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Abstract. The goal of this study is to develop, analyze, and imple-
ment efficient numerical algorithms for equations of linear poroelasticity,
a macroscopically diphasic description of coupled flow and mechanics.
We suppose that the solid phase is governed by the linearized consti-
tutive relationship of Hooke’s law. Assuming in addition a quasi-steady
regime of the fluid structure interaction, the media is described by the
Biot’s system of equations for the unknown displacements and pressure
(u, p). A mixed Finite Element Method (FEM) is applied for discretiza-
tion. Linear conforming elements are used for the displacements. Follow-
ing the approach of Arnold-Brezzi, non-conforming FEM approximation
is applied for the pressure where bubble terms are added to guaran-
tee a local mass conservation. Block-diagonal preconditioners are used
for iterative solution of the arising saddle-point linear algebraic system.
The BiCGStab and GMRES are the basic iterative schemes, while al-
gebraic multigrid (AMG) is utilized for approximation of the diagonal
blocks. The HYPRE implementations of BiCGStab, GMRES and AMG
(BoomerAMG, [6]) are used in the presented numerical tests. The aim of
the performance analysis is to improve both: (i) the convergence rate of
the solvers measured by the iteration counts, and (ii) the CPU time to
solve the problem. The reported results demonstrate some advantages of
GMRES for the considered real-life, large-scale, and strongly heteroge-
neous test problems. Significant improvement is observed due to tuning
of the BoomerAMG settings.

1 Introduction

In classical linear poroelasticity it is assumed that the solid is governed by the
constitutive relationship σ = Le, where σ is the stress tensor, e(u) = 1

2
(∇u +

∇u
T) is the strain tensor and L stands for the elasticity tensor. Then the media

is described by the Biot law (c.f. [4, 9], see also [10]):

∇ · (Le(u)−Ap0) = 0, (1)

∇ · (K∇p) = ∇ ·
∂u

∂t
+A : e

(

∂u

∂t

)

+ β
∂p

∂t
. (2)
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Here p and u are the unknown pressure and displacement vector. K stands for
the permeability tensor. The Biot coefficient (tensor) A takes into account the
contribution of the fluid pressure p into the momentum equation (1), as well as
the pore volume change term A : e

(

∂u
∂t

)

in the balance of mass (1), due to the
displacements u. The pore volume change in (2) due to p is captured by β, the
coefficient of apparent rock compressibility due macroscopic fluid pressure.

The mesh methods provide computational technology for efficient discretiza-
tion of the problem (1-2). Among others, we would mention the Galerkin finite
element method (FEM) and the mixed FEM. The choice of method depends on
the features of the considered class of problems. Here, conforming linear FEs
are applied for approximation of the displacements in the elasticity terms of (1-
2). For applications related to flows in highly heterogeneous porous media, the
mixed finite element methods have proven to be accurate and locally mass con-
servative. While applying the mixed FEM to fluid subproblem, the continuity of
the velocity normal to the boundary between two adjacent finite elements could
be enforced by Lagrange multipliers. The relationship between the mixed and
non-conforming FEM has been studied and simplified for various finite element
spaces (see, e.g. [2]). In [3] Arnold and Brezzi have demonstrated that after the
elimination of the unknowns representing the pressure and the velocity from the
algebraic system the resulting Schur system for the Lagrange multipliers is equiv-
alent to a discretization by Galerkin method using linear non-conforming finite
elements. Namely, in [3] it is shown that the lowest-order Raviart-Thomas mixed
finite element approximations are equivalent to the usual Crouzeix-Raviart non-
conforming linear finite element approximations when the non-conforming space
is augmented with quadratic bubbles. We use such kind of augmented Crouzeix-
Raviart linear elements for approximation of the pressure. Implicit backward
Euler method is applied for time discretization.

The rest of the paper is devoted to the solution of the linear algebraic systems
arising at each time step. It is organized as follows. In Section 2, we consider
the preconditioning algorithms for the related saddle-point problems. Section
3 contains the key results. A performance analysis based on tuning of a set
of preconditioning parameters is presented here. Some concluding remarks are
given at the end.

2 Preconditioning

The saddle-point poroelasticity problem corresponding to a displacements-pres-
sure two by two block splitting (see Fig. 1 (b)) is written in the form:

ABiot =

[

Auu Aup

Apu App

]

To get a symmetric matrix ABiot, the pressure equation (2) is multiplied by −1.
For large-scale FEM systems, the advantages of the iterative solution meth-

ods are well known. There are efficient Krylov subspace methods designed for
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Fig. 1. (a) Example of strongly anisotropic unstructured FEM mesh in reservoir sim-
ulation; (b) Structure of the nonzero entries of the saddle-point matrix ABiot

solving symmetric indefinite problems. In this study, the behaviour of the bi-
conjugate gradient stabilized method BiCGStab and the generalized minimal
residual method GMRES are studied. The potentially increasing memory con-
sumption of GMRES is controlled with restarts.

A crucial ingredient for success of the Krylov subspace methods is the precon-
ditioning. In this work, we use a block-diagonal preconditioning. Some related
results for poroelasticity FEM systems are available in some recent papers (c.f.
e.g. [1, 5] and the references there in), where the media is ether homogeneous or
not strongly heterogeneous. The robustness for heterogeneous problems of high-
contrast is a hot topic. The derivation of uniform inf-sup estimate with respect
to the coefficient jumps (c.f. e.g. [7]) is still a challenging issue for poroelasticity
FEM systems.

The BoomerAMG preconditioner [6] is used as approximation of the diagonal
blocks Auu and App. The resulting linear preconditioner of the Biot matrix is in
the form:

CBiot =

[

AAMG
uu

AAMG
pp

]

The following 3D Test Problems (TP) concerning simulation of flows in de-
formable porous media as appear in petroleum engineering (see Fig. 1(a)) are
considered in the next section: (i) TP1:N = Nu+Np = 3×2 291+9 592 = 16 465;
the media is modestly heterogeneous; (ii) TP2: N = Nu +Np = 3 × 150 871 +
186 669 = 639 282; the media is strongly heterogeneous; the mesh is strongly
anisotropic. Here N stands for the total number of degrees of freedom, while Nu

and Np stand for the related numbers of displacements and pressures. Unstruc-
tured grids are used in both, TP1 and TP2.

The large condition number of TP2 is due to the following complementary
factors: the elasticity modulus range is E ∈ (0.5, 30) [GPa]; the Poisson ratio
range is ν ∈ (0.3, 0.48); the permeability variation is of order of 5 × 105; the
mesh anisotropy ratio of order of 6× 103.

The distribution of nonzero entries of the matrix corresponding to TP2 is
presented in Fig. 1(b). The structure of ABiot corresponds to the following num-
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Table 1. Performance of BiCGStab iterative solver

TP1 TP2

ǫ NBiCG
it T[s] NBiCG

it T[s]

10−6 7 0.23 18 26.48
10−9 10 0.28 63 79.67
10−12 14 0.36 430 517.30

bering: (i) pointwise ordering in Auu (we don’t assume separable displacements);
(ii) the unknowns corresponding to the bubbles in App are at the end.

3 Performance Analysis: Tuning of the BoomerAMG

Parameters

The numerical tests are performed on a 3.4 GHz Intel Core i7 CPU. The fol-
lowing notations are used: ǫ - relative stopping criteria for both BiCGStab and
GMRES; NBiCG

it - number of BiCGStab iterations; NGMRES
it - number of GM-

RES iterations; T[s] - CPU time in seconds. The performance analysis is started
with the default settings of BoomerAMG: Falgout coarsening, hybrid symmetric
Gauss-Seidel relaxation. classical modified interpolation, and a Strong Threshold
equal to 0.75. The results for BiCGStab are given in Table 1.
The influence of the size of Krylov subspace before restart, Kdim, is examined
additionally when the GMRES performance is studied. In Table 2, we see how
the number of iterations NGMRES

it decreases with the increase of Kdim. The
CPU time is almost always smaller for largest values of Kdim. GMRES is faster,
even though the count of BiCG iterations is smaller.

In the following performance analysis, the numerical tests are only for the
larger problem TP2, where the heterogeneity and mesh anisotropy are very
strong. Comprehensive tests for BiCGStab (ǫ = 10−6) are performed at the next

Table 2. Performance of GMRES iterative solver

TP ǫ Kdim 4 8 16 32 64 128 256 512

1 10−6 NGMRES
it 24 13 11

T[s] 0.38 0.25 0.22

1 10−9 NGMRES
it 39 21 16

T[s] 0.53 0.32 0.28

1 10−12 NGMRES
it 47 28 24 21

T[s] 0.62 0.40 0.35 0.31

2 10−6 NGMRES
it 62 44 28

T[s] 46.75 33.28 22.81

2 10−9 NGMRES
it 151 128 92 88 84

T[s] 105.94 86.84 63.37 61.69 60.44

2 10−12 NGMRES
it 893 617 468 372 362 351

T[s] 574.08 396.13 307.16 259.86 275.30 302.09
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Table 3. Tuning of the Coarsening: TP2, ǫ = 10−6, Kdim = 32; Relaxation - 1;
Interpolation - 0

BiCGStab GMRES

Coarsening Nit T[s] Nit T[s]

21 17 17.02 28 15.80
22 17 17.08 28 15.83
3 17 17.16 28 15.87
0 17 18.44 28 16.44
6 17 19.05 29 16.73

step, varying the following parameters: (i) Coarsening: 0 - CLJP-coarsening;
3 - Ruge-Stueben coarsening; 6 - Falgout coarsening; 21 - CGC coarsening;
22 - CGC-E coarsening; (ii) Relaxation: 1 - Gauss-Seidel, sequential; 3 - hy-
brid Gauss-Seidel forward solve; 4 - hybrid Gauss-Seidel backward solve; 5 - hy-
brid chaotic Gauss-Seidel; 6 - hybrid symmetric Gauss-Seidel; (iii) Interpolation:
0 - classical modied interpolation; 4 - multipass interpolation; 6 - extended+i
interpolation; 7 - extended+i (if no common C neighbor) interpolation; 8 - stan-
dard interpolation; 12 - FF interpolation; 13 - FF1 interpolation; 14 - extended
interpolation. The best result is obtained for the setting: Coarsening - 21; Re-
laxation - 1; Interpolation - 0. This variant is selected as default for the next
parameter by parameter tunings. The comparative results for both, BiCGStab
and GMRES (Kdim = 32), are shown in Tables 3-5.

Now, we analyze the influence of the so called Strong Threshold which (ac-
cording to HYPRE documentation) is to be chosen in the interval (0, 1), de-
pending on the particular problem. The results are given in Table 6. What we
observe is the monotone increasing of the number of iterations, pursued with a
monotone decreasing of the time for both, BiCGStab and GMRES.

The last step of the presented performance analysis is devoted to tuning the
BoomerAMG parameters separately for each of the blocks Auu and App where
a stronger stopping criteria of ǫ = 10−12 is applied. Some selected best settings
are given in the Tables 7-8.

The final result of this experimental study is given in Table 9.

Table 4. Tuning of the Relaxation: TP2, ǫ = 10−6, Kdim = 32; Coarsening - 21;
Interpolation - 0

BiCGStab GMRES

Relaxation Nit T[s] Nit T[s]

5 17 17.05 28 15.87
3 17 17.15 28 15.98
1 17 17.21 28 15.85
4 17 19.16 28 17.57
6 18 25.98 27 21.86
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Table 5. Tuning of the Interpolation: TP2, ǫ = 10−6, Kdim = 32; Coarsening - 21;
Relaxation - 1

BiCGStab GMRES

Interpolation Nit T[s] Nit T[s]

7 17 16.98 28 15.90
4 17 17.05 28 15.95
12 17 17.08 28 15.94
0 17 17.09 28 15.77
13 17 17.16 28 15.87
14 17 17.29 28 16.01
6 20 19.52 28 15.98
8 21 20.35 28 16.14

Table 6. Tuning of the Strong Threshold: TP2, ǫ = 10−6, Kdim = 32; Coarsening -
21; Relaxation - 1

BiCGStab GMRES

ST Nit T[s] Nit T[s]

0.05 16 50.98 21 44.14
0.10 15 42.79 20 36.52
0.15 14 37.47 20 32.50
0.20 13 33.00 21 30.43
0.30 14 29.35 21 25.86
0.40 16 27.30 23 23.09
0.50 16 23.45 23 19.63
0.60 16 19.99 25 17.98
0.70 18 19.00 28 16.85
0.75 17 17.00 28 15.91
0.80 18 16.81 29 15.31
0.85 21 17.83 30 14.77
0.90 20 16.35 31 14.55
0.95 20 15.59 31 13.82

Table 7. Tuning of the BoomerAMG parameters for the block Auu: TP2, ǫ = 10−12

Coarsening Relaxation Interpolation Nit T[s]

21 5 12 50 21.37
21 5 0 50 21.42
3 5 12 50 21.42
22 5 4 50 21.42
22 1 13 50 21.44
3 5 7 50 21.44
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Table 8. Tuning of the BoomerAMG parameters for the block App: TP2, ǫ = 10−12

Coarsening Relaxation Interpolation Nit T[s]

0 6 13 789 33.37
6 6 6 794 33.39
6 6 12 794 33.39
6 6 0 794 33.39
6 6 14 794 33.40
0 6 12 789 33.43

Table 9. Behavior of the solvers of the coupled system after tuning the BoomerAMG
parameters: TP2, Kdim=32

BiCGStab GMRES

ǫ Nit T[s] Nit T[s]

10−6 14 15.91 22 13.94
10−9 54 45.27 68 34.56
10−12 279 213.36 282 170.98

4 Concluding Remarks

Block-diagonal preconditioning of the mixed FEM Biot system is studied. One
commonly used technique is based on inner iterations for the related elliptic
blocks. Let us note that the related preconditioners are not linear. Numeri-
cal tests illustrating the efficiency of this approach for modestly heterogeneous
problems can be found in [1, 5]. Our study is focussed on problems with strong
heterogeneity and strong mesh anisotropy (see the related details for TP2). For
this class of problems, we don’t observe any advantages of inner iterations. This
is the reason to concentrate on linear preconditioners where AMG approximation
of the diagonal blocks is used. The presented results are of strongly expressed
experimental nature. The performance analysis shows a serious potential for im-
provement of the computational efficiency. Due to tuning of the BoomerAMG
parameters, the achieved decrease of the CPU times T[s] for TP2 for ǫ = 10−12

are as follows: (i) BiCGStab - from 517.30 to 213.36, that is a reduction factor
of 2.42; (ii) GMRES (Kdim=32) - from 396.13 to 170.98, or a reduction factor
of 2.32. The better performance of GMRES is clearly visible. In this respect we
have to remember that the required memory increases with Kdim which could
be a restriction for more large scale applications.
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