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Abstract. The robustness of the recently introduced circulant block- 
factorization (CBF) preconditioners is studied in the case of finite ele- 
ment matrices arising from the discretization of the 2D Navier equations 
of elasticity. Conforming triangle finite elements are used for the numeri- 
cal solution of the differential problem. The proposed preconditioner Me 
is constructed by CBF approximation of the block-diagonal part of the 
stiffness matrix. In other words, we implement in our algorithm the circu- 
lant block-factorization into the framework of the displacement decompo- 

sition technique. The estimate ~ ( M ~ I K ) =  0 ( ~  is proved asymp- 

totically on N, where N is the size of the discrete problem. Note, that the 
corresponding known estimate for the widely used incomplete factoriza- 
tion displacement decomposition preconditioner MILV is a(M~'~uK ) = 

The theoretical estimate as well as the presented numerical tests show 
some significant advantages of this new approach for a PCG iterative so- 
lution of almost incompressible elastic problems, that is when the mod- 
ified Poisson ratio v tends to the incompressible limit case v = 1. 
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1 Introduction 

This paper  is concerned with the numerical solution of the Navier equations 
of 2D elasticity problem. Using the finite element method,  such a problem is 
reduced to a linear system of the form K u  = b, where K is a sparse matrix.  The 
considered problem is symmetr ic  and positive definite. We assume also, tha t  K 
is a large scale matrix.  It  is well known, tha t  in this case the iterative solvers 
based on the preconditioned conjugate gradient (PCG) method are the best way 
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and Technology under grant MM 417/94. 



293 

to solve the linear algebraic system. The key question is how to construct the 
preconditioning matrix M. 

In this paper we consider an application of the recently introduced circulant 
block-factorization (CBF) algorithm to the plane strain problem of elasticity. 
The emphasis is on the robustness of the algorithm in the almost incompressible 
case, i.e., when the modified Poisson ratio v E (0, 1) tends to the incompressible 
limit ~ = 1. 

There are a lot of works dealing with preconditioning iterative solution meth- 
ods for the FEM elasticity systems. Here we will briefly comment on some of the 
used approaches. In an earlier paper, Axelsson and Gustafsson [2] have imple- 
mented modified point-ILU factorization for this problem. As the coupled system 
does not lead to an M-matrix, they construct their preconditioners based on the 
point-ILU factorization of the displacement decoupled block-diagonal part of 
the original matrix. This approach is known as displacement decomposition. It 
is based on Korn's inequality, and the convergence deteriorates in the almost in- 

1 compressible case like O ( ~ ) .  The displacement decomposition remains until 

now one of the most robust approaches (see also, e.g., [3, 7]). Some new block- 
ILU factorization preconditioners based on block-size reduction are studied in 
[5]. This factorization exists for symmetric and positive definite block-tridiagonal 
matrices that are not necessarily M-matrices. Although the approximate factor- 
ization is applied to the original matrix, the dependence on v of the number of 

1 iterations remains the same as above, i.e., O(--~_~). 

We study in this paper an implementation of the circulant block-factorization 
(CBF) algorithm as introduced by Lirkov, Margenov and Vassilevski [11], into 
the framework of the displacement decomposition. The robustness of the algo- 
rithm is based on the efficiency of the CBF preconditioners for strongly aniso- 
tropic problems (see for more details in [12]). We prove for the new proposed 

preconditioner Me  the estimate ~(M~IK) = O(1~_~)  asymptotically on N, 

where N is the size of the discrete problem. Consequently, the growth with v of 
1 1 the number of iterations is reduced from O ( ~ )  to O(-v~---;~_~). 

The remainder of the paper is organized as follows. Some background facts 
about the Navier equations of elasticity, their FEM approximation and the re- 
lated Korn's inequality are presented in w The displacement decomposition 
CBF (DD CBF) algorithm is described in w In w we give a model problem 
analysis of the relative condition number of the studied preconditioner. A set 
of numerical tests illustrating the performance of the resulting preconditioned 
conjugate gradient algorithm are presented in the last section w 

2 FEM 2D elasticity equations 

We consider in this paper the Dirichlet boundary value plain strain problem 
of elasticity in the weak formulation of the Navier system of equations. The 
unknown displacements w t = (u, v) satisfy the following variational equations: 
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Find (u, v) e H ~ • H1 ~ such that  

a(u,~) + e~2(v,~) = s  
V(~, 73) e H ~ x H ~ (1) 

e21  (U, ~1) -'1"- b(v ,  ~1) = f2 ,  

where H ~ = {w E Hi(D) : wlo~ = 0}, and the related bilinear forms are defined 
by the formulas: 

a ( r 1 6 2  \ ~ + ~ 0 y N  d~, 

Ox Ox + Oy Oy ] 

e12(r r ~21(r162 1 + ~ s 0r 0r ,., 
2 Ox Oy 

Here ~ E (0, 1) stands for the modified Poisson ratio. The notion almost incom- 
pressible is used for the case v = 1 - ~, where ~ is a small positive number. Note 
that  if v -- 1 (the material is incompressible), the problem (1) is ill-posed. 

Now, let w be a square mesh, and let l? be a polygonal domain, triangulated 
by right isosceles triangles T E T obtained by a diagonal bisection of the square 
cells of w. 

Let W = W~ • W ~ where W ~ C H ~ is the finite element space of conforming 
piecewise linear functions with nodal Lagrangian basis g {r corresponding 
to the triangulation ~-. Then the finite element approximation (u h, v h) of the 
problem (1) is determined as follows: 

Find u h = ~ N  1 u~r h = y~N=l V,r such that  

a(uh, Cd + el~( vh, Cd = s 
Yi = 1 , . . . , N .  (2) 

e21(u h, r + b(v h, r = f2,i. 

Equations (2) are equivalent to the linear system 

K w  h ~ b, 

u h )  is the vector of the nodal 
Vh 

where K is the stiffness matrix, and w__ h = 

N -~ V N unknowns u h = {ui}i=l and v_ h { ~}i=l- 
The stiffness matrix K can be written in the following natural block-structure 

E T 

where the blocks A and B correspond to the bilinear forms a(., .) and b(., .) 
respectively. 

The following theorem plays a key role in the convergence theory of the 
displacement decomposition methods. 
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Theorem 1. 

where 

The following Korn's inequality holds 

t~(KD1K) < 3 + v 
- 1 - v '  

(3) 

K D = ( A O B )  , (4) 

and ~(.) stands for the condition number of the matrix. 

Proof. It is easy to see, that  ~ ( K ~ I K )  <_ ~ ,  where A1 and At axe the minimal 
and the maximal eigenvalue of the generalized eigenvalue problem (lOO )  

0 
o 

0 0 1 0 0 

(5). 

The eigenvalue problem leads to the characteristic equation 

( 1 -  A)2 ( ~ - / 2  [ ( 1 -  A)2-  (1  2-------~v/2 ] --0. (6) 

_ 1- .  3+~ that The roots of (6) are as follows A1 - -~- ,  A2 = A3 = 1, and A4 = 2 , 
completes the proof of the theorem. 

R e m a r k  1 The Korn's inequality (3) is proved by a different technique in [2]. 

3 D D  C B F  a l g o r i t h m  

We consider in what follows the problem (1) in the unit square, where t9 = 
(0, 1) x (0, 1) is covered by a uniform square mesh w, with a size h = 1 / (n  + 1) 
for a given integer n _> 1. 

To define the displacement decomposition circulant block-factorization (DD 
CBF) preconditioner Mc of the matrix K we consider the auxiliary problem 
- a u ~  - bu~y - f with homogeneous Dirichlet boundary conditions, where a 
and b are positive constants. This problem is discretized by the same finite 
elements as the original problem (1). This discretization leads to the stiffness 
matrix G. We assume that  the grid points axe ordered along the y-lines if b < a, 
and respectively along the x-lines if a < b. Then the matrix G can be written in 
the following form 

G = tr id iag(-G~, i_ l ,G~,~ , -Gi , i+l )  i = 1 ,2 , . . . , n ,  

where 

Gi,~ = t r i d i a g ( - g j j _ l ,  gj,j, - g j j + l ) ,  j = (i - 1)n + 1 , . . . ,  in, i = 1, 2 , . . . ,  n, 

Gi,i+l = diag(gj j+n),  j = (i - 1)n + 1 , . . . , i n ,  i = 1 , . . . ,  n - 1, 

Gi,~-i = d iag(g j j_n) ,  j -- (i - 1)n + 1 , . . . ,  in, i = 2 , . . . ,  n. 
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The coefficients gi,j are positive and gJ,d >- gj,d-1 + gj,j+l + gjj+n + gjj-n, i.e., 
the matrix G satisfies the maximum principle. 

We will use here the CBF preconditioning for the matrix G as introduced by 
Lirkov, Margenov and Vassilevski in [11] (see also in [4, 6], [12, 13]). The CBF 
preconditioner GCBF of the matrix G is defined by 

GCBF = tridiag(-Ci,i_l, Ci,i, -C~,i+l) i = 1, 2 , . . . ,  n, (7) 

where Ci,j = Circulant(Gij) is a circulant approximation of the correspond- 
ing block Gi,j, defined by a diagonal-by-diagonal averaging of the coefficients. 
Realizing the CBF algorithm we use exact block LU factorization for the pre- 
conditioner GCBF. One important property of the CBF preconditioning is, that 
the solution of systems with the matrix GCBF requires O(NlnN) arithmetic 
operations, if FFT is used for factorization of the circulant blocks (see for more 
details in [9, 11]). 

Finally, the DD CBF preconditioner for the stiffness matrix K of the problem 
(1) is defined by 

Mc = ( ACBF OBCBF ) " (8) 

Obviously, the matrix A corresponds to the auxiliary elliptic problem with a = 1 
and b = 1-~ -V-, and respectively the matrix B corresponds to the same differential 

1-~ and b = 1. This means that the grid points ordering problem with a = 2 
related to the first diagonal block A is along the y-lines, and contrary the ordering 
related to the diagonal block B is along the x-lines. 

Note, that the above ordering of the unknowns is of key importance for the 
convergence of the DD CBF preconditioner. 

4 Model problem condition number analysis 

We will estimate in this section the condition number a(M~ZK) of the precon- 
ditioned system by the DD CBF algorithm. 

T h e o r e m  2. The following inequality holds for the relative condition number of 
the CBF preconditioner (7) 

~(cSw < vffi(n + 1) + 2, (9) 

where e = min{}, ~}. 

This estimate is based on the exact solution of the corresponding generalized 
eigenproblem. A detailed proof of the theorem is presented in [12]. 

The final result of the model problem condition number analysis is given by 
the next theorem. 

T h e o r e m  3. The preconditioner Mc defined by the DD CBF algorithm satisfies 
the estimate 

f ~+1 2 \ 

~(M~IK)  < (3 + ~) ) (lo) 
k 1~--~_ ~ + 1 _ - -~  / 
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Proof. The proof follows directly, applying consequently the Korn's inequality 
1 - - v  from Theorem 1 and the estimate (9) with c = -5-,  i.e., 

~ ( M ~ I K  ) < 3 + y max ( a ( A ~ F A ) ,  a ( B ~ F B ) )  
- 1  u 

-< 1-v3+u((n+l)~/l-v+2) 

lvq:v_ +1_-:-;n+1 2 ) 

R e m a r k  2 As a conclusion of the last theorem we get an estimate for the num- 
ber n(e) of the iterations in the PCG algorithm, needed to reduce the relative 
error with a ]actor e, in the form 

:+_: 2 ) 2 
n ( s ) _ < V \  lx/]__z_~_v+l--Z- ~ l n - + l . c  

When N --- n 2 is large enough, the above estimate can be written in the form 

R e m a r k  3 Although the presented analysis relates to the model problem in a 
rectangle, the application of circulants is not limited to this case. An eJflcient cir- 
culant based iterative procedure in L-shaped domain is proposed in [10], where the 
domain f2 is first transformed to the unit square. Another way to treat problems 
in domains with more complicated geometry is based on the circulant approxi- 
mation of the Schur complements in the context of the domain decomposition 
method. 

5 Numerica l  tests  

We analyze in this section the performance rate of our preconditioned iterative 
method, varying the size parameter n and the modified Poisson ratio v. The 
computations are done with double precision on a SUN Sparc Station. 

We recall, that the almost incompressible case corresponds to u -- 1 - 5, 
where 5 is a small positive number. 

The Table shows the number of iterations as a measure of the convergence 
rate of the preconditioners. The iteration stopping criterion is IIr N~' II/llr~ < 
10 -6, where rJ stands for the residual at the j th  iteration step of the precondi- 
tioned conjugate gradient method. 

Asymptotically, the presented data are in a good agreement with the theoret- 
ical estimate. The number of iterations has a complex behavior, corresponding 
to the derived estimate from the last section. One can see how the range, where 

n(~) has a behavior like n(~) = O (~/1_-~-~,,), grows with n .  
\ 
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Table  1. Number of iterations for 

v n----32 n----64 n----128 n--256 n=512 
0.3 17 21 27 37 49 
0.4 18 22 28 37 49 
0.5 19 22 29 38 52 
0.6 20 25 32 39 54 
0.7 22 26 34 41 56 
0.8 25 29 37 46 61 
0.9 33 37 44 57 71 

0.92 36 40 46 60 77 
0.94 41 46 52 64 81 
0.96 49 53 60 72 91 
0.98 67 72 80 91 112 
0.99 91 98 106 119 140 

0.999 202 266 297 317 344 

the DD CBF preconditioner. 

R e m a r k  4 Numerical tes ts /or  the same problem with pointwise MILU pre- 
conditioners are presented in the earlier paper by Axelsson and Gustafsson [2]. 
Unfortunately these test data are only for coarse grid-sizes with n < 20 that 
makes the direct comparision not representative. More recent numerical results 
are presented in [5], where the block-size reduction IL U preconditioner is applied. 

1 Both these preconditioners are characterized by 0 ( ~ )  growth of the number 
of iterations in the almost incompressible case. 
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