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Abstract

The numerical solution of 3D linear elasticity equations is considered. The problem is described by a coupled system of

second-order elliptic partial differential equations. This system is discretized by trilinear brick finite elements. The PCG

iterative method is used for solving the large-scale linear algebraic systems arising after the FEM discretization of the

problem. Displacement decomposition technique is applied at the first step to construct a preconditioner using the decoupled

block-diagonal part of the original matrix. Then circulant block-factorization is used for preconditioning of the obtained

block-diagonal matrix.

New construction of a parallel algorithm for the discussed preconditioning method is proposed. The theoretical part of this

study includes analysis of the execution time on various parallel architectures and asymptotic estimates of the parallel speedup

and the parallel efficiency. The parallel performance estimates indicate that the proposed algorithm will be especially efficient

on coarse-grain parallel systems, which is also confirmed by the numerical experiments. A portable MPI parallel code is

developed. Numerical tests on three symmetric multiprocessor systems: SUN Enterprise 3000, SUN SPARCstation 10 and

Origin 2000 are presented. The reported speedup and parallel efficiency illustrate well the features of the proposed method and

its implementation. # 1999 IMACS/Elsevier Science B.V. All rights reserved.
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1. Introduction

When a 3D elasticity system is discretized using the finite element method (FEM), the problem is
reduced to a linear system Kx � f. Here, the stiffness matrix K is large sparse and symmetric positive
definite. The conjugate gradient (CG) type methods are recognized as the most cost-effective way to
solve problems of this type [1]. To accelerate the iteration convergence a preconditioner M is combined
with the CG algorithm. The theory of the preconditioned CG (PCG) method says that M is considered
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as a good preconditioner if it reduces significantly the condition number ��Mÿ1K�, and at the same
time, if the inverse matrix vector product Mÿ1v can be efficiently computed for a given vector v. A third
important aspect should be added to the above two, namely, the requirement for efficient
implementation of the PCG algorithm on recent parallel computer systems.

A new high performance and parallel efficient PCG algorithm for 3D linear elasticity problems,
implementing displacement decomposition circulant block factorization (DD CBF), is proposed and
studied in this paper. The message passing interface (MPI) [9,10] standard is used to develop a portable
parallel code. The paper is organized as follows. Section 2 is devoted to a brief description of the
elasticity equations as well as of the benchmark problem under consideration. In Section 3, we focus on
the construction of the DD CBF preconditioner. The parallel complexity of the algorithm is analyzed in
the Section 4. Parallel numerical tests on SGI Origin 2000, SUN SPARCstation 10 and SUN Enterprise
3000 can be found in Section 5. Concluding remarks and some outlook about the parallel performance
of the developed MPI FEM code are given in Section 6.

2. Elasticity equations and the benchmark problem

Let B be an elastic body occupying a bounded polyhedral domain 
�R3, impose Dirichlet/Neumann
boundary conditions on ÿD [ ÿN � @
. We denote the displacement vector by u � �u1; u2; u3�T, the
stress tensor by ��u� � ��ij�u�� and the strain tensor by ��u� � ��ij�u��. Without any restrictions we
could assume that the Dirichlet boundary conditions are homogeneous. Then the following variational

formulation of the problem holds: find u 2 �H1
0�
��3�H1

0�
� � v 2 H1�
� : vjÿD
� 0

n o
is the standard

Sobolev space), such that:

a
�u; v� � F�v�; 8v 2 �H1
0�
��3;

where

a
�u; v� �
Z




� div u div v� �
X3

i;j�1

�ij�u��ij�v�
" #

dx:

The Lame coefficients � and � depend on the Young's modulus E and on the Poisson ratio �. The
bilinear form a
(u,v) is symmetric and coercive. Then the related discrete variational problem is: find
uh 2 Vh�
� � �H1

0�
��3, such that:

a
�uh; vh� � F�vh�; 8vh 2 Vh�
�:
In this study Vh(
) is the FEM space of piecewise trilinear functions. The latter problem is equivalent

to the linear system:

Kx � f; (1)

where x � �xi�T is the vector of the nodal unknowns xi; i � 1; 2; . . . ;N. The PCG method is used to
solve Eq. (1).

In what follows, we restrict our considerations to the case 
 � �0; xmax
1 � � �0; xmax

2 � � �0; xmax
3 �, where

the boundary conditions on each of the sides of 
 are of a fixed type. The benchmark problem from [4]

248 I. Lirkov, S. Margenov / Mathematics and Computers in Simulation 50 (1999) 247±254



is used in the reported numerical tests. This benchmark represents the model of a single pile in a
homogeneous sandy clay soil layer (see Fig. 1). An uniform grid is used with n1, n2 and n3 grid points
along the coordinate directions. Then the stiffness matrix K can be written in a 3�3 block form where
the blocks Kij are sparse block-tridiagonal matrices of a size n1n2n3 � N=3.

3. DD CBF preconditioning

First, let us recall that a m�m circulant matrix C has the form �Ck;j� � �c�jÿk�mod m�. Each circulant
matrix can be factorized as C � F�F�, where � is a diagonal matrix of the eigenvalues of C, and F is
the Fourier matrix F � �1= ����

m
p �fe2��jk=m�ig0�j;k�mÿ1. Here i stands for the imaginary unit.

3.1. A displacement decomposition-based preconditioner

There are a lot of works dealing with preconditioning iterative solution methods for the FEM
elasticity systems. Axelsson and Gustafson [2] constructed their preconditioners based on the point-
ILU factorization of the displacement decoupled block-diagonal part of the original matrix. This
approach is known as displacement decomposition (see, e.g., [3]).

Fig. 1. Benchmark problem.
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To define the displacement decomposition preconditioner MDD of the matrix K, we introduce the
auxiliary Laplace equation ÿux1x1

ÿ ux2x2
ÿ ux3x3

� f , with boundary conditions corresponding to the
considered coupled elasticity problem. Let us primarily assume, that this Laplace equation is
discretized by the same brick finite elements as the original problem, and let K0 be the obtained
stiffness matrix.

The following Korn's inequality gives the theoretical background of the displacement decomposition
methods [2]:

��Mÿ1
DDK� � O

1

1ÿ 2�max

� �
; (2)

where �max � max
� and

MDD � diag�K0;K0;K0�: (3)

The next step in our construction is to substitute in Eq. (3), K0 by A0, where A0 stands for the Laplace
stiffness matrix corresponding to linear finite elements or, which is equivalent in the case under
consideration, to a seven point finite difference stencil. This step is motivated by the more simple/
sparse structure of A0 as well as by the spectral equivalence

��Aÿ1
0 K0� � O�1�: (4)

3.2. Circulant block factorization

The CBF preconditioning technique (see [7]) incorporates the circulant approximation into the
framework of the LU block factorization. It was recently introduced and analyzed in [5] for the model
Dirichlet boundary value problem:

ÿ�a�x1; x2; x3�ux1
�x1
ÿ �b�x1; x2; x3�ux2

�x2
ÿ �c�x1; x2; x3�ux3

�x3
� f �x1; x2; x3�

in 
 � �0; xmax
1 � � �0; xmax

2 � � �0; xmax
3 �. Let us assume (as in the previous section) that 
 is discretized

by a uniform grid with n1, n2 and n3 grid points along the coordinate directions, and that a standard (for
such a problem) seven-point finite difference (FEM) approximation is used. The related stiffness matrix
A(d) can be written in the block-form A�d� � tridiag�ÿA

�d�
i;iÿ1;A

�d�
i;i ;ÿA

�d�
i;i�1�; i � 1; 2; . . . ; n1, where

A
�d�
i;i is a block-tridiagonal matrix corresponding to the ith x1-plane, and the off-diagonal blocks are

diagonal matrices. Now, CBF preconditioner MCBF is defined as follows:

MCBF � tridiag�ÿCi;iÿ1;Ci;i;ÿCi;i�1�; i � 1; 2; . . . ; n1: (5)

Here Ci;j � BC�A�d�i;j � is a block-circulant approximation of the corresponding block A
�d�
i;j . The relative

condition number of the CBF preconditioner for the model (Laplace) 3D problem is studied in [5] for
n1 � n2 � n3 � n, where the following estimate is derived:

��Mÿ1
CBFA0� � 4n: (6)

Now, let us denote by M0 the CBF preconditioner for A0, the matrix introduced in the previous
subsection. At the last step of our construction we substitute in Eq. (3), K0 by M0, and get the DD CBF
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preconditioner defined by:

MDD CBF � diag�M0;M0;M0�:
The estimate of the condition number of the preconditioned matrix:

��Mÿ1
DD CBFK� � O

nmax

1ÿ 2�max

� �
(7)

follows straightforwardly from Eqs. (2),(4) and (6).

Remark 1. We have observed in the performed numerical tests that a diagonal scaling of K improves
the convergence rate of the iterative method in the case of problems with jumping coefficients.

4. Analysis of the parallel complexity

We assume that the computations and communications are not overlapped and therefore, the
execution time of the parallel implementation is the sum of the computation time and the
communication time. We shall use in our analysis standard models for the arithmetic and
communication times [8]. First, assuming no arithmetic vectorization, the execution of M arithmetic
operations on one processor takes time Ta � M � ta, where ta is the average unit time to perform one
arithmetic operation on one processor. Second, the local communication time to transfer M data from
one processor to its neighbor is approximated by Tlocal � ts �M � tc, where ts is the start-up time and tc
is the incremental time necessary for each of all M words to be sent. Finally, we consider the following
two quantities, which are of special interest for various computer architectures, namely:

� b(p): broadcasting a number from one processor to all others, where there are p processors in the
computer system;
� g(M,p): gathering p data packets, each packet with M/p words, in one processor from all others.

We discuss three distributed memory architecture models: ring, square grid and hypercube, and
shared memory model. The shared memory architecture is interpreted assuming that each two
processors in the system can be considered as neighbors. The corresponding broadcasting and gathering
times are given in the table below:

b(p) g(M,p)

ring �ts � tc��p=2� pts �Mtc

grid �ts � tc� ���pp 2
���
p
p

ts �M�1� �1= ���
p
p ��tc

hypercube �ts � tc�log p log pts �M�1ÿ �1=p��tc

shared memory dlog pe�ts � tc� �pÿ 1��ts � �M=p�tc�

We consider broadcasting from the processor in the center of the square grid to obtain an optimal
time. This is not essential for the algorithm itself.

We can now estimate the total execution time TPCG for one PCG iteration with the described DD CBF
preconditioner. Each iteration consists of one matrix vector multiplication with the matrix K, solution
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of one system of equations with the preconditioner, two inner products and three linked triads (a vector
updated by a vector multiplied by a scalar). Consequently:

TPCG�p� � Tmult � Tprec � 2Tinnÿprod � 3Ttriads:

.For simplicity we will assume that the mesh sizes are equal being exact power of two, i.e.,
n1 � n2 � n3 � n � 2l. Then:

Tmult � 243
n3

p
ta � 4�ts � 3n2tc�; Tinnÿprod � 6

n3

p
ta � g�p; p� � b�p�;

Ttriads � 6
n3

p
ta; Tprec � 6

n2

p
TFFT�n� � 36

n3

p
ta � 2g 3

n3

p
; p

� �
:

Here TFFT(n) is the time for execution of FFT on a given n-vector on one processor. If we use 2-radix
algorithm, then TFFT�n� � 5n log nta. Combining the above, we obtain the following estimates:

TPCG�p� � 3�103� 10 log n� n
3

p
ta � 4 ts � 3n2tc

ÿ �� 2g 3
n3

p
; p

� �
� 2g�p; p� � 2b�p�:

Let us consider in some more details the parallel execution time for the shared memory model. We
have:

TPCG�p� � 2�p� dlog pe � 1�ts � 2 3�pÿ 1� n
3

p2
� 6n2 � dlog pe

� �
tc � 3�103� 10 log n� n

3

p
ta:

Taking the leading terms of the above expression we get the approximation:

TPCG�p� � 2pts � 6 1ÿ 1

p

� �
n3

p
tc � 3�103� 10 log n� n

3

p
ta: (8)

To analyze the relative speedup Sp and the relative efficiency Ep, where Sp � �T�1�=T�p�� � p and
Ep � Sp=p � 1, we apply Eq. (8) and obtain:

Sp � 3�103� 10 log n�
2�p2=n3��ts=ta� � 6�1ÿ �1=p���tc=ta� � 3�103� 10 log n� p: (9)

Obviously, for the DD CBF preconditioner, limn!1Sp � p and limn!1Ep � 1, i.e., the algorithm is
asymptotically optimal. More precisely, if log n� �p2=n3��ts=ta� � �tc=ta�, then Ep is close to 1.
Unfortunately, the start-up time ts is usually much larger than ta, and for relatively small n the first term
of the denominator in Eq. (9) is dominating. In such case the efficiency could be much smaller than 1.

5. Parallel tests of the DD CBF preconditioning FEM code

The developed parallel MPI C code was tested on three parallel machines. We report here the elapsed
time Tp on p processors, the speedup Sp � T1=Tp, and the parallel efficiency Ep � Sp=p. The benchmark
problem was already described in Section 2.
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We show in Table 1 results obtained on SGI Origin 2000 machine with two 188 MHz processors and
128 Mb main memory. From the machines we have tested our code on, this one has the fastest
processors. The idea of this set of numerical data is to see what is the behavior of the algorithm on a
very coarse-grain system where the influence of the communications is minimal. The parallel efficiency
is above 90% which confirms our general expectations.

The results in Table 1 are produced on a SUN SPARCstation 10 with four 130 MHz processors and
192 Mb main memory. One can see again the well expressed high degree of parallelism of the
algorithm. The observed better efficiency for p � 2 (compare the results on Origin 2000 and SUN
SPARCstation 10) is due to the relatively slower processors of this SUN configuration.

In Table 1 (SUN Enterprise 3000), we present results of experiments executed on SUN Ultra-
Enterprise Symmetric Multiprocessor with eight 167 MHz processors and 1 Gb main memory. The size
of the main memory of this machine allows to get results for finer meshes. As expected, the parallel
efficiency increases with the size of the discrete problems.

Remark 2. There exist at least two more reasons for the high efficiency reported above: (a) the network
parameters start-up time and time for transferring of single word are relatively small for the

Table 1

Parallel time (in seconds), speedup and parallel efficiency

n1 n2 n3 p Tp Sp Ep

Origin 2000

All 32 32 32 1 213.326

2 116.553 1.830 0.915

Per iteration 1 1.817

2 0.993 1.830 0.915

SUN SPARCstation 10

All 32 32 32 1 1120.900

2 600.175 1.868 0.934

4 351.283 3.191 0.798

Per iteration 1 9.263

2 5.002 0.798 0.926

4 2.895 3.199 0.800

SUN Enterprise 3000

32 32 32 1 412.370

2 202.645 2.035 1.017

4 102.005 4.043 1.011

8 55.3532 7.450 0.931

48 48 48 1 2516.900

2 1238.110 2.033 1.016

3 834.714 3.015 1.005

4 648.159 3.883 0.971

6 420.440 5.986 0.998

8 317.082 7.938 0.992

64 64 32 1 2322.830

2 1142.210 2.034 1.017

4 579.867 4.006 1.001

8 298.219 7.789 0.974

I. Lirkov, S. Margenov / Mathematics and Computers in Simulation 50 (1999) 247±254 253



multiprocessor machines; (b) there is also some overlapping between the computations and the
communications in the algorithm.

6. Conclusions

The DD CBF preconditioning algorithm, presented in this paper, possesses strongly expressed
parallel structure with well-balanced local communications. The performed numerical tests clearly
demonstrate the high level of parallel efficiency of the developed parallel code obtained on different
models of symmetric multiprocessors with up to eight processors. The speedup and the parallel
efficiency increase with the size of the discrete problem. As it was shown above, the achieved parallel
efficiency is above 80% for the considered real-life large-scale discrete problems.

The use of the MPI standard is a key component in the development of concurrent computing
environment in which applications and tools can be transparently ported between different computers.
The reported new MPI code is portable on both distributed and shared memory systems, as well as on
clusters of workstations.

The DD CBF code provides new effective tools for computer simulation of real-life engineering
problems with 105±106 unknowns in realistic time on a class of coarse-grain parallel computer systems
with currently increasing cost-efficiency.

Remark 3. The reported code enables possibility to solve very large-scale problems on distributed
memory parallel computers. The decomposition strategy allows to treat efficiently such problems,
where the size is only limited by the total sum of the distributed memory. This has been already

confirmed (see [6]) by the performed tests with our CBF code for 2D elliptic problems.
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