
Calibration of Parameters for Radio-Frequency
Ablation Simulation

N. Kosturski, S. Margenov, and Y. Vutov

Institute of Information and Communication Technologies,
Bulgarian Academy of Sciences

Abstract. We consider the simulation of the thermal and electrical pro-
cesses, involved in the radio-frequency (RF) ablation procedure. RF ab-
lation is a low invasive technique for the treatment of hepatic tumors,
utilizing AC current to destroy the tumor cells by heating. The procedure
consists of inserting an RF probe in the patients liver and attaching a
ground pad to the skin. After that the AC current is initiated and main-
tained for a prescribed duration.

We have conducted experiments with a pork liver and an RF ablation
apparatus capable of measuring and recording some of the procedure
parameters. Those include the applied power, the effective electrical
impedance, and the temperature around the tip of the probe. A history
of the values at each second of the test is obtained at the end.

Our aim is to adjust the material properties and other model param-
eters for the simulation to fit the experimentally obtained results. The
electrical conductivity of the tissue can be deduced from the measured
power and impedance. After that, we need to determine suitable heat
conductivity and capacity coefficients. This is achieved via temperature
curves comparison.

1 Introduction

RF ablation is an alternative, low invasive technique for the treatment of hepatic
tumors, utilizing AC current to destroy the tumor cells by heating ([7, 8]). The
destruction of the cells occurs at temperatures of 45◦C–50◦C. The procedure is
relatively safe, as it does not require open surgery.

The considered RF probe consists of a stainless steel needle, insulated with
polyurethane. The RF ablation procedure starts by placing the RF probe inside
the tumor. The surgeon performs this under computed tomography (CT) or
ultrasound guidance. Once the probe is in place, RF current is initiated. The
surface area of the uninsulated part of the needle conducts RF current.

The human liver has a complex structure, with varying thermal and electrical
properties – there are three types of blood vessels with different sizes and flow
velocities. Here, we consider a simplified test problem, where the liver consists
of one homogeneous hepatic tissue.
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Fig. 1. Experimental Procedure Setup
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Fig. 2. Measurement Data Obtained during the Experiment

2 Physical Experiment

We have conducted experiments with a pork liver and an RF ablation apparatus
capable of measuring and recording some of the procedure parameters. The setup
is illustrated on Figure 1.

The pork liver was placed inside a metal plate, to which the ground pad
was applied. The RF ablation probe was inserted in the liver. After that a
temperature sensor was inserted in the hole, created by the probe, parallel to it,
and the RF current was initiated. The apparatus measured the applied power,
the effective electrical impedance, and the temperature. A history of the values
at each second of the test can be seen on Figure 2. Due to limitations of the
used temperature sensor, only temperatures below 110◦C could be measured.

As can be seen, with the increase of the tissue temperature to a certain level, a
steep increase of the electrical impedance is observed. This is attributed to tissue
charring and vapor formation, which forms an isolating layer around the probe.
As a result the electrical power quickly drops to zero and the ablation process



stops. In this paper, we are concentrating on the ablation process before the
impedance jump occurs, in order to check how well the simulation approximates
the temperature field. Therefore we are considering the measurement data from
the moment electrical current was initiated up to the moment the temperature
at the sensor passed 110◦C.

3 Radio-Frequency Tumor Ablation Model

Let us turn our attention to the considered numerical simulation. The RF abla-
tion procedure destroys the unwanted tissue by heating, arising when the energy
dissipated by the electric current flowing through a conductor is converted to
heat. A simplified bio-heat time-dependent partial differential equation [7, 8]

s
∂T

∂t
= ∇ · k∇T + J · E (1)

is used to model the heating process during the RF ablation. The simplification
is due to the fact there is no blood perfusion and no metabolic heat production,
as the experiment was performed on a dead pork liver. The term J · E in (1)
represents the thermal energy arising from the current flow.

The following initial and boundary conditions are applied

T = T0 when t = 0 at Ω,
T = T0 when t ≥ 0 at ∂Ω.

(2)

The following notations are used in (1) and (2): Ω is the entire domain of
the model, ∂Ω – the boundary of the domain, s – the volumetric heat capacity
(J/m3 K), k – the thermal conductivity (W/m K), J – the current density
(A/m), E – the electric field intensity (V/m), and T0 – body (or in this case
room) temperature (◦C).

The bio-heat problem is solved in two steps. The first step is finding the
potential distribution V of the current flow. With the considered RF probe
design, the current is flowing from the conducting electrodes to a dispersive
electrode on the patient’s body. The electrical flow is modeled by the Laplace
equation

∇ · σ∇V = 0, (3)

with boundary conditions
V = 0 at ∂Ωgr,
V = V0 at ∂Ωel,

where V is the potential distribution in Ω, σ – the electric conductivity (S/m),
V0 – the applied RF voltage, ∂Ωgr – the part of the boundary connected to the
ground pad, and ∂Ωel – the surface of the conducting part of the RF probe.

After determining the potential distribution, the electric field intensity can
be computed from

E = −∇V,



and the current density from
J = σE.

The second step is to solve the heat transfer equation (1) using the heat
source J · E obtained in the first step.

For the numerical solution of both of the above discussed steps of the simula-
tion the Finite Element Method (FEM) in space is used ([2]). Linear conforming
elements are chosen in this study. The domain is represented by a voxel image
with a resolution of 256× 256× 256. To apply the linear FEM discretization to
the voxel domain, each voxel is split into six tetrahedra. To solve the bio-heat
equation, after the space discretization, the time derivative is discretized via
finite differences and the backward Euler scheme is used ([4]).

Let us denote with K∗ the stiffness matrix coming from the FEM discretiza-
tion of the Laplace equation (3). It can be written in the form

K∗ =

[∫
Ω

σ∇Φi · ∇Φjdx
]N
i,j=1

,

where {Φi}Ni=1 are the FEM basis functions.
The system of linear algebraic equations

K∗X = 0 (4)

is to be solved to find the nodal values X of the potential distribution.
The electric field intensity and the current density are than expressed by the

partial derivatives of the potential distribution in each finite element. This way,
the nodal values F for the thermal energy E ·J arising from the current flow are
obtained.

Let us now turn our attention to the discrete formulation of the bio-heat
equation. Let us denote with K and M the stiffness and mass matrices from the
finite element discretization of (1). They can be written as

K =

[∫
Ω

k∇Φi · ∇Φjdx
]N
i,j=1

,

M =

[∫
Ω

sΦiΦjdx

]N
i,j=1

.

Then, the parabolic equation (1) can be written in matrix form as:

M
∂T

∂t
+KT = F. (5)

If we denote with τ the time-step, with Tn+1 the solution at the current time
level, and with Tn the solution at the previous time level and approximate the
time derivative in (5) we obtain the following system of linear algebraic equations
for the nodal values of Tn+1

(M + τK)Tn+1 = MTn + τF. (6)



The matrices of the linear systems (4) and (6) are ill-conditioned and large.
Since they are symmetric and positive definite, we use the PCG [1] method,
which is the most efficient solution method in this case.

A parallel AMG implementation – BoomerAMG [5, 9] is used to precondi-
tion the linear systems. The matrix A = M + τK from (6) is assembled only
once on the first time step and not varied after that. The corresponding AMG
preconditioner is also constructed only on the first time step. Additional details
concerning the parallelization approach can be found in our paper [6].

4 Model Parameters Calibration

Our aim is to identify (tune) the liver tissue parameters, such that the simulation
results better fit the results from the physical experiment. We start with the
material properties in Table 1, taken from the literature [7].

Before we can calibrate the thermal properties sl and kl of the liver, we need
to calibrate it’s electrical conductivity σl in accordance with the experimental
data. Since the electrical field in the model is static, we first computed the
average values for the electrical power and impedance – P = 6.653 W and
R = 111.8 Ω respectively.

In order to match the electrical power P , we need to determine the potential
V0 for the second boundary condition of (3) that will yield the desired value.
To do this, the Laplace equation is initially solved with a boundary condition
V = 1 V at ∂Ωel. Then, E∗ and J∗ are obtained from the solution and the
corresponding electrical power P ∗ can be computed as

P ∗ =

∫
Ω

E∗ · J∗dx

Since the solution and all the components of E and J are proportional to the
value of V0 we can scale the obtained solution, instead of recomputing it, in the
following way

V0 = λ, E = λE∗, J = λJ∗, where λ =
√
P/P ∗.

Now we compute the effective electrical impedance R∗ = V 2
0 /P and then by

setting σl = 0.333R∗/R ≈ 0.2494 and repeating the procedure we obtain a good
match of both P and R with a potential V0 ≈ 27.28 V.

Table 1. Thermal and Electrical Properties of the Materials

Material s (J/m3 K) k (W/m K) σ (S/m)

Stainless steel 2.838 × 106 71 4 × 108

Liver 3.816 × 106 0.512 0.333
Polyurethane 73150 0.026 10−5



After obtaining an electrical field matching the experimental data, we are
now ready to calibrate the thermal properties of the tissue. In order to compare
the numerical results to the measurement, we run the simulation with a time step
of 1 s and consider the results in a single point that is selected on the boundary
between the probe and the tissue around the middle of the uninsulated part of the
needle. Let us denote the physically measured temperature on the i-th second of
the procedure with Tmi and the temperature from the simulation with T si (kl, sl)
respectively. Note that we treat the simulated temperature as a function of the
thermal properties of the tissue. Now we can formulate the calibration problem
as a least-squares optimization problem

min
∑
i

(T si (kl, sl)− Tmi )
2
.

Since in the physical experiment the temperature sensor was not firmly attached
to the ablation probe, we can attribute drops in the measured temperature to a
displacement of the sensor with respect to the probe. Because of this, and also
because the selected point normally has the highest temperature we add the
following constraints

T si (kl, sl) ≥ Tmi , ∀i.

In order to enforce the constraints we use a penalty method, which consists
of solving a series of unconstrained minimization problems

minΨ j(kl, sl), for j = 1, 2, . . .

where

Ψ j(kl, sl) =
∑
i

(T si (kl, sl)− Tmi )
2

+ θj
∑
i

min (0, T si (kl, sl)− Tmi )
2
, (7)

until the minimum stops increasing. The penalty coefficient on the j-th iteration
is selected as {θj}∞j=1 = {0, 1, 10, 100, . . .}. Each minimization result is used as
an initial guess for the next minimization problem. We use the coefficients from
the literature as an initial guess for the first unconstrained minimization. The
iterations of the penalty method are illustrated on Figure 3.

For the solution of each unconstrained minimization problem, we selected the
principal axis method [3]. It is a derivative-free algorithm, where an approximate
model is built up using only values from function evaluations. This algorithm
consists of a series of linear searches, with directions, chosen in a way that ensures
they are well aligned to the principal directions of a local quadratic model.

In our case each function evaluation meant running an RF ablation simulation
with the corresponding material properties and evaluating Ψ j(kl, sl) from (7)
with the resulting temperature samples. For the initial and boundary conditions
(2) the value T0 = 18◦C from the measurement before starting the RF procedure
is used.

Each unconstraned minimization required around 150 simulation runs. The
constrained minimization had 10 steps. The implementation was run on 512
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Fig. 3. Penalty Method Iterations
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Fig. 4. Simulation Results with Different Coefficients

cores of the IBM Blue Gene/P computer and the maximum job duration of one
week was not enough to complete the calibration. However, it was easy to restart
the calibration procedure from where it finished and one restart was enough.

The simulation results with the literature coefficients, the unconstrained fit,
and the constrained fit can all be seen on Figure 4 along with the corresponding
material properties.

5 Concluding Remarks

We have described a feasible, albeit time consuming, procedure for calibration
of model parameters. No specific assumptions are made, therefore we think the
procedure can be applied to any parameters fitting different measurements. In
theory, we can calibrate more than two parameters at the same time with the
developed implementation, although, this was not tested in practice and the



performance might be prohibitive. The developed implementation should be very
useful as we further complicate our model.

Our next steps would be fitting the simulation to measurements, taken from
real patients in clinical trials and also creating a model which includes the ex-
perimentally observed impedance increase.
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