
Performance Analysis of MG Preconditioning on
Intel Xeon Phi: Towards Scalability for Extreme

Scale Problems with Fractional Laplacians

N. Kosturski, S. Margenov, Y. Vutov

Institute of Information and Communication Technologies,
Bulgarian Academy of Sciences

Abstract. The Intel Xeon Phi architecture is currently a popular choice
for supercomputers, with many entries of the Top 500 list, using it ei-
ther as main processors or as accelerators/coprocessors. In this paper,
we explore the performance and scalability of the Intel Xeon Phi chips
in the context of large sparse linear systems, commonly arising from the
discretization of PDEs. At the first step, the PCG [1] is applied as a basic
iterative solution method in the case of sparse SPD problems. The paral-
lel multigrid (MG) implementation from Trilinos ML package is utilized
as a preconditioner. A matrix free algebraic multilevel solver is used to
reduce the memory requirements, thus allowing the cores to be more effi-
ciently utilized. The second part of the paper is devoted to the fractional
Laplacian, that is, we consider the equation −∆αu = f , 0 < α < 1,
Ω ⊂ IRd. The related elliptic boundary value problem describes anoma-
lous diffusion phenomena also referred to as super-diffusion. The im-
plemented method approximates the solution of the nonlocal problem
by a series of local elliptic problems. The currently available numerical
methods for fractional diffusion Laplacian have computational complex-
ity, comparable e.g., to the complexity of solving local elliptic problem
in Ω̃ ⊂ IRd+1. The presented parallel results are for Ω = (0, 1)3, includ-
ing meshes of very large scale.The numerical experiments are run on the
Avitohol computer at the Institute of Information and Communication
Technologies, IICT-BAS. The presented results show very good scalabil-
ity when the CPU-cores and MIC work together for a certain number of
compute nodes.

1 Introduction

The paper is aimed at development of highly parallel algorithms for fractional
diffusion problems with computational complexity of extreme scale. For this pur-
pose, we investigate the parallel efficiency on the hybrid architecture of the su-
percomputer Avitohol (http://www.iict.bas.bg/avitohol/). The supercomputer
consists of 150 compute nodes, each equipped with two 8 core (up to 16 threads)
Intel Xeon E5-2650 processors and two 61 core (up to 244 threads) Intel Xeon
Phi 7120P coprocessors. Each node has 32 GB of RAM and the accelerators have
16 GB. The nodes are connected via InfiniBand FDR.

Two model problems leading to large linear systems with sparse symmetric
positive definite (SPD) matrices are considered. The first one is the Laplace’s
equation −∆u = f, in the unit cube Ω = [0, 1]3 with a seven point stencil
and homogeneous Dirichlet boundary conditions. The implementation of the
developed parallel solution method is based on the ml MatrixFree example dis-
tributed along with the Trilinos libraries. The second part of the study is devoted
to the case of elliptic problems with fractional Laplacians. The numerical solu-
tion of such nonlocal problems is very expensive. A straightforward approach to
the related discrete problems lead to linear systems with dense matrices. Three
techniques to avoid this difficulty were recently proposed. They are based on
transformation of the problem

Lαu = f

to a local elliptic [6] or pseudo-parabolic [7, 8] problem, or on a proper integral
representation of the solution [2]. For all of them, the computational complexity
is comparable to the complexity of solving local problems in Ω̃ ⊂ Rd+1. A
comparative analysis of parallel properties of the related three algorithms for
distributed memory computer architecture is presented in [3]. Some substantial
advantages of the algorithm from [2] are observed there, which is the motivation
to implement it in the present study.

More recently, an alternative approach aimed at reducing the computational
complexity was proposed in [5], see also [4]. The linear algebraic systemAαu = f ,
0 < α < 1 is considered, where A is a properly scaled sparse SPD matrix.
The method is based on best uniform rational approximations (BURA) of the
function tβ−α for 0 < t ≤ 1 and small natural β (e.g. β = 1, 2). It is important,
that the algorithmic implementation of this method is practically identical to
the method based on the integral representation of the solution.

The rest of the paper is organized as follows. The fractional diffusion elliptic
problem and the method from [2] are presented in the next section. The de-
veloped parallel implementation approach is described in Section 3. The next
Section 4 contains numerical tests of the parallel solvers for very large-scale
problems. Short conclusions are given at the end.

2 Fractional Laplacian

Let us consider the elliptic boundary value problem: find u ∈ V such that

a(u, v) :=

∫
Ω

(a(x)∇u(x) · ∇v(x) + q(x)) dx =

∫
Ω

f(x)v(x)dx, ∀v ∈ V, (1)

where V := {v ∈ H1(Ω) : v(x) = 0 on ΓD}, Γ = ∂Ω, and Γ = Γ̄D ∪ Γ̄N .
The bilinear form a(·, ·) defines a linear operator L : V → V ∗ with V ∗ being the
dual of V . Namely, for all u, v ∈ V a(u, v) := 〈Lu, v〉, where 〈·, ·〉 is the pairing
between V and V ∗. One possible way to introduce Lα, 0 < α < 1, is through its
spectral decomposition, i.e.

Lαu(x) =

∞∑
i=1

λαi ciψi(x), where u(x) =

∞∑
i=1

ciψi(x).

Here ci are the Fourier coefficients of u in the L2-orthogonal basis, {ψi(x)}∞i=1

are the eigenfunctions of L, orthonormal in L2-inner product and {λi}∞i=1 are
the corresponding positive real eigenvalues.

As already noted, the numerical solution of the nonlocal problem Lαu = f is
computationally rather expensive. The following representation of the solution
u is used in [2] in order to overcome the problem of non-locality:

L−α =
2 sin(πα)

π

∫ ∞
0

t2α−1
(
I + t2L

)−1
dt.

Among others, an exponentially convergent quadrature scheme is introduced in
[2]. Then, the approximation of u only involves evaluations of (I+tiA)−1f , where
ti ∈ (0,∞) is related to the current quadrature node, and where I and A stand
for the identity and the stiffness matrix corresponding to a certain approximation
of the (local) diffusion equation (1). The computational complexity depends
on the number of quadrature nodes. More precisely, the following quadrature
formula is implemented in our parallel code:

L−α ≈ 2k sin(πα)

π

M∑
`=−m

e2αy`
(
I + e2y`L

)−1
, (2)

where

k > 0, m =

⌈
π2

4αk2

⌉
, M =

⌈
π2

4(1− α)k2

⌉
, y` = `k.

Let us assume that the utilized parallel AMG solver of the systems (I+tiA)u = f
has optimal complexity of O(N), where N is the number of unknowns. Then,
the computational complexity of the fractional diffusion solver is O((m+M)N).

3 Parallel Implementation Approach

The developed code uses MPI for parallelization and is run on the Avitohol su-
percomputer at IICT-BAS introduced above. In MPI terms, the communicators
encapsulate communication context and represent groups of processes that are
able to communicate. All processors within a communicator have an unique num-
ber (rank). This number is used as an address for communications. All processes
within a communicator participate in collective operations. There is a prede-
fined communicator MPI COMM WORLD, which consists of all started processes. We
spawn one extra process, and use it as a master which distributes the tasks.

Smaller communicators for the Laplace subproblems are created according
to several parameters: pph – processors per host, hpp – hosts per (sub)problem,
ppa – processors per accelerator and app – accelerators per (sub)problem. We
create smaller communicators for our subtasks using MPI Comm split function.
It has a color input argument and a source communicator. New communicators
are created after the call, containing processors from the source one, with the
same color.

����� �

����� � � � � 	
 � � ��

���������� �� �� �	 �
 �� �� �� �� 	� 	� 	� �

���������� �� �� �� �� ��� ��� ��� ��� ��	 ��
 ��� �
�

����� ��� ��� ��� ��� ��	 ��
 ��� ��� ���

���������� ��� ��� ��	 ��
 ��� ��� ��� ��� ��� ��� ��� �

���������� �
� �
� �
� �
� ��� ��� ��� ��� ��	 ��
 ��� ���

Fig. 1. Example of ALL COMM communicator, where 32 processes are spawned on each
host and 64 on each accelerator. An additional master process is started on host0 to
distribute the problems among groups of worker processes.

����� � � � � 	
 � � ��

���������� � � � � 	
 � � � � �� ��

���������� � � � � 	
 � � � � �� ��

����� � � � � 	
 � � ��

���������� � � � � 	
 � � � � �� ��

���������� � � � � 	
 � � � � �� ��

Fig. 2. Example of HOST COMM communicators. These communicators represent all the
processes on a particular host. It is used to construct RANK COMM (see. Fig. 3) and limit
the number of active processes.

����� � � � � � � � � � �

����� � � � � � � � � � �

������	
�� � � � � � � � � � � � � �

������	
�� � � � � � � � � � � � �

������	
�� � � � � � � � � � � � � �

������	
�� �

Fig. 3. Example of RANK COMM communicators. They are used to group multiple hosts
or accelerators into the same COMP COMM (see. Fig. 4).

����� � � � � 	
 � �

����� � � � � 	
 � �

���������� � � � � 	
 � � � � �	 �

���������� �� �� �� �� �� �� �� �� �	 �
 �� ��

���������� � � � � 	
 � � � � �	 �

���������� �� �� �� �� �� �� �� �� �	 �
 �� ��

Fig. 4. Example of COMP COMM communicators, where each diffusion problem is to be
solved on either one node’s CPUs or it’s two accelerators. Gray areas correspond to
idle processes, pph = 8, ppa = 16, hpp = 1, app = 2;

The first step we do is to create the communicator ALL COMM which does not
contain the master processor (see Fig. 1). Then using color obtained by hash-
ing the host name, obtained from MPI Get processor name, the communicators
HOST COMM are created (see Fig. 2). The ranks from HOST COMM are used as colors
to obtain RANK COMM, (see Fig. 3). As a final step from the ranks of RANK COMM

and HOST COMM along with the parameters pph, hpp, ppa, app communicators
COMP COMM are created (see Fig. 4). More precisely, the ranks of HOST COMM are
used to limit the number of active processes (pph and ppa) and the ones from
RANK COMM are used to group multiple hosts/accelerators into one communicator
when required (by the hpp and app parameters). The examples in Figures 1- 4 are
for distribution with following parameters: pph = 8, hpp = 1, ppa = 16, app = 2.

Since memory access speed is the bottleneck of sparse matrix operations for
large matrices, we have applied a matrix-free multigrid algorithm. We use the
multigrid preconditioner from the Trilinos ML package. The domain is parti-
tioned in the three spacial directions across the available parallel processes. In
the case of fractional diffusion problem, we solve in parallel systems with diag-
onally perturbed discrete Laplacians in the form (1

ti
I +A), ti > 0.

To compute (2), the processor with rank 0 from each COMP COMM requests
work from the master processor. Then if there is work left, a value fore index
` is supplied from the master. After that processors in COMP COMM proceed with
the solution, accumulating partial sums. When the computations for all values
of ` are done, a global summation is performed to obtain the final result.

4 Parallel Experiments

The first set of experiments is aimed at establishing the optimal number of pro-
cesses (including a hyper-threading) per CPU and per accelerator respectively.
For this purpose, we measured the solution times for the Laplace’s equation,
with the following checkerboard right-hand side

f(x, y, z) = g(x)g(y)g(z), where g(x) =

−1, if x < 0.5,
0, if x = 0.5,
1, if x > 0.5.

(3)

The PCG is applied as a basic iterative solution method in the case of linear
systems with sparse SPD matrices where a parallel multigrid (MG) implementa-
tion from the Trilinos ML package is the preconditioner. A matrix free solver is
used to reduce the memory requirements thus allowing the cores to be more ef-
ficiently utilized. The PCG tolerance is set to 10−10 in all reported experiments.
The C++ language is used in both Trilinos and our code.

Table 1 shows results on the CPUs. Even for very large problems requiring a
lot of communications, the solver is able to utilize all available cores with reason-
able efficiency. Moreover, using hyper-threading, albeit less efficiently, provides
a faster solution in all considered cases.

Table 2 shows similar results for the case when the solver is run on the Xeon
Phi accelerators. The optimal number of cores to be used for solving the problem

Table 1. Laplacian: parallel times and efficiency of the MG PCG solver on the CPUs.

DOFs Nodes Processes/Node 1 2 4 8 16 32

1283 1
Time [s] 37.3 19.3 10.2 5.6 3.2 3.0
Efficiency [%] 97 92 84 72 39

2563 1
Time [s] 374 187 103 53 30 21
Efficiency [%] 100 91 88 77 55

10243 32
Time [s] 878 512 242 126 76 58
Efficiency [%] 86 91 87 72 48

Table 2. Laplacian: parallel times and efficiency of the MG PCG solver on the accel-
erators.

DOFs Nodes Processes/MIC 1 2 4 8 16 32 64 128

1283 1
Time [s] 154 82 48 25 16 13 15 66
Efficiency [%] 94 80 76 59 36 17 2

2563 1
Time [s] 1390 720 361 191 98 70 110
Efficiency [%] 97 96 91 89 62 20

5123 8
Time [s] 1698 863 464 243 199 453 2757
Efficiency [%] 98 91 87 53 12 1

Table 3. Laplacian: weak scalability of the MG PCG solver with respect to the number
of nodes.

CPUs Accelerators
Nodes 1 32 1 8
DOFs 2563 10243 2563 5123

Time [s] 21.4 57.7 69.8 199.4
Efficiency [%] 74 35

in the case of Laplacian is 32 for the smaller problems and even 16 for the largest
one, i.e. considerably smaller than the number of physical cores – 61. Table 3
compares the weak scalability of the solver between running on the CPUs and
on the accelerators respectively. The observed scalability on the CPUs is better.
Some of the differences can be attributed to the fact that the accelerators cannot
use the InfiniBand FDR interconnect directly, but instead rely on the host to
perform the underlying communications, potentially increasing the latency and
decreasing the bandwidth.

To achieve peak performance for the Xeon-Phi processor, one should run 4
threads per physical core. This allows for utilizing all of the available AVX2
vector units. As we see from Table 5 the performance degrades with the number
of threads used. There are two reasons for this. First the performance of sparse

Table 4. Numerical solution of the problem with fractional Laplacian: error estimates
and corresponding number of systems to be solved for different values of α.

α 0.5 0.75 0.25
Error 1.80E-7 1.01E-7 3.06E-7
NSYS 91 120 120

Table 5. Fractional Laplacian: parallel times and efficiency for α = 0.25.

DOFs 1283 2563

Nodes Time [s] Efficiency [%] Time [s] Efficiency [%]
1 147 971
2 65 113 461 105
4 26 101 241 101

Table 6. Fractional Laplacian: parallel times and efficiency for α = 0.5.

DOFs 1283 2563

Nodes Time [s] Efficiency [%] Time [s] Efficiency [%]
1 146 989
2 59 124 455 109
4 37 98 244 101

Table 7. Fractional Laplacian: parallel times and efficiency for α = 0.75.

DOFs 1283 2563

Nodes Time [s] Efficiency [%] Time [s] Efficiency [%]
1 235 1623
2 103 115 729 111
4 52 113 360 113

matrix and large vector operations are memory speed bound – efficient caching
is hard to achieve. The second reason is that the Pentium derived cores can
issue maximum of 2 instructions per cycle. The performance of modern C++
code suffers from low instruction per clock ratio.

The next set of parallel experiments is focused on the solver for fractional
Laplace’s equation. Here we consider fractional powers of α = 0.25, 0.5, 0.75. The
parameter k = 1

3 is used in the quadrature formula (2). The corresponding ap-
proximation error estimates and numbers of systems with diagonally perturbed
discrete Laplacians to be solved are given in Table 4. The same right-hand side
as in (3) is used. Tables 5–7 show the parallel times and the scalability of the
solver on up to 4 nodes. The following communication parameters were used:

pph = 32, hpp = 1, ppa = 32, app = 2. The results demonstrate a rather
impressive scalability of the proposed parallel implementation approach.

5 Concluding Remarks

A parallel solver for the fractional Laplace’s equation is implemented and tested
on a heterogeneous system, demonstrating very promising parallel efficiency. The
developed pioneering parallelization approach allows to use in parallel all levels
of the heterogeneous architecture of the supercomputer Avitohol, including a
number of nodes, each of them integrating CPUs and MIC accelerators. Results
of extreme scale numerical tests are reported.We conclude also, that some further
improvements of the parallel performance of the basic PCG MG solver on Xeon
Phi accelerators is desired.

The major contribution of this study is the proposed general approach leading
to efficient solution of fractional diffusion problems on a heterogeneous Intel Xeon
Phi architecture, utilizing a given commonly available parallel AMG solver. We
would emphasize that the results presented in the last three tables demonstrate
the efficiency when the CPU-cores and MIC work together, that is they have
been mixed in the related runs. In the particular case, ml MatrixFree is used.
Here, the important message is that the developed algorithm and software tools
are directly portable if another faster parallel solver is available.

References

1. O. Axelsson, Iterative Solution Methods, Cambridge University Press, 1996.
2. A. Bonito, J. Pasciak, Numerical Approximation of Fractional Powers of Elliptic

Operators, Mathematics of Computation, 84 (2015), 2083–2110
3. R. Ciegis, V. Starikovicius, S. Margenov, R. Kriauzien, Parallel Solvers for Frac-

tional Power Diffusion Problems, Concurrency Computat: Pract Exper (2017),
e4216, https://doi.org/10.1002/cpe.4216

4. S. Harizanov, S. Margenov, Positive Approximations of the Inverse of Fractional
Powers of SPD M-Matrices, submitted, posted as arXiv:1706.07620 (June 2017)

5. S. Harizanov, R. Lazarov, S. Margenov, P. Marinov, Y. Vutov, Optimal Solvers for
Linear Systems with Fractional Powers of Sparse SPD Matrices, submitted, posted
as arXiv:1612.04846v1 (December 2016)

6. L. Chen, R. Nochetto, O. Enrique, A.J. Salgado, Multilevel Methods for Nonuni-
formly Elliptic Operators and Fractional Diffusion, Mathematics of Computation,
85 (2016), 2583-2607

7. P.N. Vabishchevich, Numerically Solving an Equation for Fractional Powers of El-
liptic Operators, Journal of Computational Physics, 282 (2015), 289-302

8. R. Lazarov, P Vabishchevich, A Numerical Study of the Homogeneous Ellip-
tic Equation with Fractional Order Boundary Conditions. submitted, posted as
arXiv:1702.06477v1 (February 2017)

