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Abstract. We simulate the thermal and electrical processes, involved in the radio-frequency (RF)
ablation procedure. The mathematical model consists of two parts – electrical and thermal. The
energy from the applied AC voltage is determined first, by solving the Laplace equation to find
the potential distribution. After that, the electric field intensity and the current density are directly
calculated. Finally, the heat transfer equation is solved to determine the temperature distribution.
Heat loss due to blood perfusion is also accounted for.

The representation of the computational domain is based on a voxel mesh. Both partial differ-
ential equations are discretized in space via linear conforming FEM. After the space discretization,
the backward Euler scheme is used for the time stepping.

Large-scale linear systems arise from the FEM discretization. Moreover, they are ill-conditioned,
due to the strong coefficient jumps and the complex geometry of the problem. Therefore, efficient
parallel solution methods are required.

The developed parallel solver is based on the preconditioned conjugate gradient (PCG) method.
As a preconditioner, we use BoomerAMG – a parallel algebraic multigrid implementation from the
package Hypre, developed in LLNL, Livermore.

Parallel numerical tests, performed on the IBM Blue Gene/P massively parallel computer are
presented.
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INTRODUCTION

The liver is a common location of tumors. However, not all patients are candidates for
surgical resection, due to various criteria. Alternative techniques for treating this disease
are needed. RF ablation is a low invasive technique for the treatment of hepatic tumors,
utilizing AC current to destroy the tumor cells by heating ([5, 6]). The destruction of the
cells occurs at temperatures of 45◦C–50◦C. The procedure is relatively safe, as it does
not require open surgery.

The considered RF probe is illustrated on Figure 1. It consists of a stainless steel
trocar with four nickel-titanium retractable electrodes. Polyurethane is used to insulate
the trocar. The RF ablation procedure starts by placing the straight RF probe inside
the tumor. The surgeon performs this under computer tomography (CT) or ultrasound
guidance. Once the probe is in place, the electrodes are deployed and RF current is
initiated. Both the surfaces areas of the uninsulated part of the trocar and the electrodes
conduct RF current.

Mathematical models improve our understanding of the physical processes during
the RF ablation procedure, which can aid in decreasing the posttreatement recurrence
rate of this type of treatment. Computer simulation is a powerful tool for predicting the
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FIGURE 1. The structure of a fully deployed RF probe

outcome of the RF ablation procedure in various settings. The aim is to destroy all the
tumor cells, without destroying too many healthy cells. Overheating the tissue around the
ablation probe must also be avoided. The duration of the procedure should be as short as
possible, not exceeding 8 minutes. Computer simulation can be used for designing new
ablation probes, as well as for determining the optimal settings (power, duration, probe
placement, etc.) in individual cases.

The human liver has a very complex structure, composed of materials with unique
thermal and electrical properties. There are three types of blood vessels with different
sizes and flow velocities. Large blood vessels affect the RF ablation procedure in two
ways. First, when the blood vessels are located close to the ablation electrodes, they
affect the electrical field, because of the higher electrical conductivity of the blood. Sec-
ond, the blood, flowing through the large blood vessels acts like a heat sink, decreasing
the temperature around them.

Here, we consider a simplified test problem, where the liver consists of homogeneous
hepatic tissue and blood vessels. However, our implementation is capable of utilizing
patient specific data for the liver and tumor geometry to realistically simulate the pro-
cess.

THE MATHEMATICAL MODEL

The RF ablation procedure destroys the unwanted tissue by heating, arising when the
energy dissipated by the electric current flowing through a conductor is converted to
heat. The bio-heat time-dependent partial differential equation [5, 6]

ρc
∂T
∂ t

= ∇ · k∇T + J ·E−hbl(T −Tbl) (1)
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is used to model the heating process during the RF ablation. The term J · E in (1)
represents the thermal energy arising from the current flow and the term hbl(T − Tbl)
accounts for the heat loss due to blood perfusion.

The following initial and boundary conditions are applied

T = 37◦C when t = 0 at Ω,
T = 37◦C when t ≥ 0 at ∂Ω.

(2)

The following notations are used in (1) and (2):

• Ω – the entire domain of the model;
• ∂Ω – the boundary of the domain;
• ρ – density (kg/m3);
• c – specific heat (J/kg K);
• k – thermal conductivity (W/m K);
• J – current density (A/m);
• E – electric field intensity (V/m);
• Tbl – blood temperature (37◦C);
• wbl – blood perfusion (1/s);
• hbl = ρblcblwbl – convective heat transfer coefficient accounting for the blood

perfusion in the model.

The bio-heat problem is solved in two steps. The first step is finding the potential
distribution V of the current flow. With the considered RF probe design, the current is
flowing from the conducting electrodes to a dispersive electrode on the patient’s body.
The electrical flow is modelled by the Laplace equation

∇ ·σ∇V = 0, (3)

with boundary conditions
V = 0 at ∂Ω,
V = V0 at ∂Ωel.

The following notations are used in the above equations:

• V – potential distribution in Ω;
• σ – electric conductivity (S/m);
• V0 – applied RF voltage;
• ∂Ωel – surface of the conducting part of the RF probe.

After determining the potential distribution, the electric field intensity can be com-
puted from

E =−∇V,

and the current density from
J = σE.

The second step is to solve the heat transfer equation (1) using the heat source J ·E
obtained in the first step.
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NUMERICAL TREATMENT

For the numerical solution of both of the above discussed steps of the simulation the
Finite Element Method (FEM) in space is used ([2]). Linear conforming elements
are chosen in this study. They provide a simple implementation in combination with
a guaranteed optimal convergence rate and parallel scalability of the applied AMG
preconditioner. To apply the linear FEM discretization to the voxel domain, each voxel
is split into six tetrahedra. To solve the bio-heat equation, after the space discretization,
the time derivative is discretized via finite differences and the backward Euler scheme is
used ([3]).

Let us denote with K∗ the stiffness matrix coming from the FEM discretization of the
Laplace equation (3). It can be written in the form

K∗ =




∫

Ω

σ∇Φi ·∇Φ jdx




N

i, j=1

,

where {Φi}N
i=1 are the FEM basis functions.

The system of linear algebraic equations

K∗X = 0 (4)

is to be solved to find the nodal values X of the potential distribution.
The electric field intensity and the current density are than expressed by the partial

derivatives of the potential distribution in each finite element. This way, the nodal values
F for the thermal energy E · J arising from the current flow are obtained.

Let us now turn our attention to the discrete formulation of the bio-heat equation.
Let us denote with K and M the stiffness and mass matrices from the finite element
discretization of (1). They can be written as

K =




∫

Ω

k∇Φi ·∇Φ jdx




N

i, j=1

,

M =




∫

Ω

ρcΦiΦ jdx




N

i, j=1

.

Let us also denote with Ωbl the subdomain of Ω occupied by blood vessels and with Mbl
the matrix

Mbl =




∫

Ω

δblhblΦiΦ jdx




N

i, j=1

,

where

δbl(x) =
{

1 for x ∈Ωbl,
0 for x ∈Ω\Ωbl.
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TABLE 1. Thermal and electrical properties of the materials

Material ρ (kg/m3) c (J/kg K) k (W/m K) σ (S/m)

Ni-Ti 6 450 840 18 1×108

Stainless steel 21 500 132 71 4×108

Liver 1 060 3 600 0.512 0.333
Blood 1 000 4 180 0.543 0.667
Polyurethane 70 1 045 0.026 10−5

Than, the parabolic equation (1) can be written in matrix form as:

M
∂T
∂ t

+(K +Mbl)T = F +MblTbl. (5)

If we denote with τ the time-step, with T n+1 the solution at the current time level, and
with T n the solution at the previous time level and approximate the time derivative in
(5) we obtain the following system of linear algebraic equations for the nodal values of
T n+1

AT n+1 = MT n + τG, (6)

where
A = M + τ(K +Mbl),

and
G = F +MblTbl.

The matrices K∗ and A of the linear systems (4) and (6) are ill-conditioned and very
large, having around 108 rows. Since they are symmetric and positive definite, we use
the PCG [1] method, which is the most efficient solution method in this case.

A parallel algebraic multigrid implementation is used as a preconditioner. Since the
matrix A is not varied between time steps, we only construct the algebraic multigrid
once, before the first time-step. It can be readily used after that to precondition the linear
systems for all subsequent time steps.

EXPERIMENTAL RESULTS

The results presented in this section are based on a high-resolution voxel-based rep-
resentation of the computational domain. The domain consists of liver and tumor tis-
sues, a large bifurcated blood vessel and the RF ablation probe (see Figure 2). Do-
mains with four different sizes (256×256×256, 322×322×322, 406×406×406, and
512×512×512), each having approximately twice as many degrees of freedom as the
previous, are used to illustrate the weak scalability of the considered solution methods.

Table 1 lists the thermal and electrical properties of the materials, which are taken
from [5] as well as the blood perfusion coefficient wbl = 6.4×10−3 1/s.

For the test simulations, a RF voltage of 10 V is applied for a duration of 8 minutes.
A time step of τ = 5 s is used. Plots of the output for both the electrical and the thermal
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FIGURE 2. 3D voxel representation of the computational domain with resolution 512×512×512

(a) (b)

FIGURE 3. Simulation results: (a) energy induced by electricity flow; (b) temperature of the domain
after 8 minutes
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TABLE 2. Parallel times and weak scaling for the complete simulation

Domain size Processors Unknowns Simulation time Weak scaling

256×256×256 16 16 974 593 3 301.07 s
322×322×322 32 33 698 267 3 663.99 s 90 %
406×406×406 64 67 419 143 4 443.94 s 74 %
512×512×512 128 135 005 697 5 235.53 s 63 %

parts of the model are presented in Figure 3. Both the maximum value of the heat source
and the maximum tissue temperature are located close to the tips of the electrodes.

Large-scale systems of linear algebraic equations arise from the FEM discretization of
the considered problem, requiring an efficient parallel implementation. A parallel PCG
solver is used here. BoomerAMG [4, 7] is the preconditioner. A relative PCG stopping
criterion in the form

rT
k C−1rk ≤ ε2rT

0 C−1r0, ε = 10−6,

where rk stands for the residual at the k-th step of the PCG method, is used.
The settings for the BoomerAMG preconditioner were carefully tuned for maximum

scalability in time. The selected coarsening algorithm is Falgout-CLJP. Modified classi-
cal interpolation is applied. The selected relaxation method is hybrid symmetric Gauss-
Seidel or SSOR in lexicographical ordering on each processor. To decrease the operator
and grid complexities two levels of aggressive coarsening are used and the maximum
number of elements per row for the interpolation is restricted to six. Smaller operator
and grid complexities lead to faster iterations and reduced memory requirements, but
can also affect the convergence rate of the solver. Thus, the values of the last two pa-
rameters must be carefully chosen to provide the best balance. With the above described
setup, the solutions of the linear systems on each time step required 5–6 PCG iterations.

The presented parallel tests are performed on the IBM Blue Gene/P machine at the
Bulgarian Supercomputing Center (see http://www.scc.acad.bg/). This supercomputer
consists of 2048 PowerPC 450 based compute nodes, each with four cores running at
850 MHz and 2 GB RAM. It is equipped with a torus network for the point to point
communications capable of 5.1 GB/s and a tree network for global communications
with a bandwidth of 1.7 GB/s. Our code is compiled using the IBM XL C++ compiler
with the following options: “-O5 -qstrict”.

The parallel times for the whole numerical simulation are presented in Table 2. The
weak scaling with respect to the smallest simulation domain is also shown.

CONCLUDING REMARKS

A voxel-based simulation of the RF ablation procedure is presented. This approach can
be easily applied to real-life CT scans of a patient’s liver. Large-scale linear systems arise
from high-resolution CT images. The time-dependent nature of the bio-heat equation
requires many such systems to be solved in the course of a single simulation. In this
situation, the need of supercomputing resources arises. The presented parallel tests
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illustrate the efficiency of the selected parallel solution methods on the Blue Gene/P
massively parallel computer.
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