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Abstract. We consider the numerical solution of 3D linear elasticity
equations. The investigated problem is described by a coupled system of
second order elliptic partial differential equations. This system is then
discretized by conforming or nonconforming finite elements. After apply-
ing the Finite Element Method (FEM) based discretization, a system of
linear algebraic equations has to be solved. In this system the stiffness
matrix is large, sparse and symmetric positive definite. In the solution
process we utilize a well-known fact that the preconditioned conjugate
gradient method is the best tool for efficient solution of large-scale sym-
metric systems with sparse positive definite matrices. In this context,
the displacement decomposition (DD) technique is applied at the first
step to construct a preconditioner that is based on a decoupled block
diagonal part of the original matrix. Then two preconditioners, namely
the Modified Incomplete Cholesky factorization MIC(0) and the Circu-
lant Block-Factorization (CBF) preconditioning, are used to precondition
thus obtained block diagonal matrix.

As far as the parallel implementation of the proposed solution meth-
ods is concerned, we utilize the Message Passing Interface (MPI) com-
munication libraries. The aim of our work is to compare the performance
of the two proposed preconditioners: the DD MIC(0) and the DD CBF.
The presented comparative analysis is based on the execution times of
actual codes run on modern parallel computers. Performed numerical
tests demonstrate the level of parallel efficiency and robustness of the
proposed algorithms. Furthermore, we discuss the number of iterations
resulting from utilization of both preconditioners.

1 Introduction

Our work concerns development and implementation of efficient parallel algo-
rithms for solving elasticity problems arising in geosciences. Typical application
problems include simulation of foundations of engineering constructions (that
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transfer and distribute the total load into a bed of soil) and multilayer media
with strongly varying material characteristics. Here, the spatial framework of
the construction produces a complex stressed-strained state in the active inter-
action zones. The modern design of cost-efficient construction with a sufficient
guaranteed reliability requires determining parameters of this stressed-strained
state.

This type of engineering problems is described mathematically by a system
of three-dimensional nonlinear partial differential equations. A finite element (or
finite difference) discretization reduces the partial differential equation problem
to a system of linear equations Kx = f , where the stiffness matrix K is large,
sparse and symmetric positive definite. It is a well known fact that Conjugate
Gradient (CG) type methods are claimed to be the most cost-effective way to
solve problems of this type, c.f. [1]. Furthermore, to accelerate convergence of
the iterative process, a preconditioner M is combined with the CG algorithm.

To make a reliable prediction of the safety of the construction, which is sensi-
tive to soil deformations, a very accurate model and thus a large system of sparse
linear equations has to be solved. In real-life applications, such system can con-
tain up to several millions of unknowns. Note that the numerical solution of linear
systems is a fundamental operation in computer modeling of elasticity problems.
Specifically, solving these linear systems is usually very time-consuming (requir-
ing up to 90% of the total solution time). Hence, developing fast solvers for linear
equations is essential. Furthermore, such algorithms should be expected to sig-
nificantly speed up the simulation processes of real application problems. Due
to the size of the system, an efficient iterative solver should not only have a fast
convergence rate but also high parallel efficiency. Moreover, the resulting pro-
gram has to be efficiently implementable on modern shared-memory, distributed
memory, and shared-distributed memory parallel computers.

The remaining part of the paper is organized as follows. The considered elas-
ticity problems are described in the next section. In section 3 we present the
developed parallel solvers. The results of test experiments on parallel computer
systems are provided in section 4.

2 Elasticity Problems

For simplicity, in this work we focus our attention on 3D linear elasticity
problems following two basic assumptions: (1) displacements are small, and (2)
material properties are isotropic. A precise mathematical formulation of the
considered problem has been described in [5]. The 3D elasticity problem in the
stressed-strained state can be described by a coupled system of three differential
equations. Applying linearization, the nonlinear equations can be transformed
into a system of three linear differential equations, which is often referred to as
Lamé equations.

We restrict our considerations to the case when the computational domain Ω
is a rectangular parallelepiped Ω = [0, xmax

1 ] × [0, xmax
2 ] × [0, xmax

3 ], where the
boundary conditions on each face of Ω are of fixed type.
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Fig. 1. Cross section of the computational domain Ω. xmax
1 = xmax

2 = 37.2m, xmax
3 =

31.0m. |H1| = |H2| = 150kN , |V1| = 4000kN , |V2| = 2000kN , Epile = 31500MPa,
νpile = 0.2, EL1 = 5.2MPa, νL1 = 0.4, EL2 = 9.4MPa, νL2 = 0.35, EL3 = 14.0MPa,
νL3 = 0.25, EL4 = 21.4MPa, νL4 = 0.2.

A benchmark problem from [4] is used in numerical tests reported here. The
engineering problem describes two piles in an inhomogeneous sandy clay soil (see
Fig. 1). In the solution process, uniform grid is used with n grid points along
each coordinate direction. In our experiments we used two kind of meshes: coarse
mesh with step sizes 1.2 × 1.2 × 1 and fine mesh with step sizes 0.6 × 0.6 × 0.5.

3 Parallel Displacement Decomposition Solvers

There exists a substantial body of work dealing with preconditioning of iterative
solution methods for elasticity systems discretized by using the Finite Element
Method. For instance, in [2] Axelsson and Gustafson construct their precondi-
tioners based on the point-ILU (Incomplete LU) factorization of the displacement
decoupled block-diagonal part of the original matrix. This approach is known as
the displacement decomposition (see, e.g., [3]).

Our first approach uses the DD MIC(0) (Modified Incomplete Cholesky) fac-
torization, presented in [7]. It uses nonconforming Ranacher-Turek elements for
the discretization. Modifying the block-diagonal displacement decomposed ma-
trix, an auxiliary matrix B is obtained. This matrix has a block structure, with
diagonal blocks being diagonal matrices. Then the MIC(0) factorization of the
matrix B is used as a preconditioner.

The other parallel preconditioning technique used in this work is the circu-
lant block-factorization used for preconditioning of the obtained block-diagonal
matrix, c.f. [6]. Here, a displacement decomposition circulant block factorization
preconditioner is constructed.



Comparative Analysis of High Performance Solvers 395

Suitable modification of the DD MIC(0) algorithm allows parallelization of
the preconditioning, but results more communication steps in comparison with
the DD CBF preconditioner. The estimate of the condition number of the DD
CBF preconditioner shows that the convergence is asymptotically as fast as
preconditioners based on the point-ILU factorization, c.f. [5,6]. Moreover the
DD CBF solver has a good parallel efficiency (see, e.g., [5,6]).

4 Experimental Results

Before proceeding with describing results of performed benchmarking runs let us
illustrate the nature of the solved problem. The obtained solution of the elasticity
problem is used for computation of the vertical strain in the computational
domain. Thus, in Fig. 2 vertical displacements and vertical strains are depicted
in a cross section of the domain. An isoline connects points with equal values.

To efficiently solve the problem, portable parallel FEM codes were designed
and implemented in C (the DD CBF code) and C++ (the DD MIC(0) code). In
both cases, parallelization has been facilitated using the MPI library, c.f. [8,9].
The parallel code has been tested on cluster computers located in the National
Energy Research Scientific Computing Center (NERSC). In our experiments,
times have been collected using the MPI provided timer and for each problem
size and number of processors we report the best results from multiple runs.
For linear system with N unknowns we represent the number of iterations as
Nit, the elapsed time as Tp (in seconds; obtained on p processors), the speed-
up as Sp = T1/Tp, and the parallel efficiency as Ep = Sp/p. Because of the
NERSC-imposed limitations in available computational time and memory in
some cases we were not able to establish single-processor performance for the
largest problem. Therefore, for the largest problems we report parallel efficiency
related to results collected on 2 processors.

Fig. 2. Vertical displacements on the left, vertical strains on the right
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Table 1. Experimental results on Bassi

p N Nit Tp Sp Ep N Nit Tp Sp Ep

DD MIC(0)

1 2 179 548 1 533 1 514.3 17 298 000 2 840 23 101.0
2 1 533 795.3 1.90 0.952 2 840 11 584.3 1.99 0.997
4 1 533 414.9 3.65 0.912 2 840 5 973.1 3.87 0.967
8 1 533 217.7 6.95 0.869 2 840 3 219.0 7.18 0.897

16 1 533 125.9 12.02 0.752 2 840 1 684.5 13.71 0.857
32 1 533 74.1 20.43 0.638 2 840 913.2 25.30 0.791
64 2 840 544.4 42.43 0.663

DD CBF

1 786 432 1 297 1 912.6 6 291 456 2 641 41 075.5
2 1 297 955.6 2.00 1.001 2 633 17 378.5 2.36 1.182
4 1 291 467.0 4.10 1.024 2 625 8 633.0 4.76 1.189
8 1 290 235.1 8.14 1.017 2 617 4 330.6 9.49 1.186

16 1 252 115.7 16.53 1.033 2 612 2 191.6 18.74 1.171
32 1 282 62.4 30.63 0.957 2 609 1 079.7 38.04 1.189
64 1 247 33.3 57.51 0.899 2 600 575.8 71.34 1.115

Table 1 summarizes results collected on the IBM p575 POWER 5 system,
named Bassi [10]. Bassi is a distributed memory computer with 888 IBM PO-
WER 5 processors (running at 1.9 GHz) distributed among 111 compute nodes
with 8 processors per node. Each Bassi processor has a theoretical peak perfor-
mance of 7.6 GFlop/s. Processors within each node have a shared memory pool
of 32 GB. Bassi’s network switch is the IBM “Federation” HPS switch which is
connected to a two-link network adapter on each node. We have used IBM C
and C++ compilers with options “-O3 -qstrict -qarch=auto -qtune=auto”. Ac-
cording to the best of our knowledge, this and compiler switches used on other
machines should result in maximal performance optimization.

Table 2 shows execution time on the NERSC Cray XT4 system, named
Franklin [11]. Franklin is a massively parallel processing (MPP) system with
9 660 compute nodes, and the entire system has a total of 19 320 proces-
sor cores. Specifically, each of Franklin’s compute nodes consists of a 2.6 GHz
dual-core AMD Opteron processor with a theoretical peak performance of 5.2
GFlop/s. Each compute node has 4 GB of memory and is connected to a ded-
icated SeaStar2 router through the Hypertransport with a 3D torus topology.
We have used the PGI C and C++ compilers with options “-fast -O3 -Minline”.

The memory available on a single node of Franklin is not large enough to
run our experiments for the fine mesh and we reported here the execution time
starting from two processors on two different nodes.

In Table 3 we present results of experiments performed on the Jacquard [12].
It is a 712-CPU (356 dual-processor nodes running at 2.2 GHz) Opteron Linux
cluster. Each processor has a theoretical peak performance of 4.4 GFlop/s. Pro-
cessors within each node share 6 GB of memory and are interconnected through
a high-speed InfiniBand network. We have used C/C++ compilers produced by
PathScale with the ACML Optimized Math Library and compiled the code using
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Table 2. Experimental results on Franklin

p N Nit Tp Sp Ep N Nit Tp Ep

DD MIC(0)

1 2 179 548 1 959 3 787.7 17 298 000
2 1 959 1 935.9 1.96 0.978 3 404 26 593.8
4 1 959 1 001.6 3.78 0.945 3 404 13 712.8 0.970
8 1 959 526.9 7.19 0.899 3 404 6 921.7 0.961

16 1 959 286.9 13.20 0.825 3 404 3 573.8 0.930
32 1 959 167.2 22.65 0.708 3 404 1 937.2 0.858
64 1 959 3 404 1 115.7 0.745

DD CBF

1 786 432 1 298 1 392.6 6 291 456
2 1 294 745.9 1.87 0.933 2 632 11 944.2
4 1 291 380.9 3.66 0.914 2 630 6 443.3 0.927
8 1 292 184.5 7.55 0.943 2 621 3 243.1 0.921

16 1 251 88.8 15.69 0.980 2 612 1 600.8 0.933
32 1 286 50.4 27.63 0.864 2 613 800.1 0.933
64 1 281 33.8 41.16 0.643 2 608 420.8 0.887

Table 3. Experimental results on Jacquard

p N Nit Tp Sp Ep N Nit Tp Ep

DD MIC(0)

1 2 179 548 1 959 1 083.6
2 1 959 535.7 2.023 1.011
4 1 959 301.4 3.594 0.899
8 1 959 180.7 5.997 0.750

16 1 959 117.0 9.264 0.579
32 1 959 81.7 13.260 0.414

DD CBF

1 786 432 1 260 1 277.8 6 291 456
2 1 297 675.2 1.89 0.946 2636 12 465.1
4 1 259 351.3 3.64 0.909 2629 6 693.9 0.931
8 1 290 185.1 6.90 0.863 2617 3 354.3 0.929

16 1 287 92.7 13.79 0.862 2610 1 664.9 0.936
32 1 286 57.7 22.16 0.692 2605 805.0 0.968
64 1 283 43.1 29.68 0.464 2602 556.0 0.701

“mpicc -Ofast $ACML” command. The “-Ofast” option is a generic option lead-
ing to a vendor suggested aggressive optimization.

Several jobs submitted on Jacquard are still waiting in the queue and this is
the reason for the fine mesh to report only some results from DD CBF code.

First, let us note that the number of iterations for the DD CBF varies with the
number of processors. This well known effect is caused by the different order of
summations in the inner product computations involved in the PCG. The same
effect is not observed in the DD MIC(0) code, because of a special precaution
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taken during the computation of the inner products. Here, the order of the
additions is made independent of the number of processors.

An interesting phenomenon is observed concerning the number of iterations
for the DD MIC(0). On Bassi they are notably smaller than those on both
Franklin and Jacquard. For instance, for the smaller problem the number of
iterations is 1533 on Bassi and 1959 on the other two clusters. For the larger
problem these numbers are 2840 and 3404 respectively. This is probably caused
by the difference in the processor architectures (Power 5 vs. x86).

The number of unknowns in the nonconforming discretization of the problem
(used by the DD MIC(0) solver) is about three times greater than in the con-
forming one (used by the DD CBF solver). Furthermore, the number of iterations
of the DD MIC(0) preconditioner is also greater than the number of iterations
of the CBF one. Nevertheless, computing times of both solvers are comparable,
with the DD MIC(0) solver being somewhat faster. A notable exception from
this are runs on Franklin, where the DD MIC(0) code performs more than two
times slower. We believe that the cause of this phenomenon is the PGI compiler
and its inability to appropriately optimize the C++ code (vis-a-vis the C code).

As expected the parallel efficiency of the DD CBF solver is generally better
than this of the DD MIC(0). On Bassi, the efficiency of 64% is obtained for the
smaller problem on 32 processors for the MIC(0) preconditioner. For the larger
problem, on 64 processors, the efficiency is 66% for the same solver. For the CBF
preconditioner the lowest efficiencies are 90% and 94%, reached on 64 processors,
for the smaller and larger problems respectively. There could be both software
and hardware causes for the super-linear speed-up observed on Bassi. On the
software side, when using more processors, the number of iterations needed for
some convergence steps are smaller. On the hardware side, cache effect is usually
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Fig. 3. Execution times for the coarse and fine mesh
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the cause. When the sub-domains are smaller, the data each processor owns are
more easily fit into cache.

The superiority of the parallel properties of the CBF solver can be tracked on
Jacquard and Franklin as well, although they are not as pronounced.

To summarize, in Fig. 3 computing times on different clusters are shown
for both algorithms. The left picture well illustrate the above mentioned phe-
nomenon with slower execution of the DD MIC(0) solver on Franklin. Also, the
theoretical peak performance of Bassi is the highest but with respect to the
execution time on one processor Jacquard is the fastest machine.
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