
Parallel Performance of a 3D Elliptic Solver

Ivan Lirkov

Central Laboratory for Parallel Processing, Bulgarian Academy of Sciences,
Acad.G.Bonchev, Bl. 25A,

1113 Sofia, Bulgaria
ivan@parallel.bas.bg

Abstract. It was recently shown that block-circulant preconditioners
applied to a conjugate gradient method used to solve structured sparse
linear systems arising from 2D or 3D elliptic problems have good numeri-
cal properties and a potential for high parallel efficiency. The asymptotic
estimate for their convergence rate is as for the incomplete factorization
methods but the efficiency of the parallel algorithms based on circulant
preconditioners are asymptotically optimal. In this paper parallel perfor-
mance of a circulant block-factorization based preconditioner applied to
a 3D model problem is investigated. The aim of this presentation is to an-
alyze the performance and to report on the experimental results obtained
on shared and distributed memory parallel architectures. A portable par-
allel code is developed based on Message Passing Interface (MPI) and
OpenMP (Open Multi Processing) standards. The performed numerical
tests on a wide range of parallel computer systems clearly demonstrate
the high level of parallel efficiency of the developed parallel code.

1 Introduction

In this article we are concerned with the numerical solution of 3D linear boundary
value problems of elliptic type. After discretization, such problems lead to find
the solution of linear systems of the form Ax = b. We shall only consider the
case where A is symmetric and positive definite. In practice, large problems of
this class are often solved by iterative methods, such as the conjugate gradient
method. At each step of these iterative methods only the product of A with a
given vector v is needed. Such methods are therefore ideally suited to exploit
the sparsity of A.

Typically, the rate of convergence of these methods depends on the condi-
tion number κ(A) of the coefficient matrix A: the smaller κ(A) leads to the
faster convergence. Unfortunately, for elliptic problems of second order, usually
κ(A) = O(n2), where n is the number of mesh points in each coordinate direc-
tion, and hence grows rapidly with n. To somewhat facilitate this problem, these
methods are almost always used with a preconditioner M . The preconditioner
is chosen with two criteria in mind: to minimize κ(M−1A) and to allow efficient
computation of the product M−1v for a given vector v. These two goals are often
conflicting ones and much research has been done into devising preconditioners
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that strike a delicate balance between both. Recently, a third aspect has been
added to the above two, namely, the possibility to easily implement the action
of the preconditioner on a parallel computer system.

One of the most popular and the most successful class of preconditioners is
the class of incomplete LU (ILU) factorizations. One potential problem with
the ILU preconditioners is that they have limited degree of parallelism. Some
attempts to modify the method and to devise more parallel variants often result
in a deterioration of the convergence rate.

R. Chan and T. F. Chan [1] proposed another class of preconditioners which
is based on averaging coefficients of A to form a block-circulant approximation.
The block-circulant preconditioners are highly parallelizable but they are sub-
stantially sensitive with respect to a possible high variation of the coefficients of
the elliptic operator.

The sensitivity of the block-circulant approximations with respect to a high
variation of the problem coefficients was relaxed in the circulant block factoriza-
tion (CBF) preconditioners [4].

The main goal of this study is analysis of the parallel complexity of the PCG
method with considered circulant block-factorization preconditioners obtained
on Cray T3E-900, SUNfire 6800, and NEC server Azusa Express5800/1160Xa
computers, Linux Athlon, Macintosh, and Cray Opteron clusters.

2 Circulant Block Factorization

Let us recall that an m×m circulant matrix C has the form (Ck,j)=
(
c(j−k) mod m

)
.

Any circulant matrix can be factorized as C = FΛF ∗ where Λ is a diago-
nal matrix containing the eigenvalues of C, and F is the Fourier matrix F =

1√
m

{
e2π jk

m i
}

0≤j,k≤m−1
. Here i stands for the imaginary unit. F ∗ = F

T
denotes

adjoint matrix of F .
The CBF preconditioning technique incorporates the circulant approxima-

tions into the framework of the LU block factorization. The computational effi-
ciency and parallelization of the resulting algorithm are as high as of the block
circulant one (see [1, 3]).

The following 3D elliptic problem is considered in [2]:

−(a(x1, x2, x3)ux1)x1 − (b(x1, x2, x3)ux2)x2 − (c(x1, x2, x3)ux3)x3 =f(x1, x2, x3)

on the unit cube [0, 1] × [0, 1] × [0, 1] with Dirichlet boundary condition. If the
domain is discretized by uniform grid with n1, n2 and n3 grid points along
the coordinate directions, and if a standard (for such a problem) seven-point
FDM (FEM) approximation is used, then the stiffness matrix A admits a block-
tridiagonal structure. The matrix A can be written in the block-form

A = tridiag(Ai,i−1, Ai,i, Ai,i+1) i = 1, 2, . . . , n1,

where Ai,i are block-tridiagonal matrices which correspond to one x1-plane and
off-diagonal blocks are diagonal matrices.
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In this case the general CBF preconditioning approach (see [4]) is applied to
construct the preconditioner MCBF in the form:

MCBF = tridiag(Ci,i−1, Ci,i, Ci,i+1) i = 1, 2, . . . n1, (1)

where Ci,j = Block − Circulant(Ai,j) is a block-circulant approximation of the
corresponding block Ai,j . The relative condition number of the CBF precondi-
tioner for the model (Laplace) 3D problem is analyzed using the technique from
[5] and the following estimate is derived:

κ(M−1
0 A0) ≤ 2 max(n2, n3) + 2

√
2. (2)

An algorithm to construct a preconditioner M for a given block-tridiagonal ma-
trix was described above. The main advantage of the circulant preconditioners
is that they possess much more parallelism compared to the ILU precondition-
ers. It is described in [3] how to implement an action of the inverse of this
preconditioner on a given vector. For our preconditioner, limn→∞ Sp = p and
limn→∞ Ep = 1, (see [3]) i.e., the algorithm is asymptotically optimal.

3 Experimental Results

In this section we report the results of the experiments executed on a NEC server
Azusa Express5800/1160Xa consisting of 16 x intel Itanum 800Mhz processors,
with 32 GB main memory (see http://www.hlrs.de/hw-access/platforms/azusa/);
a Cray T3E-900 consisting of 336 Digital Alpha 450 MHz processors, with 64 or
128 MB memory on processor; a SUNfire 6800 consisting of 24 UltraSPARC-III
750 MHz processors and 48 GB main memory; and Linux clusters consisting of:
256 AMD Opteron 2 GHz processors, 516 GB memory (see http://www.hlrs.de/hw-
access/platforms/strider/); 17 PC with AMD Athlon 650 MHz processors, 128
MB memory per computer, and 4 dual processor PowerPC with G4 450 MHz
processors, 512 MB memory per node. The developed parallel code has been im-
plemented in C and the parallelization has been facilitated using the MPI [8, 9]
and OpenMP [10] libraries. In all cases, the optimization options of the compiler
have been tuned to achieve the best performance. Times have been collected us-
ing the MPI provided timer. In all cases we report the best results from multiple
runs.

The obtained parallel time Tp on p processors, relative parallel speed-up Sp

and relative efficiency Ep are presented in the tables, where Sp = T1
Tp

≤ p and

Ep = Sp

p ≤ 1. One can see the increase of the influence of the communication
time with the number of processors on the speed-up and on the parallel efficiency.
The general behavior is in a good agreement with the theoretical estimates.

In Table 1 we present results of experiments executed on Athlon and Macin-
tosh clusters, on Cray T3E, and on NEC server Azusa Express5800/1160Xa. One
can see that the parallel efficiency on Macintosh cluster is higher on 2 processors
and it is lower on 6 and 8 processors. The main reason is the faster communi-
cation between processors in one node on the cluster of dual processor computers.
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Table 1. Parallel time, speed-up and parallel efficiency for the CBF preconditioner on
Athlon and Macintosh clusters, Cray T3E, and NEC server Azusa Express5800/1160Xa

Athlon Macintosh Cray T3E NEC
n p Tp Sp Ep Tp Sp Ep Tp Sp Ep Tp Sp Ep

32 1 0.111 0.109 0.133 0.077
2 0.082 1.35 0.673 0.061 1.78 0.891 0.068 1.96 0.982 0.040 1.95 0.975
4 0.057 1.95 0.487 0.050 2.18 0.544 0.034 3.88 0.969 0.020 3.86 0.965
8 0.031 3.61 0.452 0.036 3.05 0.382 0.020 6.64 0.830 0.011 7.23 0.904
16 0.014 9.61 0.601
32 0.011 12.58 0.393

48 1 0.758 0.761 0.898 0.470
2 0.469 1.62 0.809 0.405 1.88 0.939 0.452 1.99 0.993 0.234 2.01 1.004
3 0.340 2.23 0.744 0.318 2.39 0.798 0.304 2.95 0.984 0.156 3.01 1.004
4 0.261 2.91 0.726 0.265 2.87 0.718 0.227 3.95 0.988 0.117 4.01 1.002
6 0.189 4.01 0.669 0.200 3.81 0.634 0.154 5.82 0.971 0.079 5.94 0.989
8 0.203 3.74 0.468 0.164 4.63 0.579 0.116 7.71 0.964 0.060 7.78 0.973
12 0.080 11.29 0.941 0.042 11.30 0.942
16 0.062 14.58 0.911
24 0.044 20.27 0.845
48 0.027 33.84 0.705

64 1 1.095 1.191 0.744
2 0.753 1.45 0.727 0.705 1.69 0.845 0.583 0.364 2.05 1.023
4 0.429 2.55 0.638 0.495 2.41 0.602 0.297 0.981 0.177 4.20 1.051
8 0.268 4.08 0.511 0.327 3.64 0.456 0.153 0.953 0.092 8.06 1.007
16 0.079 0.922
32 0.045 0.810
64 0.028 0.651

96 1 6.787 6.701 4.332
2 4.107 1.65 0.826 3.748 1.79 0.894 2.185 1.98 0.991
3 2.975 2.28 0.760 2.871 2.33 0.778 1.467 2.95 0.984
4 2.202 3.08 0.770 2.398 2.79 0.699 1.083 4.00 1.000
6 1.530 4.44 0.739 1.743 3.84 0.641 1.256 0.733 5.91 0.985
8 1.160 5.85 0.731 1.374 4.88 0.610 0.944 0.998 0.561 7.73 0.966
12 0.639 0.983 0.397 10.91 0.909
16 0.484 0.973
24 0.322 0.975
32 0.243 0.969
48 0.170 0.924
96 0.095 0.826

128 1 7.240
2 3.576 2.02 1.012
4 1.897 3.82 0.954
8 1.045 6.93 0.866

192 1 37.901
2 18.096 2.09 1.047
3 12.280 3.09 1.029
4 9.345 4.06 1.014
6 6.627 5.72 0.953
8 5.348 7.09 0.886
12 4.082 9.28 0.774

256 1 64.039
2 30.626 2.09 1.045
4 15.636 4.10 1.024
8 9.437 6.79 0.848
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Table 2. Parallel time, speed-up and parallel efficiency for the CBF preconditioner on
SUNfire 6800 and on Cray Opteron cluster using MPI

SUNfire Cray Opteron
p n Tp Sp Ep n Tp Sp Ep n Tp Sp Ep n Tp Sp Ep

1320.050 128 8.445 320.034 128 2.768
2 0.034 1.48 0.741 4.386 1.93 0.963 0.017 2.06 1.030 1.428 1.94 0.969
4 0.015 3.27 0.818 2.105 4.01 1.003 0.009 3.94 0.985 0.750 3.69 0.923
8 0.009 5.84 0.729 0.898 9.40 1.175 0.005 7.16 0.895 0.402 6.88 0.861

16 0.00411.280.705 0.38621.881.367 0.00312.070.754 0.222 12.47 0.779
32 0.00313.170.412 0.127 21.80 0.681
64 0.068 40.67 0.635

128 0.045 61.22 0.478
1480.404 19241.063 480.232 19216.576
2 0.242 1.67 0.834 20.448 2.01 1.004 0.116 2.00 0.998 8.591 1.93 0.965
3 0.146 2.77 0.924 14.141 2.90 0.968 0.079 2.95 0.984 5.715 2.90 0.967
4 0.111 3.65 0.912 10.279 3.99 0.999 0.059 3.96 0.989 4.391 3.78 0.944
6 0.068 5.97 0.995 7.004 5.86 0.977 0.040 5.74 0.957 3.023 5.48 0.914
8 0.053 7.62 0.953 5.155 7.96 0.996 0.031 7.44 0.930 2.258 7.34 0.918

12 0.02111.260.938 1.533 10.81 0.901
16 0.02416.731.045 2.34617.501.094 0.01614.670.917 1.188 13.95 0.872
24 0.01921.650.902 1.73723.630.985 0.01120.660.861 0.816 20.31 0.846
32 0.633 26.17 0.818
48 0.00731.800.662 0.445 37.27 0.776
64 0.344 48.14 0.752
96 0.246 67.38 0.702

192 0.139118.990.620
1640.672 256 640.307 25624.442
2 0.388 1.73 0.866 38.417 0.162 1.90 0.950 13.104 1.87 0.933
4 0.160 4.20 1.050 18.642 1.030 0.084 3.66 0.914 6.896 3.54 0.886
8 0.075 8.97 1.122 9.826 0.977 0.044 7.00 0.875 3.510 6.96 0.870

16 0.03122.011.375 4.624 1.039 0.02611.910.744 1.915 12.76 0.798
32 0.01323.680.740 1.078 22.68 0.709
64 0.00935.570.556 0.587 41.62 0.650

128 0.356 68.65 0.536
1964.695 961.973
2 2.302 2.04 1.020 1.010 1.95 0.977
3 1.499 3.13 1.044 0.688 2.87 0.956
4 1.091 4.30 1.076 0.516 3.82 0.956
6 0.682 6.88 1.147 0.361 5.47 0.912
8 0.494 9.49 1.187 0.272 7.26 0.907

12 0.18410.730.894
16 0.24219.431.214 0.14513.630.852
24 0.19124.631.026 0.10019.790.825
32 0.07625.870.808
48 0.05336.970.770
96 0.03164.580.673
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Table 3. Parallel time, speed-up and parallel efficiency for the CBF preconditioner on
SUNfire 6800 using OpenMP

p n Tp Sp Ep n Tp Sp Ep

1 32 0.056 128 8.313
2 0.028 1.97 0.983 4.233 1.96 0.982
3 0.020 2.75 0.918 2.757 3.01 1.005
4 0.015 3.69 0.922 2.029 4.10 1.024
5 0.014 4.10 0.820 1.633 5.09 1.018
6 0.012 4.65 0.775 1.387 5.99 0.999
7 0.011 5.11 0.730 1.196 6.95 0.993
8 0.009 6.43 0.803 1.039 8.00 1.000

16 0.006 9.71 0.607 0.538 15.44 0.965
24 0.006 9.70 0.404 0.398 20.89 0.870
1 48 0.386 192 40.471
2 0.196 1.97 0.984 20.181 2.01 1.003
3 0.130 2.96 0.988 13.437 3.01 1.004
4 0.099 3.91 0.977 10.048 4.03 1.007
5 0.082 4.70 0.941 8.044 5.03 1.006
6 0.067 5.79 0.964 6.751 6.00 0.999
7 0.060 6.48 0.926 5.808 6.97 0.996
8 0.052 7.40 0.925 5.086 7.96 0.995

16 0.029 13.42 0.838 2.514 16.10 1.006
24 0.020 19.38 0.807 1.885 21.47 0.894
1 64 0.650 256
2 0.339 1.92 0.958 51.349
3 0.230 2.82 0.940 33.793 1.013
4 0.170 3.82 0.954 25.664 1.000
5 0.140 4.65 0.930 20.521 1.001
6 0.119 5.46 0.910 17.093 1.001
7 0.104 6.27 0.896 14.707 0.998
8 0.087 7.46 0.933 13.242 0.969

16 0.049 13.23 0.827 6.918 0.928
24 0.040 16.40 0.683 5.116 0.836
1 96 3.973
2 1.880 2.11 1.057
3 1.224 3.25 1.082
4 0.930 4.27 1.068
5 0.759 5.24 1.048
6 0.622 6.39 1.065
7 0.542 7.33 1.047
8 0.471 8.44 1.055

16 0.245 16.23 1.015
24 0.168 23.67 0.986

The memory on one processor of Cray computer is sufficient only for the dis-
cretization with coarse grid. For larger problems we report the parallel efficiency
related to the results on 2 and 6 processors respectively.
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SUNfire 6800 OpenMP n=32
SUNfire 6800 OpenMP n=96

Sunfire 6800 n=32
Sunfire 6800 n=96

Macintosh cluster n=32
Macintosh cluster n=96

Cray T3E-900 n=32
Beowulf cluster n=32
Beowulf cluster n=96

Fig. 1. Speed-up for one iteration on three parallel computer systems

Tables 2 and 3 shows results obtained on SUNfire 6800 and on Cray Opteron
cluster. As expected, the parallel efficiency increases with the size of the dis-
crete problems. The parallel efficiency for relatively large problems is above 80%
which confirms our general expectations. There exist at least two reasons for the
reported high efficiency: (a) the network parameters start-up time and time for
transferring of single word are relatively small for the multiprocessor machines;
(b) there is also some overlapping between the computations and the commu-
nications in the algorithm. Moreover, the super-linear speed-up can be seen in
some of the runs. This effect has a relatively simple explanation. When the num-
ber of processors increases, the size of data per processor decreases. Thus the
stronger memory locality increases the role of the cache memories. (The level 2
cache on the SUNfire 6800 is 8 MB.) The obtained speed-up on 16 processors on
SUNfire 6800 in some cases is close to 22. In these cases the whole program is
fitted in the cache memory and there is no communication between processors
and main memory but only between processors.

Finally, we compare results on Cray, SUN, NEC, and Linux clusters. Fig. 1
shows parallel speed-up for execution of one iteration on different parallel sys-
tems.

4 Summary

We are concerned with the numerical solution of 3D elliptic problems. After
discretization, such problems reduce to the solution of linear systems. We use
a preconditioner based on a block-circulant approximation of the blocks of the
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stiffness matrix. We exploit the fast inversion of block-circulant matrices. The
computation and the inversion of these circulant block-factorization precondi-
tioners are highly parallelizable on a wide variety of architectures. The developed
code provide new effective tool for solving of large-scale problems in realistic time
on a coarse-grain parallel computer systems.
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