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Abstract. We consider large scale finite element modeling on 3D
unstructured grids. Large scale problems imply the use of parallel hard-
ware and software. In general, the computational process on unstruc-
tured grids includes: mesh generation, mesh partitioning, optional mesh
refinement, discretization, and the solution. The impact of the domain
partitioning strategy on the performance of the discretization and solu-
tion stages is studied.

Our investigations are focused on the Blue Gene/P massively parallel
computer. The mapping of the communications to the underlying 3D
tours interconnect topology is considered as well.

As a sample problem, we consider the simulation of the thermal and
electrical processes, involved in the radio-frequency (RF') ablation proce-
dure. RF ablation is a low invasive technique for the treatment of hepatic
tumors, utilizing AC current to destroy the tumor cells by heating.

1 Introduction

Finite element method (FEM) on unstructured grids has proven to be an in-
dispensable tool in computer modelling. Large scale simulations and complex
models require parallel computing. This work is focused on optimizing the per-
formance of parallel simulations.

We use state of the art parallel computer — IBM Blue Gene/P with a state
of the art linear solver — BoomerAMG multigrid method[4] from the Hypre
library[I3]. Our intention was to study the influence of the mesh partitioning
on the performance of the entire computational process. We compare two dif-
ferent partitioning libraries: ParMETIS and PT-Scotch. We also, to improve
performance, try to map the communication pattern of our programs to the
underlying 3D torus interconnect.

Our investigations are done while performing parallel simulation of the radio-
frequency (RF) ablation. This is a hepatic tumor treatment technique which
uses AC current from an electrode with a complex shape (see Figure[ll a).

The paper is organized as follows: In Section 2, we describe the problem
we solve. In Section 3 we discuss and compare the used partitioners. Section 4
contains times from the parallel experiments with and without the mapping of
the communications and we finish with a conclusion.
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2 Radio-Frequency Tumor Ablation

Our test problem is numerical simulation of radio-frequency (RF) tumor ab-
lation. RF ablation is an alternative, low invasive technique for the treatment
of hepatic tumors, utilizing AC current to destroy the tumor cells by heating
([7U8]). The destruction of the cells occurs at temperatures of 45°C-50°C. The
procedure is relatively safe, as it does not require open surgery.

Retractable
Electrodes

Fig. 1. a) The structure of a fully deployed RF probe; b) Sample mesh: cross-section,
different gray levels are used for different materials

The considered RF probe is illustrated on Fig. [Il a) It consists of a stain-
less steel trocar with four nickel-titanium retractable electrodes. Polyurethane
is used to insulate the trocar. The RF ablation procedure starts by placing the
straight RF probe inside the tumor. The surgeon performs this under computer
tomography (CT) or ultrasound guidance. Once the probe is in place, the elec-
trodes are deployed and RF current is initiated. Both the surfaces areas of the
uninsulated part of the trocar and the electrodes conduct RF current.

The human liver has a very complex structure, composed of materials with
unique thermal and electrical properties. There are three types of blood vessels
with different sizes and flow velocities. Here, we consider a simplified test prob-
lem, where the liver consists of homogeneous hepatic tissue and blood vessels.

The RF ablation procedure destroys the unwanted tissue by heating. The heat
is dissipated by the electric current flowing through a conductor. The bio-heat
time-dependent partial differential equation [7§]

orT
ch:VJ{VT—FJ'E—hbl(T_Tbl) (1)

is used to model the heating process during the RF ablation. The term J - F
in () represents the thermal energy arising from the current flow and the term
hyi(T — Tp1) accounts for the heat loss due to blood perfusion.
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The following initial and boundary conditions are applied

T = 37°C when t = 0 at 2, 9
T = 37°C when t > 0 at 912. (2)

The following notations are used in () and (2):

— {2 — the entire domain of the model,;

— 012 — the boundary of the domain;

p — density (kg/m?);

— ¢ — specific heat (J/kg K);

k — thermal conductivity (W/m K);

— J — current density (A/m);

E — electric field intensity (V/m);

— Ty — blood temperature (37°C);

wp; — blood perfusion (1/s);

— hp = pricpiwp; — convective heat transfer coefficient accounting for the blood
perfusion in the model.

The bio-heat problem is solved in two steps. The first step is finding the potential
distribution V' of the current flow. With the considered RF probe design, the
current is flowing from the conducting electrodes to a dispersive electrode on the
patient’s body. The electrical flow is modeled by the Laplace equation

V.oVV =0, (3)
with boundary conditions
V =0 at 012,
V =V, at 992.

The following notations are used in the above equations:

V' — potential distribution in (2;

— o0 — electric conductivity (S/m);

Vo — applied RF voltage;

— 092 — surface of the conducting part of the RF probe.

After determining the potential distribution, the electric field intensity can be

computed from
E=-VV,

and the current density from
J=0oF.

The second step is to solve the heat transfer equation () using the heat source
J - E obtained in the first step.

For the numerical solution of both of the above discussed steps of the simula-
tion the Finite Element Method (FEM) in space is used [10]. Linear conforming
elements are used. To solve the bio-heat equation, after the space discretization,
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backward Euler scheme is used [I1]. There, the time derivative is discretized
via finite differences. For a description of the discretization of the problem (3]
see [12].

Let us focus on the discrete formulation of the bio-heat equation. Let us
denote with K and M the stiffness and mass matrices from the finite element
discretization of (). They can be written as

N
9] i,j=1
N

M = [/ pc@i@jdx} .
2 i,j=1

Let us also denote with §2; the subdomain of {2 occupied by blood vessels and
with Mpy; the matrix

N
My = {/ 5blhbl€pi¢jdxj| ,
Q ij=1

where
1 for x € (%,

On () = {O for x € 2\ 2.
Than, the parabolic equation ([Il) can be written in matrix form as:

oT
ME + (K + My)T = F + MyTy. (4)
If we denote with 7 the time-step, with 7"*! the solution at the current time
level, and with 7™ the solution at the previous time level and approximate the
time derivative in () we obtain the following system of linear algebraic equations
for the nodal values of T7*!

(M + 7(K 4 My))T" = MT" + 7(F + MyTy). (5)

In tablé [[ are given the material properties, taken from [7]. The blood perfu-
sion coefficient wy; = 6.4 x 1073 1/s. For the test simulations, a RF voltage of
15 V is applied for a duration of 8 minutes. A time step of 7 = 10 s is used.

Table 1. Thermal and Electrical Properties of the Materials

Material p (kg/m®) ¢ (J/kg K) k (W/m K) o (S/m)

Ni-Ti 6 450 840 18 1x 108
Stainless steel 21 500 132 71 4 x 108
Liver 1 060 3 600 0.512  0.333
Blood 1 000 4180 0.543  0.667

Polyurethane 70 1045 0.026  107°
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3 Partitioning Methods

Our software tools are written in C++, using MPI for the parallelization. Al-
though we use external libraries for graph partitioning, and for the solution,
plenty of nontrivial gluing code was required.

The first stage in the computational process is the mesh generation. Here
Netgen package is used [14]. Currently, we use computer generated model of the
liver and blood vessels. The RF ablation probe is inserted in the model. Then
the geometric data is fed to the generator. In Fig. [Il b) is depicted a cross-
section from a sample mesh. The generator output consist in three parts: list of
coordinates of the vertices, list of tetrahedrons with assigned materials, and a
list of boundaries with assigned boundary conditions.

The next stage is to partition the computational domain among processors.
Our intent was to investigate the applicability of two graph partitioning libraries:
ParMETIS [2I3] and PT-Scotch [5l6]. To use the graph partitioning routines
in both cases we first calculate the dual graph of the mesh using the routine
ParMETIS_V3_Mesh2Dual. Both libraries require for performance and scalability
reasons the initial data to be distributed (fairly) among the processors. This is
done by our toolchain as the mesh is read.

The routine ParMETIS_V3_PartMeshKway is used for the graph partitioning
with ParMETIS. This call computes graph partitioning minimizing the number
of cut edges. The result is a part (processor) number, assigned to each tetrahe-
dron. ParMETIS uses parallel version of multilevel k-way partitioning algorithm
described in [T].

PT-Scotch library computes graph partitioning via recursive bipartitioning
algorithm. PT-Scotch contains ParMETIS compatibility layer, so we use the
very same ParMETIS_V3_PartMeshKway function from it.

After the partitioning of the elements some postprocessing is required. This in-
cludes: distribution of the elements to their processors, determining the
partitioning of vertices which are on the interfaces between the processors, distri-
bution of vertex data, distribution of boundary condition data, and node renum-
bering, which is required for the parallel solver. We assign a shared vertex to a
processor with lower number of previously assigned vertices.

Before giving experimental results, let us describe the Blue Gene/P parallel
computer. It consist of racks with 1024 PowerPC 450 based compute nodes each.
Each node has four computing cores and 2 GB RAM. The nodes are intercon-
nected with several networks. The important ones from the computational point
of view are: Tree network for global broadcast, gather, and reduce operations
with a bandwidth of 1.7GB/s, 3D torus network for point to point communi-
cations, and a separate global interrupt network, used for barriers. In the torus
network each node is connected to six other nodes with bidirectional links, each
with bandwidth of 0.85GB/s. Torus network is available only when using mul-
tiplies of 512 nodes. For smaller number of nodes only 3D mesh interconnect is
possible. We were using the machine in so call virtual node mode(VN), in which
different MPI rank is assign to each of the computing cores. This is the mode
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Table 2. Mesh partitioning

Elements Vertices
mesh Np'roc avg maXPaTAIetis maxPT*Scotch avg maXPar]\/Ietis maXPT*Scotch
MO 128 110 453 114 606 110 885 18 561 21 672 20 937
MO 256 55 226 57 494 55 507 9 280 11 363 10 812
MO 512 27613 28 736 27 765 4 640 5 857 5618
MO 1024 13 806 14 364 13902 2 320 3073 2 968
M1 128 883 627 922 323 888 266 147 654 157 272 151 698
M1 256 441 813 460 387 444 112 73 827 80 836 77 136
M1 512 220 906 230 192 222 074 36 913 41 944 39 366
M1 1024 110 453 115 055 111 102 18 456 21 796 21 118
M2 1 024 883 627 920 329 888 327 147 405 158 601 154 454
M2 2048 441 813 461 092 444 934 73 702 81 441 78 815
M2 4 096 220 906 230 500 222 279 36 851 42 419 40 492

to use the entire power of the system, for pure MPI programs (without shared
memory parallelism). We were allowed to use up to 1024 computing nodes —
4096 cores, further called processors.

The computation volume for the discretization is proportional to the num-
ber of elements in each processor. The computation volume for the solver is
proportional to the number of vertices in each processor. Because of the global
synchronizations which present in both processes, parallel times will be gov%
by the maximum number of elements and vertices per processor. In the ta
these numbers are shown, compared to the averages. Three meshes had been
partitioned: MO, M1, and M2. Meshes M1 and M2 are obtained from uniform
refinement of mesh MO once and twice. Let us note that the finest mesh M2 has
about 9.0 x 10® elements and about 1.5 x 10® vertices. We expect from a good
partitioner per processor maximums to be as close to the averages as possible.
Results from partitions on different number of processors are shown.

We can clearly see that PT-Scotch produces better partitions. Both the max-
imum number of elements per processor and the maximum number of vertices
per processor are closer to the optimal values.

To give an idea about the communication pattern resulting from the partition-
ings, we have shown some info about the connections in table[3 We call two pro-
cessors connected if they share at least one vertex in their elements. Connected
processors must exchange data during the discretization and the solution pro-
cesses. The minimum — Cyp, average — Coyg, and maximum — Cp,s, number of
connection for an processor are shown. The other column N,,,, is defined as
follows:

Nproc
Nppaz = max E N;
0<i<Nproc “— 7 (6)
J:

Ni)j = maX(Sm? Ri)j)7

where Npoc is the number of processors, S; ; is the number of values sent from
processor i to processor j and R;; is the number of received values. In other
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Table 3. Communication volume

ParMETIS PT-Scotch
mesh Np'roc Chin Cavg Crmaz  Nmax t[S] Chin Cavg Cmaz  Nmaz t[S]

MO 128 4 12 28 73 108 2.96 5 12 22 63 728 39.0
MO 256 4 13 26 47 392 1.59 3 13 25 39 020 35.9
MO 512 5 14 26 30596 1.03 4 14 27 25 714 33.9
MO 1024 5 14 27 19 376 0.87 4 14 26 16 652 32.8
M1 128 5 12 25 225788 23.0 5 13 23 172096 125
M1 256 7 14 29 155912 11.5 3 13 27 118 948 92.7
M1 512 5 14 29 103508 594 5 14 26 78 774 72.5
M1l 1024 5 15 32 80 360 3.46 5 14 25 67 392 61.11
M2 1024 7 15 30 271951 25.1 4 15 27 206 942 192
M2 2048 5 16 30 162946 134 5 15 29 137 587 138
M2 409 4 16 30 106 734 8.01 4 15 28 97 510 111

words Npq. is the maximum amount of data a processor communicates. We
also give the time ¢ for the partitioning in seconds. We see in both cases similar
number of connections. The communication volume N, . is lower for PT-Scotch.
Although PT-Scotch produces better partitions, we see that it does not scale.
Its run times are several times longer than those of ParMETIS.

The matrices of the linear systems are ill-conditioned and large. Since they
are symmetric and positive definite, we use the PCG [9] method, with a Boomer-
AMG as a preconditioner. The settings for the Boomer AMG preconditioner were
carefully tuned for maximum scalability. The selected coarsening algorithm is
Falgout-CLJP. Modified classical interpolation is applied. The selected relax-
ation method is hybrid symmetric Gauss-Seidel or SSOR. To decrease the oper-
ator and grid complexities two levels of aggressive coarsening are used. Smaller
operator and grid complexities are lead to faster iterations and reduced mem-
ory requirements. This is essential on BlueGene/P, as each processor has only
512MB of RAM. The downside is that this affect the convergence rate of the
solver.

In table M are shown parallel times for the discretization — Ty and the
solution of the linear system — Tyye for the bioheat problem [l The matrix
A =M+ 7(K + My) from (&) is assembled only once on the first time step and
not varied after that. The corresponding AMG preconditioner is also constructed
only on the first time step. We see that the discretization is faster and the
linear solver performs better for the partitions produced by PT-Scotch. The
discretization part scales nicely. We see that the linear solver fails to scale for
(relatively) small problems, and beyond 2 048 processors.

We asked ourselves the question “can we do better?” We tried to use the static
graph mapping capabilities of the Scotch library. A mapping is called static if it is
computed prior to the execution of the program. Static mapping is NP-complete
in the general case [5]. Scotch library uses suboptimal method of Dual recursive
bipartitioning. The parallel program to be mapped onto the target architecture
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Table 4. Computation times

ParMETIS PT-Scotch
mesh Np'roc sz‘sc[s} Tsolve[s} Tdisc[s] Tsolve[s]
MO 128 515 54.6 471 51.2
MO 256 247 34.6 249 29.7
MO 512 138 23.8 133 23.4
MO 1024 72.8 22.7 69.9 21.3
M1 128 4 225 332 4 007 319
M1 256 2160 173 2101 167
M1 512 1196 101 1131 97.9
M1 1024 608 75.2 574 69.0
M2 1024 5381 356 4 856 337
M2 2048 2742 224 2 364 211
M2 4096 1322 204 1215 207

is modeled by a weighted unoriented graph S called source graph or process
graph, the vertices of which represent the processes of the parallel program, and
the edges of which are the connections between communicating processes. The
target machine onto which is mapped the parallel program is also modeled by
a weighted unoriented graph T called target graph or architecture graph. The
algorithm starts with the set of processors in T, also called domain, which is
associated the set of all the processes in S to map. At each step, the algorithm
bipartitions a yet unprocessed domain into two disjoint subdomains, and calls a
graph bipartitioning algorithm to split the subset of processes.

In our case the we use N; ; from (6] as edge weights for S. We set the weights
on the edges of T' to be the number of hops between a pair of nodes plus one
(there is a non-zero weight requirement in Scotch). We take into account that
the mesh topology is mesh up to 1024 processors and torus in other two cases.
The mapping is computed with the tool gmap, with an option which does not al-
low to assign two processes to one processor. In our solver, we construct an MPI
communicator with reordered ranks to match the mapping. We use that commu-
nicator for the computations. We performed the same tests, bur with mapped
communications. The results are shown in table @l To ease the comparison only
the ratios 7mapped /men—mapped are shown in percents, where T7mn—marred are
the corresponding values in table [l

In all cases the performance of the linear solver is improved. Although the
improvements are small — under 2%, we can say that that the mapping has
a positive effect. Things differ for the discretization times. For the ParMETIS
partitionings, there is a small improvement in most cases, expect three. But
for the PT-Scotch partitions things got worse in all cases. We expected that
because of the algorithm PT-Scotch uses and because of the nature of the inter-
connect, its partitions were already properly mapped. But the slower run times
can only mean that there is an overhead in using communicator different from
MPI_COMM_WORLD.
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Table 5. Computation mapping

ParMETIS PT-Scotch
mesh Np'roc Tdisc[%} Tsol’ue[%} Tdisc[%] Tsolve[%]
MO 128 96.1 99.7 101.4 99.4
MO 256 98.1 100.0 102.2 99.6
MO 512 99.8 98.9 103.6 99.2
MO 1024 100.1 99.7 103.6 99.7
M1 128 99.6 99.4 102.5 99.7
M1 256 99.1 99.8 101.6 99.2
M1 512 99.5 99.1 101.8 98.2
M1 1024 101.9 99.1 104.1 98.1
M2 1024 100.7 98.6 104.3 98.7
M2 2048 98.7 99.7 104.2 99.7
M2 4 096 99.5 98.9 107.2 99.0

4 Conclusion and Future Work

In this work we compared the impact two graph partitioning libraries on the
performance of parallel FEM simulations. We saw that partitioning quality has
direct and non-negligible influence on the performance.

We used a tool for static graph mapping to optimize the communications on
massively parallel computer. The results show that we could gain by this kind
of optimizations, especially on problems with heavy communication loads.

Our future plans include tuning the parameters. Scotch library offers many
possibilities to influence its partitioning results. This is also true for the static
mapping. We also expect a parallel version of the routine METIS_PartGraphVKway
from the Metis library, which directly minimizes total communication volume.

We intent to use process remapping method, different from currently used
MPI communicator with reordered ranks.
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