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Abstract. The numerical solution of systems of convection-diffusion
equations is considered. The problem is described by a system of second
order partial differential equations (PDEs). This system is discretized
by Courant-elements. The preconditioned conjugate gradient method is
used for the iterative solution of the large-scale linear algebraic systems
arising after the finite element discretization of the problem. Discrete
Helmholtz preconditioners are applied to obtain a mesh independent su-
perlinear convergence of the iterative method. A parallel algorithm is
derived for the proposed preconditioner. A portable parallel code using
Message Passing Interface (MPI) is developed. Numerical tests well il-
lustrate the performance of the proposed method on a parallel computer
architecture.

2000 Mathematics Subject Classification: 65N12, 68W10, 65F10,
74S05.

1 Introduction

The generalized conjugate gradient (GCG) method has become the most wide-
spread way of solving nonsymmetric linear algebraic systems arising from dis-
cretized elliptic problems, see [3] where an extensive summary is given on the
convergence of the CGM. For discretized elliptic problems, the CGM is mostly
used with suitable preconditioning (cf. [3]), which sometimes relies on Hilbert
space theory (cf. [6]) and then provides mesh independent convergence. More-
over, it has been shown in [6] that the GCG method can be competitive with
multigrid methods.

The CGM for nonsymmetric equations in Hilbert space has been studied in
[4,5]: in the latter superlinear convergence has been proved in Hilbert space and,
based on this, mesh independence of the superlinear estimate has been derived
for FEM discretizations of elliptic Dirichlet problems. The mesh independent
superlinear convergence results have been extended from a single equation to
systems of PDEs in a recent paper [7] in the framework of normal operators in
Hilbert space. An important advantage of the obtained preconditioning method
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66 J. Karátson, T. Kurics, and I. Lirkov

for systems is that one can define decoupled preconditioners, hence the size
of the auxiliary systems remains as small as for a single equation, moreover,
parallelization of the auxiliary systems is available. The main goal of this paper
is to develop an efficient MPI parallel code using multiple processors, based on
a proper summary of the theoretical result for systems of PDEs.

We consider systems of the form

− div(Ki∇ui) + bi · ∇ui +
l∑

j=1

Vijuj = gi

ui|∂Ω
= 0

⎫
⎪⎬

⎪⎭
(i = 1, . . . , l) (1)

under the following
Assumptions BVP.

(i) the bounded domain Ω ⊂ R
N is C2-diffeomorphic to a convex domain;

(ii) for all i, j = 1, . . . , l, Ki ∈ C1(Ω), Vij ∈ L∞(Ω) and bi ∈ C1(Ω)N ;
(iii) there is m > 0 such that Ki ≥ m holds for all i = 1, . . . , l;
(iv) letting V = {Vij}l

i,j=1, the coercivity property

λmin

(
V + V T

)− max
i

divbi ≥ 0 (2)

holds pointwise on Ω, where λmin denotes the smallest eigenvalue;
(v) gi ∈ L2(Ω).

Items (iii) and (iv) ensure the coercivity property (6) which is a crucial assump-
tion for Theorem 1.

Systems of the form (1) arise, e.g., from the time discretization and New-
ton linearization of nonlinear reaction-convection-diffusion systems which occur
frequently in meteorological air-pollution models [12].

We write the considered system in a short vector form using the corresponding
n-tuples:

Lu ≡ − div(K∇u) + b · ∇u + V u = g

u|∂Ω = 0

}

, (3)

where

u =

⎛

⎜
⎝

u1

...
ul

⎞

⎟
⎠ , g =

⎛

⎜
⎝

g1

...
gl

⎞

⎟
⎠ , div(K∇u) =

⎛

⎜
⎝

div(K1 ∇u1)
...

div(Kl ∇ul)

⎞

⎟
⎠ , b·∇u =

⎛

⎜
⎝

b1 · ∇u1

...
bl · ∇ul

⎞

⎟
⎠ .

The FEM discretization of (3) leads to a linear algebraic system Lhc = gh.
This can be solved by the GCG method using a preconditioner. In this paper
we consider decoupled symmetric Helmholtz preconditioners

Siui := − div(Ki∇ui) + ηiui (i = 1, . . . , l) (4)

where ηi ∈ C(Ω), ηi ≥ 0 are suitable functions. The n-tuple S of the elliptic
operators Si and the corresponding matrix Sh can be defined in the same way
as previously, hence the preconditioned form of the discretized equation is

S−1
h Lhc = fh ≡ S−1

h gh. (5)
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2 The Preconditioned Generalized Conjugate Gradient
Method

Now let us consider the operator equation Lu = g with an unbounded linear
operator L : D → H defined on a dense domain D, and with some g ∈ H ,
where H is an infinite dimensional complex separable Hilbert space. We have
the following

Assumptions A.

(i) The operator L is decomposed in L = S + Q on its domain D where S is a
self-adjoint operator in H .

(ii) S is a strongly positive operator, i.e., there exists p > 0 such that

〈Su, u〉 ≥ p‖u‖2 (u ∈ D). (6)

(iii) There exists � > 0 such that � 〈Lu, u〉 ≥ � 〈Su, u〉 (u ∈ D).
(iv) The operator Q can be extended to the energy space HS , and then S−1Q is

assumed to be a compact normal operator on HS .

The generalized conjugate gradient, least square (GCG-LS) method is defined
in [2]. The full version of the GCG-LS method constructs a sequence of search
directions dk and simultaneously a sequence of approximate solutions uk. Fol-
lowing the terminology of [2,4], the definition also involves an integer s ∈ N,
further, we let sk = min{k, s} (k ≥ 0). The full version of the algorithm for the
solution of the preconditioned operator equation

S−1Lu = f ≡ S−1g (7)

in HS is as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) Let u0 ∈ D be arbitrary, let r0 be the solution of Sr0 = Lu0 − g;
d0 = −r0; and z0 be the solution of Sz0 = Ld0;

for any k ∈ N : when uk, dk, rk, zk are obtained, let

(2a) the numbers α
(k)
k−j (j = 0, . . . , k) be the solution of

k∑

j=0

α
(k)
k−j 〈Szk−j , zk−l〉 = −〈rk, Szk−l〉 (0 ≤ l ≤ k);

(2b) uk+1 = uk +
k∑

j=0

α
(k)
k−jdk−j ;

(2c) rk+1 = rk +
k∑

j=0

α
(k)
k−jzk−j ;

(2d) β
(k)
k−j = 〈Lrk+1, zk−j〉 /‖zk−j‖2

S (j = 0, . . . , sk);

(2e) dk+1 = −rk+1 +
sk∑

j=0

β
(k)
k−jdk−j ;

(2f) zk+1 be the solution of Szk+1 = Ldk+1.

(8)

When symmetric part preconditioning is used, a more simple truncated algo-
rithm is applicable, namely the so-called GCG-LS(0) (see [4] for details), where



68 J. Karátson, T. Kurics, and I. Lirkov

only the previous search direction dk and the auxiliary vector zk are used, so
the previous ones do not have to be stored. Assumptions A imply that the op-
erator of the preconditioned equation S−1L has the form I + S−1Q, which is a
compact perturbation of the identity operator, hence the following convergence
result (cf. [5,7]) is applicable. Recall that a compact operator has countably
many eigenvalues (with multiplicity), clustering at zero.

Theorem 1. Let Assumptions A hold. Denoting the unique solution by u∗, the
generalized conjugate gradient method applied for equation (7) yields for all k ∈ N

Qk :=
(‖ek‖L

‖e0‖L

)1/k

≤ 2
�

(
1
k

k∑

i=1

∣
∣λi(S−1Q)

∣
∣

)

→ 0 as k → ∞ (9)

where ek = uk−u∗ is the error vector and λi = λi(S−1Q) (i ∈ N) are the ordered
eigenvalues of the operator S−1Q (|λi| ≥ |λi+1|).

3 Superlinear Convergence for Elliptic Systems

Let us consider the Hilbert space H = L2(Ω)l with the inner product 〈u,v〉 =
∫

Ω

∑l
i=1 uivi and define the operators L and S according to (3) and (4) on the

dense domain
D(L) = D(S) = D :=

(
H2(Ω) ∩ H1

0 (Ω)
)l

.

Now we can use the convergence theorem for this problem in the space L2(Ω)l by
verifying that L and S satisfy Assumptions A. First, we apply Theorem 1 using
the truncated algorithm when S is the symmetric part of L. Then we consider
the full version (8) and use Theorem 1 for problems with constant coefficients
when the normality of the preconditioned operator in the corresponding Sobolev
space can be ensured.

First symmetric part preconditioning is considered, that is S = (L + L∗)/2.
Since Q = L − S is antisymmetric, it can be shown easily, that the operator
S−1Q is antisymmetric in HS , therefore it is normal automatically. We have for
u,v ∈ D

〈Lu,v〉 =
∫

Ω

⎛

⎝
l∑

i=1

(
Ki∇ui · ∇vi + (bi · ∇ui)vi

)
+

l∑

i,j=1

Vijujvi

⎞

⎠ . (10)

The divergence theorem and the boundary conditions imply (see [4]) that

〈Su,v〉 =
∫

Ω

⎛

⎝
l∑

i=1

(

Ki∇ui · ∇vi − 1
2
(divbi)uivi

)

+
1
2

l∑

i,j=1

(Vij + Vji)ujvi

⎞

⎠ .

The operator S itself falls into the type (4) if and only if

Vij = −Vji (i �= j) and ηi = Vii − 1
2
(divbi). (11)



A Parallel Algorithm for Systems of Convection-Diffusion Equations 69

Proposition 1. (cf. [7]). Under Assumptions BVP and condition (11), Assump-
tions A are satisfied and therefore the truncated GCG-LS algorithm for system
(1) converges superlinearly in the space H1

0 (Ω)l according to the estimate (9)
with the parameter � = 1.

Using the truncated algorithm can be beneficial, but it is a significant restriction
not to have the freedom to choose the coefficients ηi of S in (4). For convection-
dominated problems, large values of ηi might compensate the large b [8]. Now
let us consider the preconditioner operator (4) with arbitrary nonnegative pa-
rameters ηi.

Proposition 2. (cf. [7]). Assume that Ki ≡ K ∈ R, ηi ≡ η ∈ R and bi ≡ b ∈
R

N are constants, V ∈ R
l×l is a normal matrix and suppose that Assumptions

BVP hold. Then the full version of the preconditioned GCG-LS algorithm (8)
for system (1) with the preconditioning operator (4) converges superlinearly in
the space H1

0 (Ω)l according to the estimate (9).

Now let us consider the discretized problem (5). Then as shown in [7], the GCG
method can be defined similarly as in (8), simply replacing L and S by Lh

and Sh, in particular, in step (2f) zk+1 is defined as the FEM solution of the
problem Szk+1 = Ldk+1 in the considered subspace Vh. Then the right-hand
side of (9) provides a mesh independent superlinear convergence estimate for the
discretized problem. Besides the superlinear convergence result, the advantage
of the preconditioning method (4) is that the elliptic operators are decoupled,
i. e. the corresponding matrix Sh is symmetric block-diagonal, hence auxiliary
equations for the discretized system like Shzh = Lhdh (step (2f) in algorithm
(8)) can be divided into l parts and they can be solved simultaneously.

4 Parallelization of the GCG-LS Algorithm

The basic advantage of the proposed preconditioner is its inherent parallelism.
The kth iteration of the full version of GCG-LS algorithm consists of two matrix-
vector multiplications with matrix Lh, one preconditioning step (solving a system
of equations with the preconditioner), solving a system of k equations, 2k+s+2
inner products, and s + 2 linked triads (a vector updated by a vector multiplied
by a scalar).

Let us consider a parallel system with p processors. We divide the vectors
uk, dk, rk, zk (defined in (8)) in such a way that first

⌈
l
p

⌉
blocks are stored in

the first processor, blocks for i =
⌈

l
p

⌉
+ 1, . . . , 2

⌈
l
p

⌉
in the second processor

and so on. Then the preconditioning step and linked triads do not need any
communication between processors. The computation of inner products requires
one global communication to accumulate the local inner products computed on
each processor. Communication time for computing inner products increases
with the number of processors but in general it is small. The matrix-vector



70 J. Karátson, T. Kurics, and I. Lirkov

multiplication requires exchanging of data between all processors. Communica-
tion time for matrix-vector multiplication depends on the size of the matrix and
on the number of processors.

5 Numerical Experiments

In this section we report the results of the experiments executed on a Linux
cluster consisting of 4 dual processor PowerPCs with G4 450 MHz processors,
512 MB memory per node. The developed parallel code has been implemented
in C and the parallelization has been facilitated using the MPI library [10,11].
We use the LAPACK library [1] for computing the Cholesky factorization of
the preconditioner and for solving the linear systems arising in GCG-LS. The
optimization options of the compiler have been tuned to achieve the best perfor-
mance. Times have been collected using the MPI provided timer. In this paper
we report the best results from multiple runs.

The first test problem is a class of systems (1) with l = 2, 3, . . . , 10 equations,

where bi =
(

1
0

)

and the matrix V is skew-symmetric with elements which

are randomly generated constants. Our second test problem comes from the
time discretization and Newton linearization of a nonlinear reaction-convection-
diffusion system of 10 equations, used in meteorological air-pollution models [12].
Since the run times here have proved to be very similar to the case of a random
10× 10 matrix in the first test problem, we will only present the test results for
the first problem.

In what follows, we analyze the obtained parallel time Tp on p processors,
relative parallel speed-up Sp = T1

Tp
≤ p and relative efficiency Ep = Sp

p ≤ 1.
In our experiments we used a stopping criterion ‖rk‖ ≤ 10−14. Table 1 shows

the required number of iterations. The obtained parallel time Tp on p processors
is presented in Tables 2 and 3. Here l denotes the number of equations. The first
column consists of the number of processors. The execution time for problems
with h−1 = 32, 64, 128, 192, 256 in seconds is shown in the next columns. The
execution times of the full and truncated version of the algorithm are similar.
Because of that we put in Table 3 execution times only for systems of 8 and 10
equations. One can see that for relatively small problems, the execution time on

Table 1. Number of iterations

1/h l
1 2 3 4 5 6 7 8 9 10

8 9 10 11 12 12 12 13 13 14 14
16 9 10 12 12 13 13 13 14 14 14
32 9 10 12 12 13 13 14 14 14 14
64 9 10 12 12 13 13 14 14 14 14

128 9 10 12 12 13 13 14 14 14 14
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Table 2. Execution time for full version of GCG-LS

p h−1

32 64 128 256

l = 2

1 0.13 1.06 11.30 130.06
2 0.46 0.99 6.50 69.31

l = 3

1 0.22 1.91 19.05 207.86
2 0.55 1.47 13.24 143.40
3 0.60 1.39 8.41 79.30

l = 4

1 0.32 2.64 25.62 648.18
2 0.63 1.86 14.43 332.55
3 0.62 1.67 14.58 149.23
4 0.65 1.66 10.05 84.37

l = 5

1 0.43 3.44 32.73 912.90
2 0.66 2.26 20.79 216.12
3 0.68 2.10 16.25 153.08
4 0.69 1.95 16.31 155.75
5 0.76 2.06 12.38 94.59

l = 6

1 0.54 3.96 39.92 1237.71
2 0.74 2.59 22.10 219.50
3 0.75 2.22 17.15 156.95
4 0.76 2.24 18.09 161.69
5 0.82 2.19 19.06 165.57
6 0.86 2.27 14.98 105.21

p h−1

32 64 128 192 256

l = 7

1 0.66 5.13 47.11 171.49 1479.28

2 0.79 3.17 28.60 103.44 667.80
3 0.77 2.74 23.54 82.53 227.45
4 0.82 2.70 19.14 62.73 166.62
5 0.88 3.55 20.95 66.59 361.98
6 0.94 2.80 21.71 68.22 176.53
7 0.97 2.78 18.56 51.21 119.14

l = 8

1 0.79 5.96 54.17 306.79 1725.53

2 0.86 3.74 29.99 104.48 771.83
3 0.84 3.30 25.52 86.95 233.69
4 0.86 3.08 19.95 64.44 170.92
5 0.94 3.55 22.14 69.20 178.03
6 1.02 3.62 24.37 73.58 183.49
7 1.07 3.78 25.52 76.36 190.79
8 1.08 4.67 22.30 59.38 132.55

l = 10

1 1.08 7.97 70.15 688.04

2 0.97 4.89 38.64 132.98 1111.04

3 0.95 4.16 32.82 113.15 685.93
4 0.99 4.43 28.75 94.33 248.61

5 1.12 4.13 25.35 76.26 434.87
6 1.18 4.50 27.88 81.52 197.62
7 1.22 4.69 29.99 86.40 205.91
8 1.30 5.49 32.45 92.05 212.42

one processor is less than one second and parallelization is not necessary. For
medium size problems the parallel efficiency on two processors is close to 90%
but on three and more processors it decreases. The reason is that communication
between two processors in one node is much faster than communication between
nodes. For the largest problems (h−1 = 256) the available physical memory was
not enough to solve the problem on one processor. The corresponding numbers
in boxes show an atypical progression which is due to the usage of swap memory.
The numerical results show that the main advantage of the parallel algorithm is
that we can easily solve large problems using a parallel system with distributed
memory.

Figure 1 shows the speed-up Sp of the full version of the algorithm obtained for
h−1 = 128 and l = 3, 4, . . .10. As it was expected when the number of equations
l is divisible by the number of processors p the parallel efficiency of the parallel
algorithm is higher. The reason is the partitioning of the vectors uk, dk, rk, zk

onto the processors described in previous section.
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Table 3. Execution time for GCG-LS(0) for s = 5

p h−1

32 64 128 256

l = 8

1 0.84 6.07 57.02 2046.74

2 0.48 3.46 31.01 935.01
3 0.51 3.16 26.69 255.81
4 0.59 2.99 21.45 189.93
5 0.67 3.52 23.86 428.05
6 0.76 3.62 26.81 437.50
7 0.82 4.15 29.04 215.17
8 0.85 5.38 26.00 155.73

p h−1

32 64 128 256

l = 10

1 1.16 8.51 76.50

2 0.65 4.87 41.57 1335.88

3 0.67 4.55 36.44 817.74
4 0.71 4.46 32.03 275.20

5 0.86 4.72 29.53 522.18
6 0.96 5.14 32.62 533.91
7 1.06 5.77 35.31 471.83
8 1.09 6.60 38.63 482.45

0.8
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1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

1 2 3 4 5

sp
ee
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number of processors

Speed-up of full version of GCG-LS

l=3
l=4
l=5
l=9

l=10

Fig. 1. Speed-up of the full version of GCG-LS algorithm

6 Concluding Remarks and Future Work

In this paper we have reported on the parallel performance of a new precon-
ditioner applied to the generalized conjugate gradient method used to solve a
sparse linear system arising from systems of convection-diffusion equations. The
proposed preconditioner has inherent parallelism — the preconditioning step is
implemented without any communications between processors. We have shown
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that the code parallelizes well, resulting in a highly efficient treatment of large-
scale problems.

The next step in development of the parallel code will be the implementation
of matrix vector products using nonblocking MPI Isend functions and avoiding
communications for zero elements of the matrix V . In this way we can overlap
the computation of part of the product and communication between processors.
Our future plans include an approximation of the blocks of the preconditioner
in order to implement a parallel preconditioning step on multiprocessor systems
with more processors.
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7. Karátson J., Kurics T.: Superlinearly convergent PCG algorithms for some non-
symmetric elliptic systems. J. Comp. Appl. Math., to appear
Preprint: http://www.cs.elte.hu/applanal/eng/preprint eng.html 2006-09.

8. Manteuffel, T., Otto, J.: Optimal equivalent preconditioners. SIAM J. Numer.
Anal. 30 (1993), 790–812.

9. Manteuffel, T., Parter, S. V.: Preconditioning and boundary conditions. SIAM J.
Numer. Anal. 27 (1990), no. 3, 656–694.

10. Snir, M., Otto, St., Huss-Lederman, St., Walker, D., Dongara, J.: MPI: The Com-
plete Reference. Scientific and engineering computation series (The MIT Press,
Cambridge, Massachusetts, 1997) Second printing.

11. Walker, D., Dongara, J.: MPI: a standard Message Passing Interface, Supercom-
puter 63 (1996) 56–68.

12. Zlatev, Z.: Computer treatment of large air pollution models. Kluwer Academic
Publishers, Dordrecht-Boston-London, 1995.


	Introduction
	The Preconditioned Generalized Conjugate Gradient Method
	Superlinear Convergence for Elliptic Systems 
	Parallelization of the GCG-LS Algorithm
	Numerical Experiments
	Concluding Remarks and Future Work

