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Abstract. Radio-frequency ablation is a low invasive technique for
treatment of liver tumors. This work concerns the mathematical mod-
eling and computer simulation of the heat transfer process. The core
is solving the time-dependent partial differential equation of parabolic
type. Instead of a uniform discretization of the considered time interval,
an adaptive time-stepping procedure is applied in an effort to decrease
the simulation time. The procedure is based on the local comparison
of the Crank Nicholson and backward Euler approximations. Results of
some preliminary numerical experiments performed on a selected test
problems are presented and discussed.

1 Introduction

The minimally invasive treatment called radio-frequency ablation (RFA), one of
several types of ablation therapy, may be the alternative when open surgery of
certain cancer types is not a good option. Guided by imaging techniques, the
doctor inserts a thin needle through the skin and into the tumor, (see Fig. 1, [19]).
High-frequency electrical energy delivered through this needle heats and destroys
the tumor. The circuit is closed with a ground pad applied to the patient’s skin.

An important advantage of RF current (over previously used low frequency
AC or pulses of DC) is that it does not interfere with the muscles and can be
used without the need for general anaesthesia.

There is an ongoing research in RF probe design. The right procedure pa-
rameters are very important for the successful killing of all of the tumor cells
with minimal damage on the non-tumor cells.

Computer simulation on geometry obtained from a magnetic resonance imag-
ing (MRI) scan of the patient is performed. The influence of the position of the
ground pad to the ablated volume is of special interest, both from the medical
and simulation point of view. Often, in computer simulations reported in the
literature e.g. [1,9,10,15], the position of the ground pad is neglected and a
simple computational domain with a cubic shape is considered. In [16] the au-
thors check the correctness of the assumption that when the pad is far from the
probe then zero potential condition can be applied on the whole boundary of



Fig.1. CT Scan, Showing Radio-Frequency Ablation of a Liver Lesion

the domain and compare the resulting ablated volumes, when ground pads are
put in different positions.

In this work, an adaptive time stepping algorithm is applied to the simulation
in order to reduce the computational time.

The rest of the paper is organized as follows. In Section 2, the mathemat-
ical model is presented along with the space and time discretization schemes.
Section 3 describes the adaptive time-stepping algorithm. Section 4 is devoted
to the computer simulations and analysis of the results obtained on an IBM
Blue Gene/P supercomputer. Finally, some concluding remarks can be found in
Section 5.

2 The Model, Space and Time Discretization

As mentioned above, the RFA procedure destroys the unwanted tissue by heat-
ing, arising when the energy dissipated by the electric current flowing through a
conductor is converted to heat. The considered RF probe consists of a stainless
steel needle, insulated with polyurethane. The RFA procedure starts by placing
the probe inside the tumor. The surgeon performs this under computed tomog-
raphy (CT) or ultrasound guidance. The human liver has a complex structure,
composed of materials with unique thermal and electrical properties. There are
three types of blood vessels with different sizes and flow velocities. Here, a sim-
plified test problem, where the liver consists of homogeneous hepatic tissue and
only the large portal vein vessels is considered.

The bio-heat time-dependent partial differential equation [9, 10] is the governing
equation describing this process. It can be presented as follows:

pc%—sz-kVT—i—J-E—ahB(T—TB), (1)



where the thermal energy arising from the current flow is described by J - E in
(1) and ahp (T — TB) accounts for the heat loss due to blood perfusion in the
capillaries. The heat produced from metabolic functions of the liver is neglected.
The initial and boundary conditions which are used in this approach are as
follows:

T =37°C when t =0 at {2, (2a)

T = 37°C when ¢ > 0 at 92, (2b)
oT

—ka— =T —Ts) when t > 0 at Iy (2¢)
n

The notations which are used in (1) and (2) are given bellow:

T — temperature [K];
Ty — blood temperature (37°C);
wg — blood perfusion coefficient[s~];

e (2 —the entire domain of the model; o
e 02 — the boundary of the domain; o
e [ —the boundary of the blood ves- ¢

[}

sel;

o o density [ke /mg]; hg = chBwB. - convectlv.e heat
. ) transfer coefficient accounting for

e ¢ — specific heat [J/kg K]J; the blood berfusion in th Jel:

e k —thermal conductivity [W/m K]; e blood pertusion n the model;

e J — current density [A/m]; e o — tissue state coefficient;

e E — electric field intensity [V/ml; e n — the outward-pointing normal

e ¢ — time [s[; vector of the boundary.

The cumulative damage integral ¥(t) is used as a measure of ablated region [1,

16):
W@:m(g%):A/fﬁ%ﬁ, (3)

where ¢(t) is the concentration of living cells, R is the universal gas constant, A is
the “frequency” factor for the kinetic expression [s7!], and AFE is the activation
energy for the irreversible damage reaction [J mol~!]. The values used A =
7.39 x 10391 and AE = 2.577 x 10°J mol ™" are taken from [1]. Tissue damage
W (t) = 4.6 corresponds to 99% probability of cell death. The value of ¥(t) = 1,
corresponding to 63% probability of cell death is significant, because at this
point the tissue coagulation first occurs and blood perfusion stops.
The tissue state coefficient « is expressed as

e YO if w(t) < 1,
M”_{ 0if w(t) > 1.

In the presented algorithm the bio-heat problem (1) is solved in two steps
(see [16] for more details):

1. Finding the heat source J - E using that: (a) E = —VV (V is the electric
potential in the computational domain (2), and (b) J = o F, where o is the
electric conductivity [S/m];



2. Finding the temperature T by solving the heat transfer equation (1) using
the heat source J - F obtained in the first step.

For the numerical solution of (1) the finite element method in space is used
([12]). Linear conforming tetrahedral elements are used in this study. They are
directly defined on the elements of the used unstructured mesh (see Fig. 2).
An algebraic multigrid (AMG) preconditioner is used [6]. The time derivative
is discretized via finite differences and the both the backward Euler and the
Crank-Nicholson schemes are used ([13]).

Fig. 2. Inserted RF Probe and the Finite Element Mesh

Let the matrices K and M be the stiffness and mass matrices from the finite
element discretization of (1):

N
K = [/ kEV®; - V(dex} ,
o)

ij=1

N
M = [/ pc@l@jdx] .
2 i,j=1

Let us also denote with {2 the subdomain of {2 where we account for the blood
perfusion (the liver tissue) and with Mp the matrix

N
MB = [/ (SBhB@i@jdx] 5
[0}

ij=1
where

(SB (x) =

a for x € g,
0forxz € 2\ 2g.



The influence of the Robin boundary conditions given in (2c¢) and the electric
field intensity is presented by:

N

MR = [/ aél')l-@jdxl 5 (4)
r i,j=1
and
N
F= [ / JE@igl')jdx] , (5)
2 i,j=1

Than, the spatially discretized parabolic equation (1) can be written in matrix
form as:

or
M+ (K + Mg + My)T = F + MpT + MpTs. (6)

3 Adaptive Time-Stepping Algorithm

To ensure accuracy and not waste computational effort, it is important to adapt
the time steps to the behavior of the solution.

The time discretization for both backward Euler method and the Crank-
Nicolson one can be written in the form

(M 4 7"0(K + Mg + Mg))T"" = (M — 7"(1 — 0)(K + Mg + MRg)) T"
+ (Tne + Tn(l — 6‘))(F + MgTg + MRTB),
(7)

where the current (n-th) time-step is denoted with 7", the unknown solution at
the next time step — with 77 %!, and the solution at the current time step — with
T™. If we set the parameter 6 = 1, (7) gives a system for the backward Euler
discretization. When 6 = 0.5 (7) becomes Crank-Nicolson one. The solution of
the linear system (7) with 6 = 1 and 6 = 0.5 gives us Tgr and Tcn respectively.

A suitable adaptive time-stepping procedure is based on a local comparison
of the backward Euler (7gg) and Crank-Nicolson (T¢n) approximations for the
current timestep, and is controlled by the ratio

|Tex — TaEl|
= —— (8)
| Tsell

This approach has a down side, that solving two linear systems is required to
obtain Tgg and Ten. This is, from the computational point of view, expensive.
Nevertheless overall decrease in computational time is expected.

The algorithm below, describing our adaptive time-stepping procedure, is
based on the one for adaptive time stepping for processes in spent nuclear fuel
repositories [2]. Tt has several parameters:

1. 7! — initial timestep;



2. Nadapt — a parameter showing how often the adaptive time stepping strategy
is applied, e.g. Nadapt = 1 shows that the adaptive time stepping is used on
each step while Naqapt = 3 — that the adaptive time stepping is performed
at every third time step, Nagdapt = 0 indicates that all time steps are non-
adaptive.

3. ANonAdapt — & parameter showing whether and by how much the time step
is multiplied, in non-adaptive time steps, €.g. ANonAdapt = 1 means that the
time step is not changed, while Anonadapt = 1.2 means that the time step
on the current level is multiplied by 1.2 for the next time level.

4. emin and €pax are minimal and maximal thresholds for the error estimate 7.

Algorithm 1 (Adaptive Time-Stepping Procedure)

1. for k=1,2,... until the end of time do
2. if CurrentStepIsAdaptive(N gdapt, k)
2. then

3. do

4. compute Tgg, Ton with Tk

5. compute n

6. if 9 < Emin then 7FHL = 27K
7. if 1 > €140 then Tk = 0.57F
8. while 0 > emax // if too big error, stay on the same timestep
9. T+ = Tgp

10. else

11. compute Tgg with Tk

12. T+ = Tgp

15. TkJrl = 7'kANonAdapt

14. end if

15. end for

The last timestep is always truncated to the time of simulation.

Inner PCG iteration with the BoomerAMG [6] preconditioner, part of the
software package HYPRE, is used for the solution of (7). The preconditioner is
reconstructed if the number of inner iterations goes above 12. The reconstruction
takes place before the solution of the next timestep.

4 Computer Simulations and Analysis of the Output
Results

The IBM Blue Gene/P computer, located at the Bulgarian Supercomputing
Center, is used for the simulations and numerical experiments with the new
adaptive time stepping algorithm. This machine consists of two racks, 2048 Power
PC 450 based compute nodes, 8192 processor cores and a total of 4 TB random
access memory. Each processor core has a double-precision, dual pipe floating-
point core accelerator. Sixteen I/O nodes are connected via fiber optics to a
10 Gbps Ethernet switch.



The material properties which are used in the simulations are taken from [9],
and can be seen in Table 1. The blood perfusion coefficient is wg = 6.4x1073 s~ 1.
The applied electrical power is 15 W, and the simulation is done for 7 minutes.

Table 1. Thermal and Electrical Properties of the Materials

Material p (kg/m?) ¢ (J/kg K) k (W/m K) o (S/m)

Ni-Ti 6 450 840 18 1 x 108
Stainless steel 21 500 132 71 4 x 108
Liver 1 060 3 600 0.512  0.333
Blood 1 000 4180 0.543  0.667
Polyurethane 70 1045 0.026  107°

We run several test to choose a suitable set of values for the threshold pa-
rameters €y, and egax. As a quantitative criterion of quality of the solution we
used two volumes — the volume Vol;, which is the volume of the tissue, where
the cumulative damage integral ¥ is greater than 1, and Vols¢ — the volume of
the tissue, where ¥ > 4.6. The results of the nonadaptive algorithm with step
7 = 1 s were compared with the ones from adaptive runs. Some of the output
results obtained on 128 processors on the IBM Blue Gene/P machine are pre-
sented in Table 2. Looking at the last four columns in this table one can see
that an acceptable variation in the two important volumes less than 3 % occurs
when the threshold interval is [2.5 x 107%,1.25 x 10~3] and this interval is used
in the computer simulations. Based on these preliminary tests, a number of runs
were done both using 128 and 1024 processors. Uniformly refined mesh was used
for the runs on 1024 processors. Some of the output results obtained during the
simulations are presented in Table 3 and Table 4. Comparing the total CPU
times for 128 and 1024 processors (see the fifth column in both tables) and tak-
ing into account that we solve eight times bigger problems on eight times more
processors we may conclude that the adaptive time stepping algorithm has ex-
cellent scalability. One can see in both tables that the best results with regards

Table 2. Vol; and Volse as Functions of the Thresholds in the Adaptive Time-
Stepping Algorithm

€min €min Vol1 Variation Vols¢ Variation
[em®] in% [em?] in
Without adaptive 22.15 - 15.60 -

time stepping
50x 1073 5.0x 1072 23.72 7.08 16.37 4.90
50x 1072 1.0x 1072 23.69 6.99 16.36 4.83
1.0x 1072 5.0x 1072 23.01 3.89 16.06 2.91
50x107% 2.5 x 1072 22.94 3.57 16.05 2.84
25x10741.25 x 1072 22.72 257 1593  2.08




Table 3. Number of Iterations and the CPU Time in the Adaptive Time-Stepping
Algorithm in the Case of 128 Processors.

Nadapt ANonAdapt No. of No. of CPU time Voli Volas
inner iterations outer iterations [s] cm®  cm®

1.0 2233 420 7608 22.14 15.60

1 1.0 917 102 3968 22.72 15.93
1.0 731 104 3137 22.63 15.87

2 1.2 535 71 2321 22.87 16.00
1.3 587 7 2624 22.87 16.02

1.0 700 113 3053 22.58 15.83

3 1.2 539 76 2329  22.88 16.03
1.3 592 7 2559  22.81 15.97

Table 4. Number of Iterations and the CPU Time in the Adaptive Time-Stepping
Algorithm in the Case of 1024 Processors.

NAadapt ANonAdapt No. of No. of CPU time Voli Volss
inner iterations outer iterations [s] [em®] [cm?)

1.0 604 420 7259  22.21 15.65

1 1.0 T 101 4234 22.70 15.92
1.0 594 101 3488 22.70 15.92

2 1.2 478 71 2619  23.01 16.10
1.3 539 T 2082  22.94 16.07

1.0 549 104 3121 22.70 15.93

3 1.2 455 76 2530  22.85 16.01
1.3 514 75 2740  22.94 16.06

to CPU time and number of the inner iterations are obtained when the adaptive
strategy is applied at each second time step and meanwhile, at the intermediate
time steps 7 is multiplied by 1.2. In this case, comparing the total CPU times
of the algorithm without the adaptive time-stepping and using this strategy, it
is seen that the time of the new algorithm is almost three times shorter.

5 Conclusions

An adaptive time stepping algorithm for simulating the radio-frequency ablation
for treatment of liver tumors is presented. The procedure is based on the local
comparison of the Crank-Nicholson and the backward Euler approximations.
Results of some preliminary numerical experiments performed are presented and
discussed. The first experimental results show that the new algorithm is scalable.
The tests allowed us to find some suitable parameters and showed the practical
usefulness of the developed solver for such kind of computer simulations. One can
observe that the computing time is decreased more than three times, the number
of outer iterations is decreased from 420 to 71, and the number of inner iteration



decreases form 2233 to 535. This preliminary results are a good motivation for
further improving the algorithm and doing more simulations.
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