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Abstract
Parallel performance of a new solver for 3D elliptic problems based on a circulant

block-factorization preconditioner is investigated. Experimental data collected on a
number of parallel computers is reported and discussed.

1 Introduction

Let us consider the numerical solution of a self-adjoint second order 3D linear boundary
value problem of elliptic type. After discretization, such a problem results in a linear
system Ax = b, where A is a structured sparse symmetric positive definite matrix. In
the computational practice, large-scale problems of this class are most often solved by the
Krylov subspace based iterative methods (e.g. conjugate gradient method). Each step of
such a method requires only a product of A with a given vector v allowing one to exploit the
sparsity of A. The rate of convergence of these methods depends on the condition number
κ of the coefficient matrix A: smaller κ(A) leads to faster convergence. Unfortunately, for
the second order 3D elliptic problems, typically κ(A) = O(N2/3), where N is the size of
the discrete problem, and hence grows rapidly with N . To alleviate this problem, iterative
methods are almost always used with a preconditioner M . The preconditioner is chosen
with two criteria in mind: to minimize κ(M−1A) and to allow efficient computation of the
product M−1v for any given vector v. These two goals are often in conflict and a large
body of research exists devoted to devising preconditioners that strike a balance between
the two. Recently, a third aspect has been added to considerations, namely, the efficiency
of applying the iterative method (and thus the preconditioner) on a parallel computer.

We focus our considerations on a model 3D case where the computational domain is
regular (a cube). It is important to note that the development of new high performance
methods for large- and very large-scale problems of this class is strongly motivated by their
applications as a part of the general framework of domain decomposition and patched local
refinement algorithms in very general settings including time dependent and/or nonlinear
problems.

One of the most popular and the most successful preconditioners used by the state-
of-the-art iterative solvers are the incomplete LU (ILU) factorizations. One potential
problem with the ILU preconditioners is that they have a rather limited degree of
parallelism. Attempts to modify the approach and introduce more parallelism often result
in a deterioration of the convergence rate. In 1992, R. Chan and T. F. Chan [3] proposed
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another class of preconditioners which is based on averaging coefficients of A to form a block-
circulant approximation (see also [4, 5]). The block-circulant preconditioners are highly
parallelizable but they are very sensitive to a possible high variation of the coefficients of
the elliptic operator. To reduce this sensitivity a new class of circulant block-factorization
(CBF) preconditioners was introduced in 1994 by Lirkov, Margenov and Vassilevski [6].

The main goal of this note is to report on the parallel performance of the PCG method
with a new circulant block-factorization preconditioner applied to a model 3D linear PDE
of elliptic type (the preconditioner was initially introduced in [8, 9]). The results of
experiments performed on the SGI Cray Origin2000, HP-Convex Exemplar SPP-2000 (X-
Class), Cray J-9x, Cray T3E and Sun Ultra-Enterprise high performance computers are
presented and analyzed.

We proceed as follows. In Section 2 we sketch the algorithm of the parallel precon-
ditioner (for more details see [8, 9]). Section 3 contains the theoretical estimate of its
arithmetical complexity. Finally, in Section 4 we report the results of our experiments.

2 Circulant block factorization

Let us remind that a circulant matrix C has the form (Ck,j) =
(
c(j−k)modm

)
, where m is

the dimension of C. Let us also denote by C = (c0, c1, . . . , cm−1) the circulant matrix with
the first row (c0, c1, . . . , cm−1). Any circulant matrix can be factorized as C = FΛF ∗ where
Λ is a diagonal matrix containing the eigenvalues of C, and F is the Fourier matrix of the
form

Fjk =
1√
m
e2π jk

m
i,(1)

where F ∗ = F
T

denotes the adjoint matrix of F .
The CBF preconditioning technique incorporates the circulant approximations into the

framework of LU block factorization. Let us consider a 3D elliptic problem (see also [8]):

−(a(x1, x2, x3)ux1)x1 − (b(x1, x2, x3)ux2)x2 − (c(x1, x2, x3)ux3)x3 = f(x1, x2, x3)

on the unit cube [0, 1] × [0, 1] × [0, 1] with Dirichlet boundary conditions. If the domain is
discretized on a uniform grid with n1, n2 and n3 grid points along the coordinate directions,
and if a standard (for such a problem) seven-point FDM (FEM) approximation is used,
then the stiffness matrix A admits a block-tridiagonal structure. The matrix A can be thus
written in the form

A = tridiag(−Ai,i−1, Ai,i,−Ai,i+1) i = 1, 2, . . . , n1,

where Ai,i are block-tridiagonal matrices which correspond to the x1-plane and the off-
diagonal blocks are diagonal matrices.

In this case the general CBF preconditioning approach is applied to construct the
preconditioner MCBF in the form

MCBF = tridiag(−Ci,i−1, Ci,i,−Ci,i+1) i = 1, 2, . . . n1,(2)

where Ci,j = Block-Circulant(Ai,j) is a block-circulant approximation of the corresponding
block Ai,j . The relative condition number of the CBF preconditioner for the model
(Laplace) 3D problem for n1 = n2 = n3 = n is (for derivation see [8]):

κ(M−1
0 A0) ≤ 4n.(3)
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2.1 Parallel circulant block-factorization preconditioner

The basic advantage of circulant preconditioners is their inherent parallelism. Let us now
describe how to implement in parallel an application of the inverse of the preconditioner
to a given vector. Using the standard LU factorization procedure, we can first split
M = D − L − U into its block-diagonal and strictly block-triangular parts respectively.
Then the exact block-factorization of M can be written in the form

M = (X − L)(I −X−1U),

where X = diag(X1, X2, . . . , Xn) and the blocks Xi are determined by the recursion

X1 = C1,1, and Xi = Ci,i − Ci,i−1X
−1
i−1Ci−1,i, i = 2, . . . , n1.(4)

It is easy to observe here that Xi are also block-circulant matrices.
In order to compute M−1v we rewrite the block-circulant blocks of the preconditioner

as
Ci,j = (F ⊗ F )Λi,j(F

∗ ⊗ F ∗).

Here ⊗ denotes the Kronecker product. It can be observed that for Xi in (4) we have

Xi = (F ⊗ F )D−1
i (F ∗ ⊗ F ∗)

and the latter yields

D−1
1 = Λ1,1,

D−1
i = Λi,i − Λi,i−1Di−1Λi−1,i.

Let Λ = tridiag(Λi,i−1,Λi,i,Λi,i+1). Then the following relation holds

Mu = v ⇐⇒ (I ⊗ F ⊗ F )Λ(I ⊗ F ∗ ⊗ F ∗)u = v.

The above system can be rewritten as
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where F = F ⊗ F .
We can distinguish three stages in computing u = M−1v:

(1) v̂ = (I ⊗ F ∗ ⊗ F ∗)v
(2) Λû = v̂(5)

(3) u = (I ⊗ F ⊗ F )û.

Due to the special form of F (see (1) above), we can use a fast Fourier transform to perform
the first and third stages of the algorithm. Namely, we use a standard two-dimensional
block-FFT which is easily parallelizable (see [12]). The second stage consist of solving two
recurrence equations∣∣∣∣∣

ŵ1 = D1v̂1

ŵi = Di(v̂i − Λi,i−1ŵi−1)

i = 2, 3, . . . n1

∣∣∣∣∣
ûn = ŵn

ûi = ŵi −DiΛi,i+1ûi+1

i = n1 − 1, n1 − 2, . . . 1

(6)

Since blocks Di and Λi,j in the recurrences (6) are diagonal the solution of n independent
linear systems can be calculated in parallel.
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3 Parallel complexity

Let us present the theoretical estimate of the total execution time TPCG for one PCG
iteration for the proposed circulant block-factorization preconditioner on a parallel system
with p processors (detailed analysis of parallel complexity can be found in [9]). Each
iteration consists of one matrix vector multiplication with matrix A, one multiplication
with the inverse of the preconditioner MCBF (solving a system of equations with matrix
M), two inner products and three linked triads (a vector updated by a vector multiplied
by a scalar). Consequently

TPCG(p) = Tmult + Tprec + 2Tinn prod + 3Ttriads.

For simplicity we assume that the mesh sizes are equal and they are equal to an exact
power of two, i.e., n1 = n2 = n3 = n = 2l. We also assume that the time to execute
K arithmetic operations on one processor is Ta = K ∗ ta, where ta is an average time of
one arithmetic operation. In addition, the communication time of a transfer of K words
between two neighbor processors is Tlocal = ts+K ∗tc, where ts is the start-up time and tc is
the time for each word to be sent/received. Finally, let us assume that a 2-radix algorithm
is used to calculate the FFT’s and thus the cost per processor is TFFT (n) = 5n log nta.
Then the formula for computational complexity has the form

TPCG(p) = 5 (7 + 4 logn)
n3

p
ta + 4

(
ts + n2tc

)
+ 2g(

n3

p
, p) + 2g(p, p) + 2b(p),

where b(p) denotes time to broadcast a number from one processor to all other processors
and g(K, p) denotes time to gather K

p words from all processors into one processor. It can
be shown that, when the appropriate frmulas for g and b are derived and substituted into
the expression above and when only the leading terms in n are taken into consideration
then e.g. for the shared memory parallel computer we obtain:

TPCG(p) ≈ 2pts + 2(1 − 1

p
)
n3

p
tc + 5(7 + 4 log n)

n3

p
ta,(7)

and the formula for the speedup can be derived

Sp ≈ 5(7 + 4 log n)

2 p2

n3
ts
ta

+ 2(1 − 1
p)

tc
ta

+ 5(7 + 4 log n)
p.(8)

Obviously, limn→∞ Sp = p and limn→∞Ep = 1, i.e., the algorithm is asymptotically

optimal. More precisely, if logn � p2

n3
ts
ta

+ tc
ta
, then Ep is near to 1. Unfortunately, the

start-up time ts is usually much larger than ta, and for relatively small n the first term of
the denominator in (8) is significant, and the efficiency is much smaller than 1.

4 Experimental results

In this section we report the results of the experiments executed on the SGI Cray
Origin2000, HP-Convex Exemplar SPP-2000 (X-Class), Cray J-9x, Cray T3E and the Sun
Ultra-Enterprise high performance computers. The results obtained on the latter system
have been originally reported in [9]. We will report them here in the final section for the
comparison with other systems. The code has been implemented in C and the parallelization
has been facilitated by the MPI library [17, 16]. In all cases the manufacturer provided
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Table 1

Parallel performance of the SGI Origin

n = 40 n = 48

p time speedup time speedup

1 0.46 0.79
2 0.24 1.91 0.43 1.84
3 0.28 2.78
4 0.12 3.73 0.21 3.75
5 0.10 4.60
6 0.14 5.4
8 0.07 6.86 0.11 7.03

Table 2

Parallel performance of the HP-Convex SPP-2000

n = 40 n = 48

p time speedup time speedup

1 0.57 1.01
2 0.28 2.03 0.49 2.06
3 0.32 3.15
4 0.14 4.07 0.24 4.07
5 0.11 4.87
6 0.16 5.97
8 0.08 7.31 0.14 7.42

MPI kernels have been used. No machine-dependent optimization has been applied to the
code itself e.g. exactly the same code has been used on all machines. Instead, in all cases,
the most aggressive optimization options of the compiler have been turned on. Times have
been collected using the MPI provided timer. For all experiments we report the best results
from multiple runs in interactive and batch modes on machines with varying workloads.

4.1 SGI Cray Origin2000

The results have been gathered on a system at NCSA in Urbana [13]. It is a dynamic
shared memory computer with MIPS R10000 processors running at 250MHz (theoretical
peak performance of 360 Mflops per processor). Table 1 presents results for n = 40, 48 and
for p = 1, . . . , 8 processors. Since our implementation is in experimental stages the problem
size must be divisible by the number of processors and thus some numbers of processors
were not used. The execution time (in seconds) and the relative speedup are reported.

The results are rather encouraging. For this, relatively small, problem the efficiency on
8 processors reaches 87% and is increasing as with the problem size.

4.2 HP-Convex Exemplar SPP-2000 (X-Class)

The results have been collected on the system at NCSA in Urbana. It is a dynamic shared
memory computer with PA-RISC 8000 processors running at 180 MHz (with a theoretical
peak performance of 720 Mflops). As above, Table 2 depicts the execution times and the
relative speedup for n = 40, 48 and p = 1, . . . , 8 processors.

The results viewed in isolation seem very positive as the 8-processor efficiency for the
larger problem reaches 92%. However, when they are compared with these obtained on the
SGI machine (which is based on a similar hardvare model), they are rather disappointing.
A more detailed performance comparison between machines is presented in Section 4.4
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Table 3

Parallel performance of the Cray J-9x

n = 40 n = 48

p time speedup time speedup

1 4.26 6.68
2 2.22 1.91 3.47 1.92
3 2.36 2.83
4 1.16 3.67 1.83 3.65
5 0.96 4.43
6 1.40 4.77
8 0.67 6.31 1.04 6.42

Table 4

Parallel performance of the Cray T3E

n = 40 n = 48

p time speedup time speedup

1 0.74 1.25
2 0.36 2.02 0.62 2.01
3 0.41 3.04
4 0.18 4.06 0.31 4.16
5 0.15 5.02
6 0.21 6.03
8 0.09 7.86 0.16 8.01

below. The superliner speedup should be attributed to the memory management. When
the number of processors increases, the size of data per-processor decreases and thus reduces
the burden on the cache memory and the cache management software. This is particularly
important on the Exemplar architecture ([1, 11]).

4.3 Cray J-9x

The experiments have been run on the Cray at NPACI in Austin [14]. It is a shared memory
vector-computer with processors running at theoretical peak of 200 MFlops. As previously,
Table 3, depicts times and the relative speedup for the same problem sizes and numbers of
processors.

Again, if it was not for the remaining results presented here, the parallelization obtained
on the Cray seems reasonable (efficiency of 80% on 8 processors). It is, however, clear that
the way that the code is implemented is not well suited for the vector-processing model
of computation. The slightly smaller speedup can be partially attributed to the bus-based
architecture (see also [10, 11]), and to the fact that when the experiments were run the
workload on the machine was rather high.

4.4 Cray T3E

The final series of experiments has been run on a Cray T3E at NPACI in Austin. It is
a distributed memory machine with DEC Alpha 21164 processors running at 400 MHz
(theoretical peak performance of 500 Mflops). Table 4 summarizes the performance for the
same problem sizes and numbers of processors as for the remaining machines.

The performance is quite similar to that of the SGI and Convex machines which is
rather disappointing considering the per-processor peak performance. Interestingly, as on
the Exemplar, we again observe superlinear speedup. This can be related to the very
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Table 5

Performance comparison between the machines

Origin Exemplar J-9x T3E Enterprise

p time sp-up time sp-up time sp-up time sp-up time sp-up

1 1.34 1.68 13.34 2.19 6.03
2 0.73 1.84 0.83 2.02 6.88 1.93 1.09 2.00 2.99 2.01
4 0.36 3.72 0.41 4.09 3.74 3.56 0.53 4.13 1.50 4.02
7 0.21 6.26 0.25 6.72 2.48 5.37 0.31 7.06 0.86 6.97
8 0.18 7.08 0.22 7.63 2.26 5.90 0.27 8.11 0.77 7.86

small amount of memory available on the machine in Austin (only 128 Mbytes per node)
hampering the single processor performance.

4.5 Comparison between machines

Finally, in this section we compare the performance of all computers for the largest problem
we have experimented with so far; n = 56. Table 5 contains the time and relative speedup
reported for all five computers. It should be recalled that the Sun Ultra-Enterprise server is
a symmetric multiprocessing system with UltraSPARC-II processors running at 336 MHz
(theoretical peak performance of 500 Mflops).

The results follow trends observed earlier. The current implementation of the algorithm
is clearly not well suited for the vector-processors of the Cray J-9x. The performance
of the Sun machine cannot compete with the remaining three computers (which is very
surprising considering the per-processor peak performance of the UltraSPARC-II nodes).
The performance of the Cray T3E is hampered by the insufficient memory per node,
as evidenced by the increasing degree of the superlinear speedup, and thus the results
reported here do not represent the full capability of the architecture. The Exemplar is
underperforming due to its old cache technology. While the MIPS processors use a two-
way cache, the PA-RISC chips use a one-way cache [1]. This explains why a machine with
twice the theoretical peak performance is slower. Overall, for the relatively small problem
size and for the small number of processors used, the code parallelizes well.

5 Summary

We have presented initial assessment of the parallel performance of a new preconditioner
for the linear systems arising from discretizations of linear elliptic PDEs in 3D. We were
able to establish that the code parallelizes well and holds promise for the solution of larger
systems on larger numbers of processors. In the near future we plan to explore this direction
further.
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