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Abstract. In this study, the topics of grid generation and FEM appli-
cations are studied together following their natural synergy. We consider
the following three grid generators: Triangle, NETGEN and Gmsh. The
quantitative analysis is based on the number of elements/nodes needed
to obtain a triangulation of a given domain, satisfying a certain minimal
angle condition. After that, the performance of two displacement decom-
position (DD) preconditioners that exploit modified incomplete Cholesky
factorization MIC(0) is studied in the case of FEM matrices arising from
the discretization of the two-dimensional equations of elasticity on non-
structured grids.
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1 Introduction

Mesh generation techniques are now widely employed in various scientific and
engineering fields that make use of physical models based on partial differential
equations. While there are a lot of works devoted to finite element methods
(FEM) and their applications, it appears that the issues of meshing technologies
in this context are less investigated. Thus, in the best cases, this aspect is briefly
mentioned as a technical point that is possibly non-trivial.

In this paper we consider the problem of linear elasticity with isotropic materi-
als. Let Ω ⊂ IR2 be a bounded domain with boundary Γ = ∂Ω and u = (u1, u2)
the displacement in Ω. The components of the small strain tensor are

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, 1 ≤ i, j ≤ 2 (1)

and the components of the Cauchy stress tensor are

τij =
2∑

k,l=1

cijklεkl(u), 1 ≤ i, j ≤ 2 , (2)

where the coefficients cijkl describe the behavior of the material. In the case of
isotropic material the only non-zero coefficients are

ciiii = λ + 2μ, ciijj = λ, cijij = cijji = μ . (3)
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Now, we can introduce the Lamé’s system of linear elasticity (see, e.g., [2])

(λ + μ)∇(∇ · u)i + μΔui + Fi = 0, 1 ≤ i ≤ 2 (4)

equipped with boundary conditions

ui(x) = gi(x), x ∈ ΓD ⊂ ∂Ω,

∑2
j=1 τij(x)nj(x) = hi(x), x ∈ ΓN ⊂ ∂Ω ,

where nj(x) denotes the components of the outward unit normal vector n onto
the boundary x ∈ ΓN . The finite element method (FEM) is applied for dis-
cretization of (4) where linear finite elements on a triangulation T are used.
The preconditioned conjugate gradient (PCG) [1] method will be used for the
solution of the arising linear algebraic system Kuh = fh.

2 MIC(0) DD Preconditioning

We first recall some known facts about the modified incomplete Cholesky fac-
torization MIC(0), see, e.g. [4,6]. Let A = (aij) be a symmetric n × n matrix
and let

A = D − L − LT , (5)

where D is the diagonal and −L is the strictly lower triangular part of A. Then
we consider the factorization

CMIC(0) = (X − L)X−1(X − L)T , (6)

where X = diag(x1, . . . , xn) is a diagonal matrix, such that the sums of the rows
of CMIC(0) and A are equal

CMIC(0)e = Ae, e = (1, . . . , 1) ∈ IRn . (7)

Theorem 1. Let A = (aij) be a symmetric n × n matrix and let

L ≥ 0
Ae ≥ 0

Ae + LT e > 0 where e = (1, . . . , 1)T .
(8)

Then there exists a stable MIC(0) factorization of A, defined by the diagonal
matrix X = diag(x1, . . . , xn), where

xi = aii −
i−1∑
k=1

aik

xk

n∑
j=k+1

akj > 0 . (9)

It is known, that due to the positive offdiagonal entries of the coupled stiffness
matrix K, the MIC(0) factorization is not directly applicable to precondition
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the FEM elasticity system. Here we consider a composed algorithm based on a
separable displacement two-by-two block representation(

K11 K12
K21 K22

)
uh = fh . (10)

In this setting, the stiffness matrix K is spectrally equivalent to the block-
diagonal approximations CSDC and CISO

CSDC =
(

K11
K22

)
, CISO =

(
A

A

)
, (11)

where A =
1
2
(K11 + K22). This theoretical background of this displacement

decomposition (DD) step is provided by the second Korn’s inequality [2]. Now
the MIC(0) factorization is applied to the blocks of (11). In what follows, the
related preconditioners will be referred to as CSDC-MIC(0) and CISO-MIC(0), cf.,
References [2,4,5].

3 Diagonal Compensation: Condition Number Estimate

The blocks K11, K22, and A correspond to a certain FEM elliptic problem on the
triangulation T . When there are some positive off-diagonal entries in the matrix,
the stability conditions for MIC(0) factorization are not satisfied. The diagonal
compensation is a general procedure to substitute A by a proper M -matrix Ā, to
which the MIC(0) factorization is then applied. Here, we will restrict our analysis
to the case of isotropic DD, i.e., we will consider the piece-wise Laplacian matrix

A =
∑
e∈T

Ae (12)

where the summation sign stands for the standard FEM assembling procedure.
The following important geometric interpretation of the current element stiffness
matrix holds (see, e.g., in [3])

Ae = te

⎛
⎝α + β −α −β

−α α + 1 −1
−β −1 β + 1

⎞
⎠ , (13)

where θ1 ≥ θ2 ≥ θ3 ≥ τ > 0 are the angles of the triangle e ∈ T , a = cot θ1,

b = cot θ2, c = cot θ3, α =
a

c
and β =

b

c
. Since |a| ≤ b ≤ c, the element-by-

element diagonal compensation is mandatory applied if and only if a < 0. Then,
the modified element and global stiffness matrices read respectively as follows

Āe = te

⎛
⎝ β 0 −β

0 1 −1
−β −1 β + 1

⎞
⎠ , Ā =

∑
e∈T

Āe. (14)

Note that Āe ≡ Ae if a ≥ 0.
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Fig. 1. D̃ =
{

1 − t2

2t2
≤ α < 0,

1 − αt2

t2(1 + α)
≤ β ≤ 1

}

Theorem 2. The relative condition number κ(Ā−1A) is uniformly bounded by
a constant, depending only on the minimal angle τ . More precisely

κ = κ(Ā−1A) ≤ c(τ) = t2 (15)

where t = cot τ .

Proof. We consider the generalized eigenvalue problem Āeu = λAeu, u �= ce.
The case a < 0 corresponds to (α, β) ∈ D̃, see Fig. 1. Straightforward computa-
tions lead to λ1 = 1 + α +

α

β
, λ2 = 1, and therefore

κ ≤ κe =
λ2

λ1
=

β

α + β + αβ
≤ t2 .

In the final estimate we have used that the maximal value of κe is achieved at

the corner point of D̃, (α, β) =
(

1 − t2

2t2
, 1

)
, which completes the proof. 	


4 Comparison of Mesh Generators

In this section, we compare the following three mesh generators:

– Triangle (http://www.cs.cmu.edu/˜quake/triangle.html);
– NETGEN (http://www.hpfem.jku.at/netgen/);
– Gmsh (http://geuz.org/gmsh/).

In the previous section we have seen the impact of the minimal angle on the
preconditioning. Let us remind also that the minimal angle directly reflects on
the accuracy of the FEM approximation as well as on the condition number of
the related stiffness matrix. Since a larger minimal angle usually leads to a larger
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(a) (b) (c)

Fig. 2. Meshes generated by: (a) Triangle; (b) NETGEN; (c) Gmsh

number of elements and nodes in the resulting mesh it is natural to compare the
generators based on the numbers of elements and nodes, needed to obtain a mesh
with a certain minimal angle.

The domain we chose for this comparison is a disc. The generated meshes,
related minimal angles, and numbers of elements and nodes are shown in Fig. 2
and Table 1 respectively.

The results clearly show that Triangle achieved the biggest minimal angle,
while also the smallest number of elements and nodes. Note that various pa-
rameters may influence the quality of the resulting mesh. Triangle is also the
only one of the compared generators that has the minimal angle as a parameter.
Triangle’s documentation states that the algorithm often succeeds for minimum
angles up to 33 ◦ and usually doesn’t terminate for larger angles.

5 Numerical Experiments

The presented numerical test illustrate the PCG convergence rate of the two
studied displacement decomposition algorithms. For a better comparison, the
number of iterations for the CG method are also given. Starting with a given
coarse mesh, we refine it uniformly connecting the midpoints of each element.
Obviously, such a refinement preserves the minimal angle.

Remark 1. The experiments are performed using the perturbed version of the
MIC(0) algorithm, where the incomplete factorization is applied to the matrix

Table 1. Resulting Mesh Properties

Generator Minimal angle Elements Nodes

Triangle 33.122 ◦ 386 229
NETGEN 27.4256 ◦ 440 256
Gmsh 31.8092 ◦ 688 380
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Ã = A + D̃. The diagonal perturbation D̃ = D̃(ξ) = diag(d̃1, . . . , d̃n) is defined
as follows:

d̃i =
{

ξaii if aii ≥ 2wi

ξ1/2aii if aii < 2wi
, (16)

where 0 < ξ < 1 is a constant and wi = −
∑

j>i aij .

Remark 2. A generalized coordinate-wise ordering is used to ensure the condi-
tions for a stable MIC(0) factorization.

5.1 Model Problem in the Unit Square

We consider first a model pure displacement problem in the unit square Ω =
[0, 1] × [0, 1] and ΓD = ∂Ω. The material is homogeneous with λ = 1 and
μ = 1.5, and the right-hand side corresponds to the given solution u1 = x2 +
cos(x + y), u2 = x3 + y4 + sin(y − x). A uniform initial (coarsest) triangulation
with a mesh size h = 1/8 is used. The stopping criteria used is ‖r(k)‖∞ ≤
10−10‖r(0)‖∞.

5.2 Model Problem in a Disc

The pure displacement problem with the same given solution and the same
stopping criteria as in the the unit square is considered. The computational
domain Ω is a disc with outer radius 1 and inner radius 0.2. The unstructured
initial mesh is shown in Fig. 2(a).

5.3 Computer Simulation of a Pile Foundation System

We consider the simulation of a foundation system in multi-layer soil media is
considered. The system consists of two piles with a linking plate. Fig. 3 (a) shows
the geometry of Ω and the related weak soil layers. The mesh is locally refined
in areas with expected concentration of stresses, see Fig. 3 (b). The material
characteristics of the concrete (piles) are λp = 7666.67 MPa, μp = 11500 MPa.
The related parameters for the soil layers are as follows: λL1 = 28.58 MPa,
μL1 = 7.14 MPa, λL2 = 9.51 MPa, μL2 = 4.07 MPa, λL3 = 2.8 MPa, μL3 =
2.8 MPa, λL4 = 1.28 MPa, μL4 = 1.92 MPa. The forces, acting on the top cross-
sections of the piles are F1 = (150 kN, 2000 kN) and F2 = (150 kN, 4000 kN).

Table 2. Model Problem in the Unit Square

Mesh N CG ISO-MIC(0) SDC-MIC(0)

1 81 67 24 19
2 289 129 30 24
3 1089 246 41 32
4 4225 445 59 44
5 16641 853 81 61



80 N. Kosturski and S. Margenov

L1

L2

L3

L4

ΓD

F1 F2

(a) (b)

(c) (d)

Fig. 3. Pile Foundation. (a) Geometry of the pile system and the soil layers; (b) The
initial mesh with a local refinement; (c) vertical displacements; (d) vertical stresses.

Dirichlet boundary conditions are applied on the bottom side. Table 4 contains
the PCG convergence rate for Jacobi1 and the two MIC(0) DD preconditioners.
The stopping criteria here is ‖r(k)‖∞ ≤ 10−3‖r(0)‖∞. Fig. 3 (c) and (d) show
the vertical displacements and vertical stresses respectively.

Table 3. Model Problem in the Disc

Mesh Nodes CG ISO-MIC(0) SDC-MIC(0)

1 229 68 28 27
2 844 150 42 40
3 3232 335 62 61
4 12640 712 97 98
5 49984 1448 159 161

5.4 Concluding Remarks

The rigorous theory of MIC(0) preconditioning is applicable to the first test
problem only. For a structured grid with a mesh size h and smoothly varying
1 The diagonal of the original matrix is used as a preconditioner.
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Table 4. Pile Foundation System

Mesh Nodes Jacobi ISO-MIC(0) SDC-MIC(0)

1 1449 725 291 227
2 5710 1604 412 349
3 22671 3523 585 527
4 90349 7468 848 811
5 360729 15370 1274 1334

material coefficents, the estimate κ(C−1
h Ah) = O(h−1) = O(N1/2) holds, where

Ch is the SDC-MIC(0) or ISO-MIC(0) preconditioner. The number of PCG
iterations in this case is nit = O(N1/4). The reported number of iterations
fully confirm this estimate. Moreover, we observe the same asymptotics of the
PCG iterations for the next two problems, which is not supported by the theory
up to now. As we see, the considered algorithms have a stable behaviour for
unstructured meshes in a curvilinear domain (see Fig. 2(a)). The robustness in
the case of local refinement and strong jumps of the coefficients is well illustrated
by the last test problem.
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