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a b s t r a c t

The work is motivated by the problem of freeze-drying, which is a process of dehydrating
frozen materials by sublimation under high vacuum. In particular, it concerns the
mathematical modelling and computer simulation of the heat and mass transfer with the
core in solving the time-dependent nonlinear partial differential equation of parabolic type.
Instead of a uniform discretization of the considered time interval, an adaptive

time-stepping procedure is applied in an effort to optimize the whole simulation. The
procedure is based on the local comparison of the Crank–Nicolson and backward Euler
approximations. The results of numerical experiments performed on a selected real-life
problem are included.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Freeze-drying is a special technology of dehydrating frozenmaterials by sublimation under high vacuum [9,6]. One of its
possible applications comes from the food industry, where it can be used for drying certain kinds of food-stuffs, for example
carrots or coffee.
The apparatus consists of two interconnected containers; see Fig. 1. One is the food camera intended for the product to be

dried (it can be seen in the left-hand side of the picture) and the other is the adsorbent camera filled by natural or artificial
zeolite granules [12]. There could be one ormore adsorption cameras. In Fig. 1 the casewith two adsorption cameras is given.
Zeolites are a special type of silica-containing material, with a porous structure, applicable as adsorbents and catalysts [1].
Here, they are used for the sorption of water molecules coming through the pipe from the food camera.
The whole process of drying has three phases. The first one is a preparation of the source material in the food container,

which is then vacuumed. Also during this phase, the adsorbent located in the second container is activated, which means
warmed up, vacuumed and cooled to a room temperature. The second phase is the self-freezing of the sourcematerial (after
opening the valve between the food and adsorption cameras) surrounded by high vacuum. The last phase is the drying in
conditions of an uniform sublimation of water steam from the source material in the food container and its disposal in the
adsorbent.
The sublimation is supported by heaters installed in the food camera. The heat is supplied to the source material by

conduction, by radiation or by a combination of both methods, but at a proper rate to avoid local melting.
Such kind of drying technologyhas several advantages. For example, it results in a higher foodquality due to theminimum

loss of flavour and aroma, andminimal chances ofmicrobial growth due to the absence ofwater, or no thermal and oxidizing
processes.
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Fig. 1. The apparatus for vacuum freeze-drying.

The mathematical model of the whole process of freeze-drying is described by a system of time-dependent differential
equations, but with the possibility to split the processes in the food container and in the adsorbent camera according to the
technological subprocesses involved.

2. Heat and mass transfer problem

Further, we will consider only the process of heat and mass transfer in the adsorbent camera. It is described by the
nonlinear partial differential equation of parabolic type,

cρ
∂T
∂t
= LT + f (x, t), x ∈ Ω, t > 0, (1)

where

LT =
d∑
i=1

∂

∂xi

(
k(x, t)

∂T
∂xi

)
and T (x, t) denotes the unknown temperature distribution, k = k(x, t) > 0 the heat conductivity, c = c(x, t) > 0 the heat
capacity, and ρ > 0 thematerial density. The function f (x, t, T ) is responsible for the process of transfer of water molecules
in the adsorption container. By default, d is the given dimension of the space (d = 2) andΩ ∈ Rd denotes the computational
domain.
To the parabolic equation, we assign the initial and boundary conditions in the standard form,

T (x, 0) = T0(x), x ∈ Ω,
T (x, t) = µ(x, t), x ∈ Γ ≡ ∂Ω, t > 0,

where T0(x) is the initial temperature distribution in the computational domain, most often the room temperature
surrounding the adsorbent camera, and µ(x, t) is the room temperature during the freeze-drying process, which can be
controlled by cooling/heating devices.
The Finite Element Method (FEM) with linear triangle elements (so-called Courant linear finite elements) is applied for

discretization in the space of (1) (see e.g. [2]). Let Th be a triangulation of the computational domainΩ with discretization
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Fig. 2. The algorithm of the adaptive time-stepping procedure.

parameter h and φ = {φi}
Nsp
i=1 be the Lagrangian basis of the finite element space according to the triangulation Th. Then, the

problem can be written in the following matrix form:

M
dT
dt
+ KT = F (2)

with the mass matrixM , the stiffness matrix K and the right-hand side F given by the following three expressions:

M =
[∫

Ω

c ρ φi φjdx
]Nsp
i,j=1

, K =
[∫

Ω

k∇φi∇φj dx
]Nsp
i,j=1

, F =
[∫

Ω

f (x, t) φi dx
]Nsp
i=1
.

The initial-boundary value problem of heat and mass transfer (2) is discretized by the finite differences in time [2]. Using
the simplest finite differences, this leads to the computation of the vector T k of nodal temperatures at the time levels tk,
k = 1, . . . ,N , with the time steps τk = tk − tk−1. In the case of a uniform time discretization with a constant time step τ ,
we solve the linear system

(M + τ ϑK) T k = (M − τ (1− ϑ) K) T k−1 + τ ϑ F k + τ (1− ϑ) F k−1. (3)

The parameter ϑ ∈ [0, 1] sets the time scheme of the computation. We aim to develop a fully robust and stable method;
therefore, we restrict our attention to implicit methods with ϑ = 1

2 and ϑ = 1, which correspond to the Crank–Nicolson
(CN) method and the backward Euler (BE) method [3,8], respectively. In practice, we use the backward Euler method, which
is unconditionally stable.
For the solution of the linear system (3) the well-known Conjugate Gradient Method (CGM) with a Modified Incomplete

Cholesky factorization (MIC(0)) preconditioner [4,5] is used.

3. Adaptive time steps

To ensure accuracy and not waste computational effort, it is important to adapt the time steps to the behaviour of the
solution. In the simplest case, we can test the time change of the solution and change the time step size, if the variation is
too small or too large.
A suitable adaptive time-stepping procedure is based on a local comparison of the backward Euler (TBE ) and

Crank–Nicolson (TCN ) approximations and controlled with the aid of the ratio η = ‖TCN − TBE‖/‖TBE‖. However, such an
approach requires the solution of two linear systems to obtain TBE and TCN , which is, from the computational point of view,
too expensive.
To make it cheaper, we solve only the linear system for the backward Euler steps. We get TBE and can approximate the

solution of the corresponding linear system for the Crank–Nicolson steps TCN with T CN ' TBE − r . The residual r arises from
the substitution of TBE in the linear system for the Crank–Nicolson steps. In other words, to obtain T CN , we perform only
Richardson iteration of the linear system for the Crank–Nicolson steps, whereas the initial approximation of the solution
is set to be TBE . And consequently, η

k
= ‖rk‖/‖T k

BE
‖. The method described below gives the basis of the algorithm for the

adaptive time-stepping procedure, see Fig. 2, which was first applied to the mathematical modelling of processes in spent
nuclear fuel repositories [10].
The algorithm depends on the choice of the parameters εmin and εmax, which should be fit to the problem to be solved. In

usual practice, we set εmin = 10−8 and εmax = 10−7; see Section 4.3.
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Fig. 3. The time-step change during the execution of one of the test experiments.

Fig. 4. Model of half of the adsorbent camera and its FE discretization.

The matrix changes in each time step. Therefore, it is advantageous to adapt the time step less frequently and use the
adaptively obtained value of τ k several times. This number of non-adaptive steps #NA, between two following adaptive
ones, is the next parameter of the algorithm. We practically use #NA = 4; see Section 4.2. The plot of the varied adaptive
time steps corresponding to a simple run can be seen in Fig. 3. The starting value of the time-step τ is chosen as 5 s. During
the adaptive procedure it becomesmany times greater, but more often it is between 40 and 80 s, i.e. between 8 and 16 times
grater than the initial one.
The efficiency of the algorithmcan also be increasedbyusing a suitable initial approximation for solving the linear system.

For example, the initial approximation can be taken directly from the previous time step, or given by the linear extrapolation
of two previous time steps.

4. Numerical experiments

We studied the heat and mass transfer in the adsorption camera by solving the introduced initial-boundary value
problem. The numerical methods described were implemented in C++ and the resulting program code was tested on a
selected real-life problem. The experimentswere performedon a standard PC equippedwith a Pentium IV/1.5GHzprocessor,
256 kB of L2 cache, 256 MB of memory, and running the Scientific Linux 4.5 operating system.

4.1. Model of the adsorbent camera

For the numerical experiments, we chose the 2D model of the adsorbent camera, which is a part of the technological
device for vacuum freeze-drying of grated carrots. Due to the symmetry, the model includes only one half of the container,
surrounded by the room atmosphere. The scheme of the situation is shown in Fig. 4. The container consists of three
subdomains: the wales of the container, the vacuum zone, and the area with zeolite granules.
The computational domain is discretized by linear triangular finite elementswith the aid of the computermesh generator

Triangle [7,11]. For the generation, the options for a minimal angle of a triangle (the most often used value is 30◦) and for
a minimal area of a single triangle (depending on different subdomains and on the geometry) were applied. The mesh is
refined around the walls of the container, resulting in 6568 nodes and 12819 elements.
The time interval considered varies for testing purposes and for the computations of the full modeling sequence. The first

is done for 5000 s, whilst the time interval for the second is set to be 760405 s, which means more than 8 days and 19 h.
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Table 1
Test results for the various #NA

#NA Time (s) #It #ItA #TS τ ?
‖T−Tex‖2
‖T‖2

‖T − Tex‖∞

0 28.47 8515 8515 104 48.1 3.87× 10−6 1.53×10−3

2 20.40 6700 3110 88 56.8 4.68× 10−6 1.88×10−3

4 15.89 5540 1513 77 64.9 3.31× 10−6 1.36×10−3

8 18.19 6225 1204 95 52.6 5.55× 10−6 2.32×10−3

16 17.66 6073 664 99 50.5 5.55× 10−6 2.32×10−3

32 16.37 5661 366 93 53.8 4.35× 10−6 1.80×10−3

Constant time steps τ = 5 s: Time = 109.07 s, #It = 33 067, #TS = 999.

Table 2
Test result for the various combinations of εmin and εmax

εmin εmax Time (s) #It #ItA #TS τ ?
‖T−Tex‖2
‖T‖2

‖T − Tex‖∞

10−9 10−8 38.33 11869 2996 265 19 2.17× 10−6 8.18×10−4

10−8 10−7 15.89 5540 1513 77 65 3.31× 10−6 1.36×10−3

10−7 10−6 9.27 3321 929 37 135 8.66× 10−6 4.08×10−3

10−6 10−5 3.71 1291 699 7 714 2.86× 10−5 2.29×10−2

Constant time steps τ = 5 s: Time = 109.07 s, #It = 33 067, #TS = 999.

The adaptive time-stepping procedure always begins with τ = 5 s. In each time step, we solve the linear system by the
preconditioned conjugate gradient method up to the relative residual accuracy εPCG = 10−9.

4.2. How often is it necessary to perform the adaptive time stepping procedure?

The first tests of the solver were aimed at discovering the optimal number of times to perform the adaptive time stepping
procedure, and to fit the parameter #NA to the studied problem. For the various values #NA, we solved the model problem
in the shorter time interval, whilst the other parameters were fixed, εmin = 10−8 and εmax = 10−7; see Table 1.
Instead of varying #NA, the table includes the measured wall-clock time of the computation, and further, the number

of all PCG iterations #It; separately, also the number of PCG iterations performed only during the adaptive time steps #ItA,
the number of time steps necessary for the considered time interval #TS, the averaged time step τ ?, and the errors of the
solution. Here, the exact solution vector Tex means the solution of the problem for the constant time steps τ = 5 s by the
Crank–Nicolson method.
The results confirm the usefulness of the adaptive time steps. In comparisonwith computation involving only the uniform

time discretization, the measured wall-clock time is shorter by more than 5 times, the number of required time steps #TS
is less by more than 10 times, and the number of necessary PCG iterations #It by more than 4 times. The errors stay almost
constant and independent of the choice of #NA.
Therefore, we recommend #NA ∈ [2, 16]with the preference of smaller values to approximate the time evolution of the

problem more precisely and not to miss possible stronger gradients of the solution. Practically, we choose #NA = 4.

4.3. How to set the other parameters

During the numerical experiments involving the shorter time interval, we tried also to fit the parameters εmin and εmax
to the solved problem, whilst the number of non-adaptive steps stayed fixed, #NA = 4; see Table 2.
The obtained results demonstrate the sensitivity of the computation on the choice of the parameters εmin and εmax, which

influences the resulting number of PCG iterations #It, the number of time steps #TS, and thus also themeasured computation
time. Moreover, they affect the errors of the numerical solution.
In the case of our application and for the given relative accuracy of the PCG iterations εPCG, the considered values of εmin

and εmax should be bounded to εmin ∈ 〈 εPCG, εPCG · 102 〉 and εmax = εmin · 10.

4.4. Impact on computer simulations of the whole drying cycle

To get a better idea about the practical efficiency of the adaptive time-stepping procedure in vacuum freeze-drying
computer simulation, we also performed numerical tests in the full time interval, set to be more than 8 days and 19 h;
see Table 3. In accordance with the previous results, we tested three combinations of the input parameters εmin and εmax
together with a fixed number of non-adaptive time steps, #NA = 4.
Applying the uniform time discretization, the large-scale computation requires more than 152 thousand time steps,

consuming 4 h and 41 min of the computer power. However, due to the relatively smooth and go-easy process of heat
and mass transfer, it is not necessary to perform so many very small time steps. In this respect, the adaptive time-
stepping procedure helps to optimize the computer simulation. According to the chosen input parameters εmin and εmax,
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Table 3
The results of the full time interval computations

εmin εmax Time (s) #It #TS τ ?
‖T−Tex‖2
‖T‖2

‖T − Tex‖∞

10−9 10−8 5539.4 1711902 35880 21 1.86× 10−6 4.13×10−4

10−8 10−7 2274.6 786912 10358 73 6.09× 10−5 1.85×10−2

10−7 10−6 800.6 300058 2943 258 1.19× 10−4 2.29×10−2

The constant time steps τ = 5 s, Time = 16 882.6 s, #It = 5 023 738, #TS = 152 082.

Fig. 5. The temperature field at the end of the full time interval.

Fig. 6. The gradual water filling of the zeolite granules.

the computation lasts from 13 min to 1 h and 32 min. Taking into account the acceptable errors of the computation, the full
time interval simulation requires 38 min for more than 10 thousand time steps, when τ ? = 73 s.
Let us note, that the adaptive time stepping is strongly varying andnon-monotonic (see Fig. 3),which reflects the complex

nonlinear nature of the physical process studied.

4.5. From the engineering point of view

Themain output of the vacuum freeze-drying computer simulation in the adsorbent camera is the temperature field, see
Fig. 5, because the temperature nonlinearly influences the ability of the zeolite granules to adsorb the water steam.
After the activation, the zeolites start to adsorb thewatermolecules and their water filling accumulates in time, see Fig. 6,

including the situation at the first, second and last thirds of the time interval. Due to thewater accumulation, the temperature
of the zeolites increases and their adsorbent capacity declines. This could lead to the worst-case scenario, when a too high
temperature of the zeolites stops or even reverses the adsorption process. For this reason, it is important to monitor or to
control the temperature of the zeolite granules and to balance the process of heat andmass transfer in the adsorbent camera.

5. Conclusion

The paper is devoted to the mathematical modelling and computer simulation of the vacuum freeze-drying process.
In particular, it concerns the time evolution of the temperature field in the adsorbent camera as well as the transfer of the
sublimedwatermolecules and their retention in the zeolite granules. The problem, described by a time-dependent nonlinear
partial differential equation of parabolic type, leads to the repeated solution of linear systems at different time levels.
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The current study is based on an existing computer simulator where only uniform time discretization with constant
time steps was used. In an effort to optimize the computation, the adaptive time-stepping procedure was implemented and
tuned. The procedure is based on the local comparison of Crank–Nicolson and backward Euler approximations.
Finally, numerical tests were performed on a selected large-scale real-life problem. The tests allowed us to find suitable

parameters and showed the practical usefulness of the developed solver for such kind of computer simulations.
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