 1(a)). The next general con-
clusion is that the iteration count is smaller for the conforming FEM problems
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when compared to the results for non-conforming FEM systems of the same size.
However, the stable convergence rate of the MIC(0)–PCG solver for Crouzeix-
Raviart FEM systems is of a particular importance, due to the special robustness
properties of these non-conforming elements.
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