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Abstract. In this study, the topics of grid generation and FEM appli-
cations are studied together following their natural synergy. We consider
the following three grid generators: NETGEN, TetGen and Gmsh. The
qualitative analysis is based on the range of the dihedral angles of the
triangulation of a given domain. After that, the performance of two dis-
placement decomposition (DD) preconditioners that exploit modified in-
complete Cholesky factorization MIC(0) is studied in the case of FEM
matrices arising from the discretization of the three-dimensional equa-
tions of elasticity on unstructured tetrahedral grids.

Keywords: finite element method, preconditioned conjugate gradient
method, MIC(0), displacement decomposition.

1 Introduction

Mesh generation techniques are now widely employed in various scientific and
engineering fields that make use of physical models based on partial differential
equations. While there are a lot of works devoted to finite element methods
(FEM) and their applications, it appears that the issues of meshing technologies
in this context are less investigated. Thus, in the best cases, this aspect is briefly
mentioned as a technical point that is possibly non-trivial.

In this paper we consider the problem of linear elasticity with isotropic ma-
terials. Let Ω ⊂ R

3 be a bounded domain with boundary Γ = ∂Ω and u =
(u1, u2, u3) the displacement in Ω. The components of the small strain tensor
are

εij(u) =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, 1 ≤ i, j ≤ 3

and the components of the Cauchy stress tensor are

τij =
3∑

k,l=1

cijklεkl(u), 1 ≤ i, j ≤ 3 ,

where the coefficients cijkl describe the behavior of the material. In the case of
isotropic material the only non-zero coefficients are

ciiii = λ + 2μ, ciijj = λ, cijij = cijji = μ .
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Now, we can introduce the Lamé’s system of linear elasticity (see, e.g., [2])

(λ + μ)
3∑

k=1

∂2uk

∂xk∂xi
+ μ

3∑
k=1

∂2ui

∂x2
k

+ Fi = 0, 1 ≤ i ≤ 3 (1)

equipped with boundary conditions

ui(x) = gi(x), x ∈ ΓD ⊂ ∂Ω ,
3∑

j=1

τij(x)nj(x) = hi(x), x ∈ ΓN ⊂ ∂Ω ,

where nj(x) denotes the components of the outward unit normal vector n onto
the boundary x ∈ ΓN . The finite element method (FEM) is applied for dis-
cretization of (1) where linear finite elements on a triangulation T are used.
The preconditioned conjugate gradient (PCG) [1] method will be used for the
solution of the arising linear algebraic system Kuh = fh.

2 MIC(0) DD Preconditioning

We first recall some known facts about the modified incomplete Cholesky fac-
torization MIC(0), see, e.g. [4,5]. Let A = (aij) be a symmetric n × n matrix
and let

A = D − L − LT ,

where D is the diagonal and −L is the strictly lower triangular part of A. Then
we consider the factorization

CMIC(0) = (X − L)X−1(X − L)T ,

where X = diag(x1, . . . , xn) is a diagonal matrix, such that the row sums of
CMIC(0) and A are equal

CMIC(0)e = Ae, e = (1, . . . , 1) ∈ R
n .

Theorem 1. Let A = (aij) be a symmetric n × n matrix and let

L ≥ 0
Ae ≥ 0

Ae + LT e > 0 where e = (1, . . . , 1)T .

Then there exists a stable MIC(0) factorization of A, defined by the diagonal
matrix X = diag(x1, . . . , xn), where

xi = aii −
i−1∑
k=1

aik

xk

n∑
j=k+1

akj > 0 .
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It is known, that due to the positive offdiagonal entries of the coupled stiffness
matrix K, the MIC(0) factorization is not directly applicable to precondition
the FEM elasticity system. Here we consider a composed algorithm based on a
separable displacement three-by-three block representation⎡

⎣K11 K12 K13
K21 K22 K23
K31 K32 K33

⎤
⎦uh = fh .

In this setting, the stiffness matrix K is spectrally equivalent to the block-
diagonal approximations CSDC and CISO

CSDC =

⎡
⎣K11

K22
K33

⎤
⎦ , CISO =

⎡
⎣ A

A
A

⎤
⎦ , (2)

where A =
1
3
(K11+K22+K33). The theoretical background of this displacement

decomposition (DD) step is provided by the second Korn’s inequality [2]. Now
the MIC(0) factorization is applied to the blocks of (2). In what follows, the
related preconditioners will be referred to as CSDC-MIC(0) and CISO-MIC(0), cf.
[2,4,6].

3 Diagonal Compensation

The blocks K11, K22, K33 and A correspond to a certain FEM elliptic problem
on the triangulation T . Here, we will restrict our analysis to the case of isotropic
DD, i.e., we will consider the piece-wise Laplacian matrix

A =
∑
e∈T

Ae

where the summation sign stands for the standard FEM assembling procedure.
In the presence of positive offdiagonal entries in the matrix, the conditions of
Theorem 1 are not met. To meet these conditions we use diagonal compensation
to substitute the matrix A by a proper M -matrix Ā. After that the MIC(0)
factorization is applied to Ā. The procedure consists of replacing the positive
offdiagonal entries in A with 0 in Ā and adding them to the diagonal, so that
Ae = Āe.

The following important geometric interpretation of the current element stiff-
ness matrix holds (see, e.g., in [7])

Ae =
Pe

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
1�=i<j

�ij cot θij −�34 cot θ34 −�24 cot θ24 −�23 cot θ23

−�34 cot θ34

∑
2�=i<j �=2

�ij cot θij −�14 cot θ14 −�13 cot θ13

−�24 cot θ24 −�14 cot θ14

∑
3�=i<j �=3

�ij cot θij −�12 cot θ12

−�23 cot θ23 −�13 cot θ13 −�12 cot θ12

∑
i<j �=4

�ij cot θij

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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where Pe is some constant, depending on the material coefficents, �ij denotes
the length of the edge connecting vertices vi and vj of the tetrahedron e and
θij denotes the dihedral angle at that edge. This interpretation shows that each
positive offdiagonal entry in the element stiffness matrix corresponds to an ob-
tuse dihedral angle in the tetrahedron e. Also a positive entry tends to infinity
when the dihedral angle tends to 180 ◦. In the presence of very large dihedral
angles, the relative condition number κ(Ā−1A) may become very large. Since
the MIC(0) factorization is applied to the auxilary matrix Ā, the performance
of the preconditioner strongly depends on this relative condifion number. In the
two-dimensional case an uniform estimate of the condition number, depending
only on the minimal angle was derived (see [6]). In the three-dimensional case,
however, it is much harder to obtain an uniform estimate, since the element
matrices depend not only on the shape of the elements, but also on elements
sizes.

4 Comparison of Mesh Generators

In this section we compare the following three mesh generators:

– NETGEN v.4.4 (http://www.hpfem.jku.at/netgen/);
– Tetgen v.1.4.1 (http://tetgen.berlios.de/);
– Gmsh v.2.0.0 (http://geuz.org/gmsh/).

In the previous section we have seen the impact of very large dihedral angles
on the preconditioning. Very small and very large angles also affect the accuracy
of the FEM approximation as well as the condition number of the related stiffness
matrix.

The domain we chose for this comparison is

Ω = {(x, y, z) | 0.1 ≤ x2 + y2 + z2 ≤ 1, x, y, z ≥ 0} . (3)

Different parameters of the grid generators may affect the quality of the result-
ing meshes. Some generated meshes are shown in Fig. 1 and the minimal and

(a) (b) (c)

Fig. 1. Meshes, generated by: (a) NETGEN; (b) TetGen; (c) Gmsh



692 N. Kosturski

Table 1. Resulting Mesh Properties

Generator Parameters Min Angle Max Angle Elements Nodes

NETGEN grading = 1 14.3553 ◦ 151.997 ◦ 436 189
NETGEN grading = 0.5 19.3608 ◦ 142.821 ◦ 650 245
NETGEN grading = 0.2 26.1134 ◦ 135.173 ◦ 1882 504
TetGen ratio = 2 5.06703 ◦ 166.432 ◦ 474 197
TetGen ratio = 1.5 6.26918 ◦ 169.619 ◦ 714 251
TetGen ratio = 1.2 6.12442 ◦ 168.717 ◦ 1484 417
Gmsh h = 0.05, H = 0.5 13.3345 ◦ 143.297 ◦ 1192 344
Gmsh h = 0.03, H = 0.3 20.9614 ◦ 144.173 ◦ 1553 436
Gmsh h = 0.015, H = 0.15 18.7442 ◦ 137.373 ◦ 3718 940

maximal angles and numbers of nodes and elements for the three considered
mesh generators with various values of the parameters are given in Table 1.

The mesh quality in NETGEN highly depends on the mesh-size grading pa-
rameter. Decreasing the value of this parameter leads to a mesh with better
dihedral angles at the expense of larger number of elements and nodes. In Tet-
Gen, the mesh element quality criterion is based on the minimum radius-edge
ratio, which limits the ratio between the radius of the circumsphere of the tetra-
hedron and the shortest edge length. It seems, however, that this parameter does
not directly reflect on the dihedral angles. With all tested values the resulting
meshes contained both very small and very large dihedral angles. For Gmsh,
the parameters h and H correspond to the characteristic lengths, assigned re-
spectively to the vertices on the inner and the outer spherical boundary of the
domain.

The results show that NETGEN generally achieved better dihedral angles
than TetGen. Gmsh achieved similar dihedral angles, but with considerably
larger number of elements/nodes than NETGEN.

5 Numerical Experiments

The presented numerical test illustrate the PCG convergence rate of the two
studied displacement decomposition algorithms. The number of iterations for
the CG method are also given for comparison. A relative PCG stopping criterion
in the form rT

k C−1rk ≤ ε2rT
0 C−1r0 is employed. Here rk is the residual vector

at the k-th iteration and C is the preconditioner.

Remark 1. The experiments are performed using the perturbed version of the
MIC(0) algorithm, where the incomplete factorization is applied to the matrix
Ã = A + D̃. The diagonal perturbation D̃ = D̃(ξ) = diag(d̃1, . . . , d̃n) is defined
as follows:

d̃i =
{

ξaii if aii ≥ 2wi

ξ1/2aii if aii < 2wi
,

where 0 < ξ < 1 is a constant and wi = −
∑

j>i aij .
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Table 2. Model Problem in the Unit Cube, ε = 10−6

Mesh Elements Nodes CG ISO-MIC(0) SDC-MIC(0)

1 384 125 26 13 13
2 3 072 729 53 17 15
3 24 576 4 913 110 26 22
4 196 608 35 937 192 38 33
5 1 572 864 274 625 459 53 51

Remark 2. A generalized coordinate-wise ordering is used to ensure the condi-
tions for a stable MIC(0) factorization.

Remark 3. Uniform refinement of the meshes in not used in the experiments,
since it does not preserve the dihedral angles. For example let us consider the
platonic tetrahedron (with dihedral angles ≈ 70.5288 ◦). After splitting it in 8
new tetrahedrons we obtain a mesh with dihedral angles ranging from 54.7356 ◦

to 109.471 ◦. Four of the new tetrahedrons are similar to the original one, and all
the other four have one obtuse dihedral angle. The numbers of elements in the
experiments with unstructured meshes, thus do not increase exactly 8 times.

5.1 Model Problem in the Unit Cube

We first consider a model pure displacement problem in the unit cube Ω = [0, 1]3

and ΓD = ∂Ω. The material is homogeneous with λ = 1 and μ = 1.5, and
the right-hand side corresponds to the given solution u1 = x3 + sin(y + z),
u2 = y3 + z2 − sin(x− z), u3 = x2 + z3 +sin(x− y). An uniform initial (coarsest)
triangulation with a mesh size h = 1/4 is used. The resulting convergence rates
are given in Table 2.

5.2 Model Problem in a Curvilinear Domain

We consider the same model problem, but on the domain (3) (see Fig. 1(a)). The
resulting convergence rates are given in Table 3. NETGEN is used to generate
the meshes for this experiment.

Table 3. Model Problem in the Curvilinear Domain, ε = 10−6

Mesh Elements Nodes CG ISO-MIC(0) SDC-MIC(0)

1 1 882 504 54 16 16
2 13 953 3 022 117 17 16
3 107 530 20 589 291 23 21
4 843 040 150 934 715 31 31
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L1

L2

L3

L4

ΓD

F1 F2

(a) (b)

(c) (d)

Fig. 2. Pile Foundation System: (a) Geometry; (b) A Mesh with Local Refinement;
(c) Vertical Displacements; (d) Vertical Stresses

5.3 Computer Simulation of a Pile Foundation System

We consider the simulation of a foundation system in multi-layer soil media.
The system consists of two piles with a linking plate. Fig. 2 (a) shows the ge-
ometry of Ω and the related weak soil layers. The generator used here is NET-
GEN. Meshes are locally refined in areas with expected concentration of stresses,
see Fig. 2 (b). The material characteristics of the concrete (piles) are λp =
7666.67 MPa, μp = 11500 MPa. The related parameters for the soil layers are as
follows: λL1 = 28.58 MPa, μL1 = 7.14 MPa, λL2 = 9.51 MPa, μL2 = 4.07 MPa,
λL3 = 2.8 MPa, μL3 = 2.8 MPa, λL4 = 1.28 MPa, μL4 = 1.92 MPa. The forces,
acting on the top cross-sections of the piles are F1 = (150 kN, 2000 kN, 0) and
F2 = (150 kN, 4000 kN, 0). Dirichlet boundary conditions are applied on the bot-
tom side. Fig. 2 (c) and (d) show contour plots of the solution. Table 4 contains
the PCG convergence rate for Jacobi (the diagonal of the original matrix is used
as a preconditioner) and the two MIC(0) DD preconditioners.
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Table 4. Pile Foundation System, ε = 10−6

Mesh Elements Nodes Jaccobi ISO-MIC(0) SDC-MIC(0)

1 24 232 4 389 942 376 307
2 136 955 24 190 1680 564 505
3 859 895 149 111 3150 783 668
4 6 137 972 1 052 306 5416 972 929

5.4 Concluding Remarks

The rigorous theory of MIC(0) preconditioning is applicable to the first test
problem only. For a structured grid with a mesh size h and smoothly varying
material coefficients, the estimate κ(C−1

h Ah) = O(h−1) = O(N1/3) holds, where
Ch is the SDC-MIC(0) or ISO-MIC(0) preconditioner. The number of PCG
iterations in this case is nit = O(N1/6). The reported number of iterations
fully confirm this estimate. Moreover, we observe the same asymptotics of the
PCG iterations for the next two problems, which is not supported by the theory
up to now. As we see, the considered algorithms have a stable behaviour for
unstructured meshes in a curvilinear domain (see Fig. 1(a)). The robustness in
the case of local refinement and strong jumps of the coefficients is well illustrated
by the last test problem.
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