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Abstract. In this work, we consider large-scale finite element modeling
on voxel grids. We are targeting the IBM Blue Gene/P computer, which
features a 3D torus interconnect. Our previous parallelization approach
was to divide the domain in one spatial direction only, which lead to
limited parallelism. Here, we extend it to all three spatial directions in
order to match the interconnect topology.
As a sample problem, we consider the simulation of the thermal and
electrical processes, involved in the radio-frequency (RF) ablation proce-
dure. RF ablation is a low invasive technique for the treatment of hepatic
tumors, utilizing AC current to destroy the tumor cells by heating. A 3D
voxel approach is used for finite element method (FEM) approximation
of the involved partial differential equations. After the space discretiza-
tion, the backward Euler scheme is used for the time stepping.
We study the impact of the domain partitioning on the performance of
a parallel preconditioned conjugate gradient (PCG) solver for the aris-
ing large linear systems. As a preconditioner, we use BoomerAMG – a
parallel algebraic multigrid implementation from the package Hypre, de-
veloped in LLNL, Livermore. The implementation is tested on the IBM
Blue Gene/P massively parallel computer.

1 Introduction

This work is motivated by the need to improve the parallel efficiency of our su-
percomputer simulation of RF hepatic tumor ablation on the IBM Blue Gene/P
massively parallel computer [5]. This simulation is based on a cubical compu-
tational domain, represented by a structured voxel grid. Here, different parallel
partitioning strategies (illustrated on Figure 1) are given special attention.

Our previous implementation allowed only 1D partitioning of the computa-
tional domain among processors. The biggest limitation of this approach is that
the maximum number of processors that can be utilized can never exceed the
voxel image resolution in one direction. For higher voxel resolutions, the sub-
domains assigned to each processor may easily require more than the available
amount of memory.

There is another disadvantage of the 1D partitioning strategy that is specific
to the IBM Blue Gene/P computer. The communication patterns associated
with the 1D partitioning cannot fully utilize the available hardware intercon-
nect, which in this case is either a 3D mesh or a 3D torus, depending on the
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Fig. 1. Examples of Domain Partitioning Strategies

number of processors used. With a 3D partitioning, on the other hand, the
communication patterns can be naturally mapped to the hardware interconnect
topology. Therefore, this strategy is expected to provide the best scalability. The
presented parallel tests fully confirm this.

2 Radio-Frequency Tumor Ablation

Let us turn our attention to the considered numerical simulation. RF ablation is
an alternative, low invasive technique for the treatment of hepatic tumors, uti-
lizing AC current to destroy the tumor cells by heating ([6, 7]). The destruction
of the cells occurs at temperatures of 45◦C–50◦C. The procedure is relatively
safe, as it does not require open surgery.
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Fig. 2. The Structure of a Fully Deployed RF Probe



The considered RF probe is illustrated on Figure 2. It consists of a stain-
less steel trocar with four nickel-titanium retractable electrodes. Polyurethane
is used to insulate the trocar. The RF ablation procedure starts by placing the
straight RF probe inside the tumor. The surgeon performs this under computer
tomography (CT) or ultrasound guidance. Once the probe is in place, the elec-
trodes are deployed and RF current is initiated. Both the surfaces areas of the
uninsulated part of the trocar and the electrodes conduct RF current.

The human liver has a very complex structure, composed of materials with
unique thermal and electrical properties. There are three types of blood vessels
with different sizes and flow velocities. Here, we consider a simplified test prob-
lem, where the liver consists of homogeneous hepatic tissue and blood vessels.

The RF ablation procedure destroys the unwanted tissue by heating, arising
when the energy dissipated by the electric current flowing through a conductor
is converted to heat. The bio-heat time-dependent partial differential equation
[6, 7]

ρc
∂T

∂t
= ∇ · k∇T + J ·E − hbl(T − Tbl) (1)

is used to model the heating process during the RF ablation. The term J · E
in (1) represents the thermal energy arising from the current flow and the term
hbl(T − Tbl) accounts for the heat loss due to blood perfusion.

The following initial and boundary conditions are applied

T = 37◦C when t = 0 at Ω,

T = 37◦C when t ≥ 0 at ∂Ω.
(2)

The following notations are used in (1) and (2):

– Ω – the entire domain of the model;
– ∂Ω – the boundary of the domain;
– ρ – density (kg/m3);
– c – specific heat (J/kg K);
– k – thermal conductivity (W/m K);
– J – current density (A/m);
– E – electric field intensity (V/m);
– Tbl – blood temperature (37◦C);
– wbl – blood perfusion (1/s);
– hbl = ρblcblwbl – convective heat transfer coefficient accounting for the blood

perfusion in the model.

The bio-heat problem is solved in two steps. The first step is finding the
potential distribution V of the current flow. With the considered RF probe
design, the current is flowing from the conducting electrodes to a dispersive
electrode on the patient’s body. The electrical flow is modeled by the Laplace
equation

∇ · σ∇V = 0, (3)

with boundary conditions
V = 0 at ∂Ω,

V = V0 at ∂Ωel.



The following notations are used in the above equations:

– V – potential distribution in Ω;
– σ – electric conductivity (S/m);
– V0 – applied RF voltage;
– ∂Ωel – surface of the conducting part of the RF probe.

After determining the potential distribution, the electric field intensity can
be computed from

E = −∇V,

and the current density from
J = σE.

The second step is to solve the heat transfer equation (1) using the heat
source J ·E obtained in the first step.

For the numerical solution of both of the above discussed steps of the simula-
tion the Finite Element Method (FEM) in space is used ([2]). Linear conforming
elements are chosen in this study. To apply the linear FEM discretization to the
voxel domain, each voxel is split into six tetrahedra. To solve the bio-heat equa-
tion, after the space discretization, the time derivative is discretized via finite
differences and the backward Euler scheme is used ([3]).

Let us denote with K∗ the stiffness matrix coming from the FEM discretiza-
tion of the Laplace equation (3). It can be written in the form

K∗ =

[
∫

Ω

σ∇Φi · ∇Φjdx

]N

i,j=1

,

where {Φi}
N

i=1
are the FEM basis functions.

The system of linear algebraic equations

K∗X = 0 (4)

is to be solved to find the nodal values X of the potential distribution.
The electric field intensity and the current density are than expressed by the

partial derivatives of the potential distribution in each finite element. This way,
the nodal values F for the thermal energy E ·J arising from the current flow are
obtained.

Let us now turn our attention to the discrete formulation of the bio-heat
equation. Let us denote with K and M the stiffness and mass matrices from the
finite element discretization of (1). They can be written as

K =

[
∫

Ω

k∇Φi · ∇Φjdx

]N

i,j=1

,

M =

[
∫

Ω

ρcΦiΦjdx

]N

i,j=1

.



Let us also denote with Ωbl the subdomain of Ω occupied by blood vessels and
with Mbl the matrix

Mbl =

[
∫

Ω

δblhblΦiΦjdx

]N

i,j=1

,

where

δbl(x) =

{

1 for x ∈ Ωbl,

0 for x ∈ Ω \Ωbl.

Than, the parabolic equation (1) can be written in matrix form as:

M
∂T

∂t
+ (K +Mbl)T = F +MblTbl. (5)

If we denote with τ the time-step, with T n+1 the solution at the current time
level, and with T n the solution at the previous time level and approximate the
time derivative in (5) we obtain the following system of linear algebraic equations
for the nodal values of T n+1

(M + τ(K +Mbl))T
n+1 = MT n + τ(F +MblTbl). (6)

The matrices of the linear systems (4) and (6) are ill-conditioned and very
large, having around 108 rows. Since they are symmetric and positive definite,
we use the PCG [1] method, which is the most efficient solution method in this
case.

A parallel algebraic multigrid implementation is used as a preconditioner.
The matrix A = M + τ(K +Mbl) from (6) is assembled only once on the first
time step and not varied after that. The corresponding AMG preconditioner is
also constructed only on the first time step.

3 Parallel Tests

The results presented in this section are based on a high-resolution voxel-based
representation of the computational domain. The domain consists of liver and
tumor tissues, a large bifurcated blood vessel and the RF ablation probe (see
Figure 3). We use three different domains (with sizes 127×127×127, 255×255×
255, and 511× 511× 511) to compare the performance and the weak scalability
of the simulation using the three considered partitioning strategies.

Table 1 lists the thermal and electrical properties of the materials, which are
taken from [6] as well as the blood perfusion coefficient wbl = 6.4×10−3 1/s. For
the test simulations, a RF voltage of 10 V is applied for a duration of 8 minutes.
A time step of τ = 5 s is used.

Large-scale systems of linear algebraic equations arise from the FEM dis-
cretization of the considered problem, requiring an efficient parallel implementa-
tion. A parallel PCG solver is used here. The selected preconditioner is Boomer-
AMG [4, 8] – a state of the art parallel preconditioner of optimal complexity. A
relative PCG stopping criterion in the form

r
T
k C

−1
rk ≤ ε2rT0 C

−1
r0, ε = 10−6,



Fig. 3. High-Resolution 3D Voxel Representation of the Computational Domain

where rk stands for the residual at the k-th step of the PCG method, is used.

The settings for the BoomerAMG preconditioner were carefully tuned for
maximum scalability in time. The selected coarsening algorithm is Falgout-

CLJP.Modified classical interpolation is applied. The selected relaxation method
is hybrid symmetric Gauss-Seidel or SSOR. To decrease the operator and grid
complexities two levels of aggressive coarsening are used and the maximum num-
ber of elements per row for the interpolation is restricted to six. Smaller operator
and grid complexities lead to faster iterations and reduced memory requirements,
but can also affect the convergence rate of the solver. Thus, the values of the
last two parameters must be carefully chosen to provide the best balance. With
the above described setup, the solutions of the linear systems on each time step
required 1–3 PCG iterations.

Table 1. Thermal and Electrical Properties of the Materials

Material ρ (kg/m3) c (J/kg K) k (W/m K) σ (S/m)

Ni-Ti 6 450 840 18 1× 108

Stainless steel 21 500 132 71 4× 108

Liver 1 060 3 600 0.512 0.333
Blood 1 000 4 180 0.543 0.667
Polyurethane 70 1 045 0.026 10−5



The presented parallel tests are performed on the IBM Blue Gene/P machine
at the Bulgarian Supercomputing Center (see http://www.scc.acad.bg/). This
supercomputer consists of 2048 PowerPC 450 based compute nodes, each with
four cores running at 850 MHz and 2 GB RAM. It is equipped with a torus
network for the point to point communications capable of 5.1 GB/s and a tree
network for global communications with a bandwidth of 1.7 GB/s. Our software
is implemented in C++, using MPI for the parallelization. It is compiled using
the IBM XL C++ compiler with the following options: “-O5 -qstrict”.

Table 2. Parallel Times and Weak Scaling for the Complete Simulation

Domain size Np = Px × Py × Pz Unknowns Nit Time
Weak

scaling

127× 127 × 127 8 = 8 × 1 × 1 2 097 152 161 1 225.00 s
255× 255 × 255 64 = 64 × 1 × 1 16 777 216 128 5 951.08 s 21 %
511× 511 × 511 512 = 512 × 1 × 1 134 217 728 — > 24 h < 2 %

127× 127 × 127 8 = 4 × 2 × 1 2 097 152 167 1 137.83 s
255× 255 × 255 64 = 8 × 8 × 1 16 777 216 129 1 203.29 s 95 %
511× 511 × 511 512 = 32 × 16 × 1 134 217 728 114 1 581.13 s 72 %

127× 127 × 127 8 = 2 × 2 × 2 2 097 152 167 1 137.91 s
255× 255 × 255 64 = 4 × 4 × 4 16 777 216 128 1 062.30 s 107 %
511× 511 × 511 512 = 8 × 8 × 8 134 217 728 114 1 155.08 s 99 %

The parallel times for the whole numerical simulation are presented in Table
2. The three parts of the table correspond to the three considered partitioning
strategies. Here, Np is the number of processors, Px, Py, Pz are the number
of partitions in direction x, y, z respectively, and Nit is the number of PCG
iterations performed during the simulation. The simulation in the 1D partition-
ing case for the largest domain could not finish in 24 hours, which is the hard
limit for problems of this size on the Blue Gene/P machine in the Bulgarian Su-
percomputing Center. The weak scaling with respect to the smallest simulation
domain is provided for each partitioning strategy. A big advantage of the 3D
partitioning strategy over the other two is observed. The 1D partitioning is the
least scalable of the considered three.

Equivalent computations are performed with each partitioning strategy, as
each processor holds the same number of unknowns and the number of PCG
iterations is almost the same. The communications, however, are quite different.
In the case of 3D partitioning, the partition allocated to each processor has the
same size (64 × 64 × 64 unknowns) for all domains. Typical communications
involve the transfer of values for all the unknowns on the interfaces between
neighboring partitions. Therefore, in the 3D partitioning case, the communica-
tion time should be independent of the domain size. Moreover, by mapping the
partitioning to the underlying interconnect topology, we ensure that the commu-



nications in each direction can be performed in parallel. With the 1D partitioning
strategy the size of the interfaces increases four times with each next domain
size, which is the reason for the much lower scalability. The scalability of above
100 % can be explained by the smaller number of PCG iterations in this case.

4 Concluding remarks

Parallel tests of a large-scale, time-dependent, voxel-based simulation of the RF
ablation procedure are presented. Such simulations require very efficient use of
supercomputer resources. Three approaches to the partitioning of the compu-
tational domain are presented and compared. Using a 3D domain partitioning
leads to a substantial scalability improvement over our previous work, as clearly
demonstrated by the parallel test results.

Our future plans include enhancing the model in order to simulate a more
complex type of RF ablation probe, involving fluid injection during the proce-
dure. Overcoming the previous restriction on the number of processors in our
implementation as well as improving its scalability were crucial for enabling us
to take the next step.
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