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a b s t r a c t

In this study, the topics of grid generation and FEM applications are studied together
following their natural synergy. We consider the following three tetrahedral grid
generators: NETGEN, TetGen, and Gmsh. After that, the performance of the MIC(0)
preconditioned conjugate gradient (PCG) solver is analyzed for both conforming and
non-conforming linear FEM problems. If positive off-diagonal entries appear in the
corresponding matrix, a diagonal compensation is applied to get an auxiliary M-matrix
allowing a stable MIC(0) factorization. The presented numerical experiments for elliptic
and parabolic problems well illustrate the similar PCG convergence rate of the MIC(0)
preconditioner for both, structured and unstructured grids.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Mesh generation techniques are now widely employed in various scientific and engineering fields that make use of
physical models based on partial differential equations. While there are many works devoted to finite element methods
(FEM) and their applications, it appears that the issues of meshing technologies in this context are less investigated. Thus, in
the best cases, this aspect is briefly mentioned as a technical point that is possibly non-trivial. In this study, the topics of grid
generation and FEM applications are studied together following their natural synergy. This paper is a direct continuation of
our recent study on two-dimensional grids [7].
LetΩ ⊂ R3 be a bounded domain with boundary ∂Ω = Γ = ΓD ∪ ΓN , where ΓD ∩ ΓN = ∅. The following elliptic (1)

and parabolic (2) problems are considered:

−∇ · (a(x)∇u(x)) = f (x), x ∈ Ω,
u(x) = uD(x), x ∈ ΓD,
(a(x)∇u(x)) · n = gN(x), x ∈ ΓN ,

(1)

∂u(x, t)
∂t

−∇ · (a(x, t)∇u(x, t)) = f (x, t), (x, t) ∈ Ω × [0, T ],
u(x, 0) = u0(x), x ∈ Ω,
u(x, t) = uD(x, t), (x, t) ∈ ΓD × [0, T ],
(a(x, t)∇u(x, t)) · n = gN(x, t), (x, t) ∈ ΓN × [0, T ].

(2)

Let us introduce the triangulation Th of Ω and the uniform mesh ωτ with a time step τ > 0 in [0, T ]. The finite element
method (FEM) associatedwith Th and the FEMwith Crank–Nicholson scheme on Th×ωτ are used to discretize the problems
(1) and (2) respectively. Then, the elliptic problem (1) is reduced to the system

Kuh = fh, (3)
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where K stands for the stiffness matrix. At each Crank–Nicholson time step, the following linear system is to be solved(
M +

τ

2
K
)
un+1h =

(
M −

τ

2
K
)
unh + τ f

n+ 12
h , (4)

where the upper index of the unknown vector indicates the number of the current time step, and M stands for the mass
matrix. The modified incomplete Cholesky factorization MIC(0) is used in the preconditioned conjugate gradient (PCG) [2]
solution of the systems (3) and (4).
The implementation of two variants of finite elements defined on Th is studied, namely, conforming (Courant) and non-

conforming (Crouzeix–Raviart) linear finite elements.
Each of these methods has its advantages and disadvantages when the problem is used in a particular application. The

general assumption is that non-conforming elements are applied for problems where the lower order conforming elements
are not robust.
For instance, in the case of highly heterogeneous media the non-conforming finite elements have proven to be accurate

and locally conservative, see e.g. [1]. The non-conforming finite elements have also some advantages in the case of strongly
coupled problems. For example, the projection schemes are currently among the most efficient ways to build a stable
discretization of the initial-boundary value problem for the Navier–Stokes equations. Let us note that the Crouzeix–Raviart
linear finite elements in a combination with piecewise constants provide inf-sub stable and computationally efficient
discretization of the velocity–pressure fields. As a result, decoupled non-conforming FEM elliptic/parabolic problems are
to be solved at the prediction step, see e.g. [3] and the references therein.
We investigate the following three grid generators: NETGEN, TetGen, and Gmsh. The presented qualitative analysis is

based on the range of the dihedral angles of the triangulation for a given test domain. It iswell known that very small and very
large angles directly affect the accuracy of the FEM approximation. Such kind of strong mesh anisotropy deteriorates also
the condition number of the related stiffnessmatrix, and aswill be shown later on, the convergence rate of the implemented
iterative solution methods. Some advantages of NETGEN are observed in this respect.
The remainder of the paper is organized as follows. Some needed background about MIC(0) factorization is given in the

next section. Section 3 contains an analysis of the diagonal compensation. The comparison of the consideredmesh generators
is summarized in Section 4. Section 5 discusses some issues, related to the uniform refinement of unstructured tetrahedral
grids. Numerical tests for structured (model) and unstructured (general) grids are presented in Section 6. Short concluding
remarks are given at the end.

2. MIC(0) preconditioning

We recall some known facts about the modified incomplete Cholesky factorization MIC(0) [4,5]. Let A = (aij) be a
symmetric N × N matrix and let

A = D− L− LT, (5)
where D is the diagonal and (−L) is the strictly lower triangular part of A. Then we consider the factorization

CMIC(0) = (X − L)X−1(X − L)T, (6)
where X = diag(x1, . . . , xN) is a diagonal matrix, such that the sums of the rows of CMIC(0) and A are equal, i.e.,

CMIC(0)e = Ae, eT = (1, . . . , 1) ∈ RN . (7)

Theorem 2.1. Let A = (aij) be a symmetric N × N matrix and let

L ≥ 0, (8)
Ae ≥ 0, (9)

Ae+ LTe > 0. (10)

Then there exists a stable MIC(0) factorization of A, defined by the diagonal matrix X = diag(x1, . . . , xN), where

xi = aii −
i−1∑
k=1

aik
xk

N∑
j=k+1

akj > 0. (11)

Remark 2.1. The numerical tests, presented in Section 6 are performed using the perturbed version of MIC(0) algorithm,
where the incomplete factorization is applied to the matrix Ã = A + D̃. The diagonal perturbation D̃ = D̃(ξ) =
diag(d̃1, . . . d̃N) is defined as follows:

d̃i =
{
ξaii if aii ≥ 2wi,
ξ 1/2aii if aii < 2wi,

where 0 < ξ < 1 is a parameter andwi =
∑
j>i−aij.
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Fig. 1. A Crouzeix–Raviart non-conforming linear element.

3. Diagonal compensation

It is known, that due to the positive off-diagonal entries of the stiffness matrix K , the MIC(0) factorization is not directly
applicable to precondition the FEM system. The diagonal compensation is a simple general approach to avoid this problem.

3.1. Elliptic problems

The stiffness matrix K corresponds to a certain FEM discretization of the elliptic problem (1) on the triangulation Th.
When there are some positive off-diagonal entries in the matrix, the stability condition (8) for the MIC(0) factorization is
not satisfied. The diagonal compensation is the simplest procedure to approximate K by an M-matrix K̄ , in order to apply
the MIC(0) factorization. This means that the positive off-diagonal entries of K are vanished, setting the diagonal of K̄ , such
that the equal row sum condition is fulfilled, i.e., Ke = K̄e.
The standard FEM procedure of freezing the isotropic coefficient a(x) on each finite element (the usual notation ae for the

element-wise integral mean value approximation of a(x) will be used) leads to the consideration of a piecewise Laplacian
problem. The global stiffness matrix reads as

K =
∑
e∈Th

Ke, (12)

where Ke is the current element stiffness matrix, and the summation sign stands for the FEM assembling procedure. When
necessary we will use the notations K (c), K (c)e , K (nc), K

(nc)
e , where (c) and (nc) indicate the cases of conforming and non-

conforming elements.
The following important geometric interpretation of the element stiffness matrix K (c)e holds (see, e.g., in [8])

K (c)e =
ae
6



∑
16=i<j

lij cot θij −l34 cot θ34 −l24 cot θ24 −l23 cot θ23

−l34 cot θ34
∑

26=i<j6=2

lij cot θij −l14 cot θ14 −l13 cot θ13

−l24 cot θ24 −l14 cot θ14
∑

36=i<j6=3

lij cot θij −l12 cot θ12

−l23 cot θ23 −l13 cot θ13 −l12 cot θ12
∑
i<j6=4

lij cot θij


, (13)

where lij denotes the length of the edge connecting vertices vi and vj of the tetrahedron e, and θij stands for the dihedral angle
along this edge. This presentation shows that each positive off-diagonal entry in the element stiffness matrix corresponds
to an obtuse dihedral angle in the tetrahedron e. The related positive entry tends to infinity when the dihedral angle tends
to 180◦.
Now, let us turn on to the case of Crouzeix–Raviart non-conforming finite elements. The related test functions are

piecewise linearwith interpolation nodes at the centers ofmass (centroids) of the faces of the tetrahedral element instead of
the vertices (as is for the standard Courant elements). Let us denotewith {wi}4i=1 the centroids of the faces of the tetrahedron
and with e∗ the tetrahedral element associated with these vertices. Then, it is easily seen that the edges of the tetrahedron
e∗ are three times smaller than the edges in the original tetrahedron (see Fig. 1).
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The basis functions of the non-conforming element are the same as the basis functions of the small conforming element
e∗. If we denote these basis functions with {ϕi}4i=1, the element stiffness matrices can be written as

K (c)e∗ =
[∫
e∗
a(x)∇ϕi · ∇ϕj

]4
i,j=1

,

K (nc)e =

[∫
e
a(x)∇ϕi · ∇ϕj

]4
i,j=1

,

and, since the volume of the tetrahedron e is 27 times larger than the volume of e∗, it follows that K (nc)e = 27K (c)e∗ .
Furthermore, from the geometric representation of the element stiffness matrix (13), it is easily seen that K (c)e = 3K

(c)
e∗ .

This leads to the next useful lemma.

Lemma 3.1. Let us consider an arbitrary convex tetrahedron e. Then the following relation holds

K (nc)e = 9K (c)e , (14)

where K (c)e and K (nc)e stand for the related element stiffness matrices corresponding to linear conforming (Courant) and linear
non-conforming (Crouzeix–Raviart) finite elements.

One direct conclusion from (14) is the applicability of the geometric interpretation (13) to the case of non-conforming linear
tetrahedral elements.

Lemma 3.2. Let us consider a piecewise Laplacian elliptic problem discretized by linear conforming finite elements on a
tetrahedral mesh Th. Then, the stiffness matrix K (c) is an M matrix if all dihedral angles of Th are smaller than or equal to 90◦.

Lemma 3.3. Let us consider a piecewise Laplacian elliptic problem discretized by linear non-conforming finite elements on a
tetrahedral mesh Th. Then, the stiffness matrix K (nc) is an Mmatrix if and only if all dihedral angles of Th are smaller than or equal
to 90◦.

Note that the condition that there are no obtuse dihedral angles in themesh is sufficient in both cases and necessary only
in the case of Crouzeix–Raviart finite elements.
It is observed, that the relative condition number κ(K̄−1K) tends to infinity when themaximal dihedral angle tends to π .

Since the MIC(0) factorization is applied to the auxiliary matrix K̄ , the convergence rate of the MIC(0)–PCG solver strongly
deteriorates with the raise of dihedral angles in the FEM mesh.
In the two-dimensional (2D) case, the relative condition number of the diagonal compensation is known to be bounded

by a constant depending on the minimal angle θmin of the triangulation only. The proof of the following sharp estimate

κ(K̄−1K) ≤ cot2 θmin

can be found in our recent publication [6]. It is well known that the element stiffness matrix in the 2D case depends only
on the triangle angles, and not on both the angles and the lengths of the edges, as is in the three-dimensional (3D) case.
Moreover, the sum of the angles in the triangle is always fixed and the triangle can have at most one obtuse angle.
In the 3D case, there can be up to three obtuse dihedral angles in a single element. Moreover, we do not know any simple

relation between the edge lengths and the dihedral angles in the tetrahedron. Thus, the 3D analysis of the relative condition
number of the matrices Ke and K̄e seems to be much more complicated than in the 2D case.

3.2. Parabolic problems

When the Crank–Nicholson scheme is implemented solving the parabolic problem (2) we have to get a preconditioner
for the matrix M + τ

2K . Then, the diagonal compensation for K in combination with lumping the mass for M are applied
before the MIC(0) factorization. At this point, an advantage of the non-conforming Crouzeix–Raviart elements is, that the
related mass matrix is always anM-matrix, i.e., lumping the mass is thus not required.

4. Comparison of mesh generators

In this section, we compare the following three mesh generators:

• NETGEN v.4.4 (http://www.hpfem.jku.at/netgen/);
• Tetgen v.1.4.1 (http://tetgen.berlios.de/);
• Gmsh v.2.0.0 (http://geuz.org/gmsh/).

http://www.hpfem.jku.at/netgen/
http://tetgen.berlios.de/
http://geuz.org/gmsh/
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Fig. 2. Test meshes, generated by the three considered generators with different settings.

As was already mentioned, the appearance of very small and very large angles in the FEM mesh, strongly deteriorates
the accuracy of the numerical solution and the condition number of the related stiffness matrix. In the previous section we
also paid a special attention on the negative impact of the large dihedral angles on the MIC(0)–PCG convergence rate.
The domain we chose for the presented comparative analysis is

Ω = {(x, y, z) | 0.1 ≤ x2 + y2 + z2 ≤ 1, x, y, z ≥ 0}. (15)

Different parameters of the grid generators may affect the quality of the resulting meshes. Some generated meshes are
shown in Fig. 2. The obtained minimal and maximal angles, and the related number of nodes and elements are given in
Table 1.
The mesh quality of NETGEN highly depends on themesh-size grading parameter. Decreasing the value of this parameter

leads to meshes with better dihedral angles at the expense of larger number of elements and nodes.
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Table 1
Properties of the resulting test meshes

Generator Parameters Min. angle (◦) Max. angle (◦) Elements Nodes

NETGEN Grading = 1 14.3553 151.997 436 189
NETGEN Grading = 0.5 19.3608 142.821 650 245
NETGEN Grading = 0.2 26.1134 135.173 1882 504
TetGen Ratio = 2 5.06703 166.432 474 197
TetGen Ratio = 1.5 6.26918 169.619 714 251
TetGen Ratio = 1.2 6.12442 168.717 1484 417
Gmsh h = 0.05, H = 0.5 13.3345 143.297 1192 344
Gmsh h = 0.03, H = 0.3 20.9614 144.173 1553 436
Gmsh h = 0.015, H = 0.15 18.7442 137.373 3718 940

Fig. 3. Tetrahedron subdivision into eight parts.

In TetGen, the mesh element quality criterion is based on theminimum radius–edge ratio, which limits the ratio between
the radius of the circumsphere of the tetrahedron and the shortest edge length. It seems, however, that this parameter does
not directly reflect on the dihedral angles. For all tested values, the resulting meshes contain both very small and very large
dihedral angles.
For Gmsh, the parameters h and H correspond to the characteristic lengths, assigned respectively to the vertices on the

inner and the outer spherical boundary of the domain.
The presented results show that NETGEN generally achieves better dihedral angles than TetGen. Similar dihedral angles

are obtained with Gmsh, but due to considerably larger number of elements/nodes, than with NETGEN.

5. Mesh refinement

In 2D case, the uniform refinement of a triangular mesh is simply defined by splitting of each triangle to four, connecting
the midpoints of the sides. The resulting triangles are similar to the original one, preserving the angles of the coarser
triangulation. Unfortunately, a completely similar statement does not hold in 3D case.
One 3D uniform splitting is shown in Fig. 3. First, four tetrahedra, similar to the original one, are cut from the corners

(see the left part of the figure). After that, the remaining octahedron is split to four parts. This splitting involves selecting a
diagonal. The diagonal v5v7 is chosen here (see the top right part of the figure). Usually, the shortest of the three diagonals
should be chosen to obtain the best result. The bottom right part of the figure shows the corresponding tetrahedral splitting
of the octahedron.
It is important to note, that this uniform refinement could substantially deteriorate the angles of the triangulation.

Let us consider, for example, the platonic tetrahedron with equal dihedral angles θ = cos−1( 13 ) ≈ 70.5288
◦. After one

step of uniform refinement, the tetrahedra that are part of the related octahedron have dihedral angles ranging from
1
2 cos

−1(− 13 ) ≈ 54.7356
◦ to cos−1(− 13 ) ≈ 109.471

◦.
The good news is, that the consequent uniform refinement does not generate a further increase of the mesh anisotropy.

The octahedron is split to six similar octahedra, and eight tetrahedra similar to the original one. The same procedure is
applied recursively, preserving the angles obtained at the first refinement step.
NETGENprovides a volume optimization operation. Table 2 shows the properties of somemeshes, obtained by consecutive

refinement steps via volume optimization. The starting (coarsest) mesh is the best one from the previous section (see
NETGEN with grading = 0.2 in Table 1).
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Table 2
Refined meshes

Mesh Min. angle (◦) Max. angle (◦) Elements Nodes

1 26.1134 135.173 1882 504
2 16.1153 139.000 13953 3022
3 16.1153 135.846 107530 20589
4 16.1153 147.272 843040 150934

Fig. 4. Coarser structured (a) and unstructured (b) meshes, used in the numerical experiments.

These meshes are used in the next section to benchmark the MIC(0)–PCG solver for elliptic and parabolic problems on
unstructured meshes.

6. Numerical experiments

The presented numerical tests illustrate the MIC(0)–PCG convergence rate. A relative PCG stopping criteria in the form
rTkC
−1rk ≤ ε2rT0C

−1r0 is employed. Here rk is the residual vector at the kth iteration and C is the MIC(0) preconditioner. We
compare the obtained results in the cases of linear conforming and non-conforming finite elements.
The considered model elliptic problem is

−∆u = f , ΓD ≡ ∂Ω, (16)

with Dirichlet boundary conditions on the whole boundary corresponding to the exact solution

u(x, y, z) = x3 + y2 + z4 + sin(x− y).

The related parabolic problem is

∂u
∂t
−∆u = f , ΓD ≡ ∂Ω, (17)

where t ∈ [0, 1], the time step is τ = 0.01, and the Dirichlet boundary conditions on the whole boundary correspond to
the exact solution

u(x, y, z, t) = x4 + y3 + sin(x− z)+ t2.

Both (16) and (17) are solved on both structured and unstructured grids (see Fig. 4). Two types of finite elements are used
to discretize the two model problems: conforming (Courant) and non-conforming (Crouzeix–Raviart).
The obtained iteration counts are presented in both table and graphic form.When parabolic problems are considered, the

iteration count is the total number for all time steps. The asymptotic behavior of the MIC(0)–PCG solver is well expressed
in all cases.

Remark 6.1. In the case of unstructured meshes, a generalized coordinate-wise ordering is used to ensure the conditions
for a stable MIC(0) factorization.
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Table 3
MIC(0)–PCG iterations for the model problems in the unit cube: Conforming FEM, ε = 10−6

Mesh Elements Nodes Elliptic Parabolic

2 3072 729 11 514
3 24576 4913 16 711
4 196608 35937 23 916
5 1572864 274625 34 1127

Table 4
MIC(0)–PCG iterations for the model problems in the unit cube: Non-conforming FEM, ε = 10−6

Mesh Elements Nodes Elliptic Parabolic

1 384 864 23 1108
2 3072 6528 31 1547
3 24576 50688 43 2267
4 196608 399360 61 3155

Fig. 5. Number of iterations for the elliptic model problem in the unit cube.

Table 5
MIC(0)–PCG iterations for the model problems in the curvilinear domain: Conforming FEM, ε = 10−6

Mesh Elements Nodes Elliptic Parabolic

2 13953 3022 10 704
3 107530 20589 14 1007
4 843040 150934 20 1505

6.1. Structured grids

The results for the model problems on the unit cube with uniform structured grids are presented in Tables 3 and 4. They
contain the number of iterations for conforming and non-conforming elements respectively.
The convergence rates are graphically presented in Figs. 5 and 6. The solid and dashed lines correspond to the cases of

conforming and non-conforming finite elements. The plots give a better opportunity to compare the increase of the iteration
counts with the size of the problem. The logarithmic scale more transparently illustrates the asymptotic behavior of the
number of iterations.

6.2. Unstructured grids

The presentation in this section strictly follows the introduced setting from the previous one. Tables 5 and 6 and Figs. 7
and 8 contain the numerical results for the elliptic and parabolic test problems on the related unstructured grids.
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Fig. 6. Number of iterations for the parabolic model problem in the unit cube.

Fig. 7. Number of iterations for the elliptic problem in the curvilinear domain.

Fig. 8. Number of iterations for the parabolic problem in the curvilinear domain.
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Table 6
MIC(0)–PCG iterations for the model problems in the curvilinear domain: Non-conforming FEM, ε = 10−6

Mesh Elements Nodes Elliptic Parabolic

1 1882 4080 20 1306
2 13953 29170 27 1909
3 107530 220116 46 3132

6.3. Concluding remarks

The rigorous theory of MIC(0) preconditioning is directly applicable only to the model elliptic problem in the unit cube,
discretized by standard linear conforming finite elements. For this simplest case, the reported number of iterations fully
confirms the estimate nit = O(N1/6). Here, we observe the same asymptotic behavior of the PCG iterations for all remaining
problems, which are not supported by the theory up to now, including the case of Crouzeix–Raviart non-conforming finite
elements. As we see, the considered algorithms have a well-expressed stable behavior for the considered unstructured
meshes. The next general conclusion is that the iteration count is smaller for the conforming FEM problemswhen compared
to the results for non-conforming FEM systems of the same size. However, the stable convergence rate of the MIC(0)–PCG
solver for Crouzeix–Raviart FEM systems is of a particular importance, due to the special robustness properties of these
non-conforming elements.
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