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Abstract—We consider the 3D time dependent Stokes equation
on a finite time interval and on a uniform rectangular mesh,
written in terms of velocity and pressure.

For this problem, a parallel algorithm, based on a recently
proposed direction splitting approach, is applied. Here, the
pressure equation is derived from a perturbed form of the
continuity equation, where the incompressibility constraint is
penalized in a negative norm induced by the direction splitting.
The scheme used in the algorithm is composed of: (a) pressure
prediction, (b) velocity update, (c) penalty step, and (d) pressure
correction. In order to achieve good parallel performance, the
solution of the Poison problem for the pressure correction is
replaced by a solution to a sequence of one-dimensional second
order elliptic boundary value problems (in each spatial direction).
The efficiency and scalability of the proposed approach are tested
on two distinct parallel computers and the experimental results
are analyzed.

I. INTRODUCTION

THE OBJECTIVE of this note is to analyze the parallel

performance of a novel fractional time stepping tech-

nique, based on a direction splitting strategy, developed to

solve the incompressible Navier-Stokes equations.

Computational fluid dynamics (CFD) has undergone

tremendous development as a discipline. This has been made

possible by progresses in many fronts, including numerical al-

gorithms for the Navier-Stokes equations, grid generation and

adaptation, turbulence modeling, flow visualization, as well as

the dramatic increase of computer CPU and network speeds.

Finding an approximate solution of the Navier-Stokes equa-

tions can be done by a large range of numerical methods.

Among these, finite element methods are used mostly by math-

ematicians, while spectral methods and finite volume methods

are favored by engineers and physicists. One reason for this

difference in computational practices is that an advantage of

finite volume methods over finite element ones lies primarily in

ease of their physical interpretation and in simpler implemen-

tation. Currently, nearly all production-class flow solvers are

based on second-order numerical methods, either finite volume

[9], [10], [23], [25], finite difference [33], or finite element

[4], [11], [12], [18], [20]. They are capable of delivering,

within a few hours, design-quality Reynolds Averaged Navier-

Stokes results with several million cells (degrees of freedom)

on various Beowulf-style cluster computers.

The efficient solution of the discretized Navier-Stokes equa-

tions necessitates rapidly convergent iterative methods. The

two main approaches available here are: (i) preconditioned

Krylov subspace methods [30], and (ii) multigrid methods

[35], [36], [38]. These two approaches can be combined

by using one or more multigrid cycles as preconditioners

for the Krylov-type methods. Most of recent papers on the

iterative solution of the discretized Navier-Stokes equations

are devoted to block preconditioners [3], [7], [21], [31].

Here, more recent contributions include the preconditioning

based on the augmented Lagrangian approach [3], and the

least-squares commutator preconditioner generalized to the

stabilized finite element discretizations of the Oseen problem

[8]. Other relevant work includes the development of ILU-type

preconditioners for saddle-point problems [28], and SIMPLE-

type block preconditioners [29].

Alternatively, one could start with the “physics-based” iter-

ative solution methods for the Navier-Stokes equations [26],

[27] and develop preconditioners based on these techniques as

described in [22]. In this case, the system is transformed by

the factorization into component systems that are essentially

convection-diffusion and Poisson type operators. The result is

a system to which multi-level methods and algebraic multi-

level methods (AMG) can be successfully applied. In recent

years there has been tremendous interest in the mathematical

development and practical implementation of discontinuous

Galerkin finite element methods (DGFEMs) for the discretiza-

tion of compressible fluid flow problems, [2], [6], [19]. The

key advantages of these schemes are that the DGFEMs provide

robust and high-order accurate approximations, particularly

in transport-dominated regimes, and that they are locally

conservative. Moreover, they provide considerable flexibility in

the choice of the mesh design. Indeed, the DGFEMs can easily

handle non-matching grids and non-uniform, even anisotropic,

polynomial approximation degrees.
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Projection schemes were first introduced in [5], [34] and

they have been used in CFD for about forty years. During

these years, such techniques went through some evolution, but

the main paradigm, consisting of decomposing vector fields

into a divergence-free part and a gradient, has been preserved

(see [14] for a review of projection methods). In terms of

computational efficiency, projection algorithms are far superior

to the methods that solve the coupled velocity-pressure system.

This feature makes them the most popular techniques in

the CFD community for solving the unsteady Navier-Stokes

equations. The computational complexity of each time step of

the projection methods is that of solving one vector-valued

advection-diffusion equation, plus one scalar-valued Poisson

equation with Neumann boundary conditions. Note that, for

large scale problems, and large Reynolds numbers, the cost of

solving the Poisson equation becomes dominant.

The alternating directions algorithm, initially proposed in

[13], reduces the computational complexity of the action of the

incompressibility constraint. The key idea is to modify the pro-

jection paradigm, in which the vector fields are decomposed

into a divergence-free part plus a gradient part. Departure

from the standard projection methods has been proved to

be very efficient for solving variable density flows (see, for

instance, [15], [16]). In the new method, the pressure equation

is derived from a perturbed form of the continuity equation,

in which the incompressibility constraint is penalized in a

negative norm, induced by the direction splitting. The standard

Poisson problem for the pressure correction is replaced by

series of one-dimensional second-order boundary value prob-

lems. This technique was proved to be stable and convergent;

for details see [13]. Furthermore, a very sketchy assessment

indicated that it has good potential for parallelization.

In this note we follow the proposal introduced in [13]

and study its performance characteristics on two different

computers. One of them is an Intel-Xeon-processor-based

cluster, while the other is an IBM Blue Gene supercomputer.

Experimental results reported in Section IV confirm the pre-

liminary assessment provided in [13].

II. STOKES EQUATION

Let us first define the problem to be solved. We consider

the time-dependent Navier-Stokes equations on a finite time

interval [0, T ], and in a rectangular domain Ω. Since the non-

linear term in the Navier-Stokes equations does not interfere

with the incompressibility constraint, we focus our attention

on the time-dependent Stokes equations written in terms of

velocity u and pressure p:














ut − ν∆u+∇p = f in Ω× (0, T )
∇ · u = 0 in Ω× (0, T )
u|∂Ω = 0, ∂np|∂Ω = 0 in (0, T )
u|t=0 = u0, p|t=0 = p0 in Ω

, (1)

where f is a smooth source term, ν is the kinematic viscosity,

and u0 is a solenoidal initial velocity field with a zero

normal trace. In our work, we consider homogeneous Dirichlet

boundary conditions on the velocity.

To solve thus described problem, we discretize the time

interval [0, T ] using a uniform mesh. Furthermore, let τ be

the time step used in the algorithm.

III. PARALLEL ALTERNATING DIRECTIONS ALGORITHM

For thus introduced problem, let us describe the proposed

parallel solution method. In [13], Guermond and Minev intro-

duced a novel fractional time stepping technique for solving

the incompressible Navier-Stokes equations. Their approach

is based on a direction splitting strategy. They used a sin-

gular perturbation of the Stokes equation with a perturbation

parameter τ . The standard Poisson problem for the pressure

correction was replaced by series of one-dimensional second-

order boundary value problems. The focus of their work was

to show numerical properties of the proposed approach (e.g.

its stability and convergence). However, they also very briefly

indicated its potential for efficient parallelization. Therefore,

to describe the parallel solution approach, let us start from the

overview of the alternating directions method.

A. Formulation of the Scheme

The scheme used in the Guermond-Minev algorithm is

composed of the following parts: (i) pressure prediction, (ii)

velocity update, (iii) penalty step, and (iv) pressure correction.

Let us now describe an algorithm that uses the direction

splitting operator

A :=

(

1−
∂2

∂x2

)(

1−
∂2

∂y2

)(

1−
∂2

∂z2

)

.

• Pressure predictor

Denoting by p0 the pressure field at t = 0, the algorithm

is initialized by setting p−
1

2 = p−
3

2 = p0. Next, for all
n ≥ 0, a pressure predictor is computed as follows

p∗,n+
1

2 = 2pn−
1

2 − pn−
3

2 . (2)

• Velocity update

In the velocity update step, the velocity field is initialized

by setting u
0 = u0, and for all n ≥ 0 the velocity

update is computed by solving the following series of

one-dimensional problems

ξn+1 − u
n

τ
− ν∆u

n +∇p∗,n+
1

2 = f |
t=(n+ 1

2 )τ
,

ηn+1 − ξ
n+1

τ
−
ν

2

∂2(ηn+1 − u
n)

∂x2
= 0, (3)

ζn+1 − ηn+1

τ
−
ν

2

∂2(ζn+1 − u
n)

∂y2
= 0, (4)

u
n+1 − ζn+1

τ
−
ν

2

∂2(un+1 − u
n)

∂z2
= 0, (5)

where ξ
n+1|∂Ω = ηn+1|∂Ω = ζ

n+1|∂Ω = u
n+1|∂Ω = 0.

• Penalty step

in the Penalty step, the intermediate parameter φ is

approximated by solving Aφ = − 1

τ
∇ · un+1. Owing to

the definition of the direction splitting operator A, this is
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done by solving the following series of one-dimensional

problems:

θ − θxx = − 1

τ
∇ · un+1, θx|∂Ω = 0,

ψ − ψyy = θ, ψy|∂Ω = 0,
φ− φzz = ψ, φz |∂Ω = 0,

(6)

• Pressure update

The last sub-step of the algorithm consists of updating

the pressure:

pn+
1

2 = pn−
1

2 + φ− χν∇ ·
u
n+1 + u

n

2
(7)

The algorithm is in a standard incremental form when the

parameter χ = 0; while the algorithm is in a rotational

incremental form when χ ∈ (0, 1
2
].

B. Parallel Algorithm

The proposed algorithm uses a rectangular uniform mesh

combined with a central difference scheme for the second

derivatives for solving equations (3–5) and (6). Thus the algo-

rithm requires only the solution of tridiagonal linear systems.

The parallelization is based on a decomposition of the

domain into rectangular sub-domains. Let us associate with

each such sub-domain a set of integer coordinates (ix, iy, iz),
and identify it with a given processor. The linear systems,

generated by the one-dimensional problems that need to be

solved in each direction, are divided into systems for each

set of unknowns corresponding to the internal nodes, for each

block that can be solved independently by a direct method. The

corresponding Schur complement for the interface unknowns

between the blocks that have an equal coordinate ix, iy , or iz
is also tridiagonal and can therefore be easily directly inverted.

The overall algorithm requires only exchange of the interface

data (between sub-domains), which allows for a very efficient

parallelization with an expected efficiency comparable to that

of explicit schemes.

IV. EXPERIMENTAL RESULTS

As stated above, the main goal of our current work is to

evaluate the performance of the proposed approach; to experi-

mentally confirm the initial positive assessment found in [13].

Therefore, to assess the performance of the proposed approach,

we have solved the problem (1) in Ω = (0, 1)3, for t ∈ [0, 2],
with Dirichlet boundary conditions. The discretization in time

was done with the time step 10−2, while the parameter in

the pressure update sub-step was χ = 1

2
, and the kinematic

viscosity was ν = 10−3. The discretization in space used

mesh sizes hx = 1

nx−1
, hy = 1

ny−1
, and hz = 1

nz−1
. Thus,

the equation (3) resulted in linear systems of size nx, while

equation (4) resulted in linear systems of size ny, and equation

(5) in linear systems of size nz . The total number of unknowns

in the discrete problem was 800nx ny nz .

To solve the problem, a portable parallel code was designed

and implemented in C, while the parallelization has been

facilitated using the MPI library [32], [37]. In the code, we

used the LAPACK subroutines DPTTRF and DPTTS2 (see

[1]) for solving tridiagonal systems of equations, resulting

from equations (3), (4), (5), and (6), for the unknowns corre-

sponding to the internal nodes of each sub-domain. The same

subroutines were used to solve the tridiagonal systems with

the Schur complement.

The parallel code has been tested on an Intel processor-

based cluster computer system (Sooner), located in the Ok-

lahoma Supercomputing Center (OSCER), and the IBM Blue

Gene/P machine at the Bulgarian Supercomputing Center. In

our experiments, times have been collected using the MPI

provided timer and we report the best results from multiple

runs. In what follows, we report the elapsed time Tc in seconds
using c cores, the parallel speed-up Sc = T1/Tc, and the

parallel efficiency Ec = Sc/c.
Table I represents the results collected on the Sooner,

which is a Dell Intel Xeon E5405 (“Harpertown”) quad core-

based Linux cluster. It has 486 Dell PowerEdge 1950 III

nodes, and two quad core processors per node. Each processor

runs at 2 GHz. Processors within each node share 16 GB

of memory, while nodes are interconnected through a high-

speed InfiniBand network (for additional details concerning

the machine, see http://www.oscer.ou.edu/resources.php). We

have used an Intel C compiler, and compiled the code with

the following options: “-O3 -march=core2 -mtune=core2.”

Note that, even though such approach would be possible,

we have not attempted at a two-level parallelization, where

the OpenMP would be used within multi-core processors

(or possibly within each computational node, where 8 cores

reside), while the MPI would be used for the “between-nodes”

parallelization. We have decided that such approach would not

be warranted for the initial performance evaluation. However,

due to the promising nature of our results, we plan to pursue

such two-level parallelization in the near future, especially in

view of increasing number of computational cores that are

to appear within both Intel and AMD families of processors.

Such approach may also be applicable for multi-core GPU-

type processors (e.g. based on the Fermi or the Cypress

architectures). We plan to explore usability of GPU processors,

for the problem at hand, in the future.

It has to be noted that our code needs 11 GB of memory

for solving the problem for nx = ny = nz = 400. Since
the memory on one node of the Sooner is 16 GB, it is the

largest size of the discrete problem that can be solved on a

single node. Therefore, results presented in Table I represent

the largest problems we were able to solve.

The sets of results in each “column-box” of Table I were

obtained for an equal number of unknowns per core. For large

discrete problems, the execution time in one and the same

“column-box” is much larger on two processors (8 cores)

than on one processor, but on more processors the time is

approximately constant. The obtained execution times confirm

that the communication time between processors is larger than

the communication time between cores within one processor.

Also, the execution time for solving one and the same discrete

problem decreases with increasing the number of cores, which

shows that the communication in our parallel algorithm is

mainly local.
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TABLE I
EXECUTION TIME ON SOONER.

c nx ny nz Tc nx ny nz Tc nx ny nz Tc nx ny nz Tc

1 50 50 50 18.96 50 50 100 41.46 50 100 100 101.01 100 100 100 205.96
2 50 50 100 20.11 50 100 100 49.09 100 100 100 107.91 100 100 200 236.44
4 50 100 100 22.16 100 100 100 50.53 100 100 200 145.75 100 200 200 344.56
8 100 100 100 37.16 100 100 200 113.61 100 200 200 280.45 200 200 200 571.77

16 100 100 200 48.22 100 200 200 129.06 200 200 200 283.17 200 200 400 625.50
32 100 200 200 48.80 200 200 200 116.61 200 200 400 283.29 200 400 400 629.75
64 200 200 200 39.95 200 200 400 117.94 200 400 400 286.85 400 400 400 581.27
128 200 200 400 51.20 200 400 400 134.07 400 400 400 291.26 400 400 800 644.10
256 200 400 400 55.14 400 400 400 126.39 400 400 800 315.44 400 800 800 669.79
512 400 400 400 47.30 400 400 800 129.97 400 800 800 308.08 800 800 800 624.17
1024 400 400 800 59.18 400 800 800 212.37 800 800 800 437.97 800 800 1600 995.06

1 100 100 200 437.87 100 200 200 989.29 200 200 200 2122.42 200 200 400 4280.93
2 100 200 200 513.81 200 200 200 1078.89 200 200 400 2238.08 200 400 400 4579.28
4 200 200 200 661.82 200 200 400 1461.90 200 400 400 3251.23 400 400 400 6808.54
8 200 200 400 1273.53 200 400 400 2754.40 400 400 400 5792.10

16 200 400 400 1374.05 400 400 400 2775.11 400 400 800 5615.87
32 400 400 400 1294.36 400 400 800 2687.45 400 800 800 5642.81
64 400 400 800 1296.88 400 800 800 2803.95 800 800 800 5882.27
128 400 800 800 1409.56 800 800 800 2840.15 800 800 1600 5740.12
256 800 800 800 1373.87 800 800 1600 2853.72 800 1600 1600 5854.39
512 800 800 1600 1391.43 800 1600 1600 2941.25 1600 1600 1600 6153.34
1024 800 1600 1600 1574.67 1600 1600 1600 3171.37

TABLE II
SPEED-UP ON SOONER.

nx ny nz c

2 4 8 16 32 64 128 256 512 1024

100 100 100 1.91 4.08 5.54 13.05 29.26 68.78 126.52 167.47 187.22 230.99
100 100 200 1.85 3.00 3.85 9.08 25.86 60.01 123.94 157.16 318.42 335.50
100 200 200 1.93 2.87 3.53 7.67 20.27 59.35 114.35 196.78 393.56 463.59
200 200 200 1.97 3.21 3.71 7.50 18.20 53.13 118.27 215.01 459.83 672.63
200 200 400 1.91 2.93 3.36 6.84 15.11 36.30 83.62 201.98 411.38 683.22
200 400 400 1.92 2.71 3.20 6.41 14.00 30.73 65.74 159.85 380.78 677.28
400 400 400 1.93 2.72 3.19 6.67 14.29 31.83 63.52 146.37 391.15 814.68

TABLE III
PARALLEL EFFICIENCY ON SOONER.

nx ny nz c

2 4 8 16 32 64 128 256 512 1024

100 100 100 0.954 1.019 0.693 0.816 0.914 1.075 0.988 0.654 0.366 0.226
100 100 200 0.926 0.751 0.482 0.568 0.808 0.938 0.968 0.614 0.622 0.328
100 200 200 0.963 0.718 0.441 0.479 0.633 0.927 0.893 0.769 0.769 0.453
200 200 200 0.984 0.802 0.464 0.468 0.569 0.830 0.924 0.840 0.898 0.657
200 200 400 0.956 0.732 0.420 0.428 0.472 0.567 0.653 0.789 0.803 0.667
200 400 400 0.962 0.678 0.400 0.401 0.437 0.480 0.514 0.624 0.744 0.661
400 400 400 0.963 0.679 0.399 0.417 0.447 0.497 0.496 0.572 0.764 0.796

The somehow slower performance on Sooner using 8 cores

is clearly visible. The same effect was observed during our

previous work (see [24]). There are some factors which could

play role for the slower performance using both processors

and all available cores within each node. Generally they are

a consequence of the limitations of the memory subsystems

and their hierarchical organization in modern computers. One

such factor might be the limited bandwidth of the main

memory bus. This causes the processors literally to “starve” for

data, thus, decreasing the overall performance. Since the L2

cache memory is shared among each pair of cores within the

processors, this boost the performance of programs utilizing

only single core within such pair (it can use the whole cache to

itself). Conversely, this leads for somehow decreased speedups

when all cores are used. For memory intensive programs, these

factors play crucial role for the codes’ performance. At this

stage we have run into some technical problems attempting at

running the code with specific number of cores per processor

within each node. We will try to establish a way to explicitly

evaluate this effect in the future.

To provide an analytical view on performance, the speed-

up obtained on Sooner is reported in Table II and the parallel

efficiency is shown in Table III. Here, let us recall that the

discrete problem with nx = ny = nz = 400 requires 11 GB

of memory and that is why we report the speed-up and the

parallel efficiency on Sooner only for problems with 100 ≤
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nx, ny, nz ≤ 400. Specifically, for larger problems we could

not run the code on a single computational unit (within a node

with only 16 GB of memory) and thus neither speed-up nor

efficiency could be calculated.

Increasing the number of cores, the parallel efficiency

decreases on 8 cores, and after that it increases. This effect

is particularly visible in the case of smaller problems. Specif-

ically, a super-linear speed-up (and thus efficiency of more

than 100%) is observed for nx = ny = nz = 100 on 4 and

64 cores. The main reasons for this fact can be related to the

well-known fact that splitting a large problem into smaller sub-

problems helps memory management. In particular, it allows

for better usage of cache memories of individual parallel

processors. Interestingly, the effect of performance dip on 8

cores is visible even for the largest reported problems (for

nx = ny = nz = 400), where the efficiency increases all

the way to c = 512 cores. Overall, it can be stated that the

performance of the code on the Sooner is more than promising

for solving large problems using the proposed method.

Table IV represents execution times collected on the IBM

Blue Gene/P machine at the Bulgarian Supercomputing Center.

It consists of 2048 compute nodes with quad core PowerPC

450 processors (running at 850 MHz). Note that, here, a single

node has only 4 cores (not 8 cores in 2 processors, as in the

case of the Sooner). Each node has 2 GB of RAM (amount

much smaller than the 16GB of RAM on the Sooner). For

the point-to-point communications a 3.4 Gb 3D mesh network

is used. Reduction operations are performed on a 6.8 Gb

tree network (for more details, see http://www.scc.acad.bg/);

thus the networking within the Blue Gene/P has much larger

throughput than on the Sooner. We have used the IBM XL C

compiler and compiled the code with the following options:

“-O5 -qstrict -qarch=450d -qtune=450”. Again, no attempt at

the two-level parallelization was made (in this case it would be

even less worthy the effort, with only 4 cores per node). Due

to the limits of memory available per node (2 GB), we did run

into a more severe restrictions on the problem size than in the

case of the Sooner. Therefore, the largest system that we were

able to solve on a single node was for nx = ny = nz = 200.
However, in the case of the Blue Gene we were able to run

jobs with up to 1024 nodes, which allowed us to solve large

problems (up to size nx = ny = 1600, nz = 3200).
We observed that using 2 or 4 cores per processor leads to

slower execution, e.g. the execution time for nx = ny = nz =
800, c = 512 is 982 seconds using 512 nodes, 1079.22 seconds
using 256 nodes, and 1212.62 seconds using 128 nodes.

This shows that (as expected) the communication between

processors is faster than the communication between cores of

one processor using the MPI communication functions.

In order to get better parallel performance we plan to align

the decomposition of the computational domain into sub-

domains, with the topology of the compute nodes in the Blue

Gene connectivity network. In such way we will minimize the

communication time in the parallel algorithm.

To complete the analysis of the performance of the IBM

Blue Gene/P, Table V shows the obtained speed-up, while the

parallel efficiency is presented in Table VI. Recall, that due to

memory limitations, the largest problem solvable on a single

node was nx = ny = nz = 200, thus limiting available speed-

up and efficiency data. Observe that a super-linear speed-up

is observed on up to 128 cores of the supercomputer. There

are at least two causes for the higher speed-up: individual

processors of the supercomputer are slower than these of the

Sooner, while the communication is faster (due to the, above

mentioned, special networking used in the Blue Gene). As

a result, the single-processor data can be seen as relatively

“slow” while in the case of multiple nodes the performance

gain from using multiple processing units is boosted by the

speed of the interconnect (combined with the decrease in sub-

problem sizes). It is also worthy observing that as the problem

size increases, the parallel efficiency increases as well (e.g. on

4096 cores, it raises from 21% to 44%). This again shows the

overall parallel robustness of the approach under investigation.

Finally, we have decided to compare head-to-head both

computers. To this effect, computing times obtained on both

parallel systems are shown in Fig. 1, while the obtained speed-

up are shown in Fig. 2.

Execution times on the Blue Gene/P are substantially larger

than that on the Sooner (for the same number of cores); e.g.

for the nx = ny = nz = 200 discrete problem on 64 cores

the solution time on the Sooner is ∼ 40 seconds, whereas

on the Blue Gene it is ∼ 100 seconds (and, recall that on

the Blue Gene we observe a super-linear speed-up for up to

128 cores). This difference decreases, in relative terms, as

the problems size and the number of cores increase; e.g. for

the discrete problem of size nx = 800, ny = nz = 1600
the solution time on 256 cores of the Sooner is ∼ 5854
seconds, while on the Blue Gene it is ∼ 8177 seconds.

In other words, the parallel efficiency obtained on the su-

percomputer is better. For instance, the execution time on

single core on Sooner is 3.6 times faster than on the Blue

Gene/P, in comparison with 1.4 times faster performance on

256 cores. This indicates, among others that the networking

infrastructure of the Blue Gene supercomputer is superior to

that of the Sooner cluster. Therefore, as the total number of

nodes increases, the initial advantage of Sooner decreases.

Interestingly, we have run some initial experiments on the

IBM Blue Gene/P in the West University of Timisoara (for de-

tails, see http://hpc.uvt.ro/infrastructure/bluegenep/). The main

hardware difference between the two machines is the 4GB

per node memory of the Timisoara machine, which should

result in it being more powerful. However, times obtained

on that machine were substantially worse. When checking

the reason we have found out that while the Sofia Center

machine runs optimized LAPACK 3.2, the Timisoara Canter

runs unoptimized LAPACK 3.3.1. Since we have run the same

code using the same compiler options, this was the only

difference we could spot. Obviously, we plan to investigate

this issue further and will not report any obtained results.

However, we mention this here as one of the “lessons learned.”

Library software that is not fully optimized may degrade

performance of a code and may not be immediately noticeable
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TABLE IV
EXECUTION TIME ON IBM BLUE GENE/P.

c nx ny nz Tc nx ny nz Tc nx ny nz Tc nx ny nz Tc

1 50 50 50 93.95 50 50 100 205.13 50 100 100 411.26 100 100 100 886.70
2 50 50 100 96.67 50 100 100 194.68 100 100 100 417.83 100 100 200 890.07
4 50 100 100 98.53 100 100 100 212.01 100 100 200 434.32 100 200 200 901.87
8 100 100 100 97.86 100 100 200 212.58 100 200 200 424.77 200 200 200 911.64
16 100 100 200 100.94 100 200 200 203.09 200 200 200 430.86 200 200 400 914.95
32 100 200 200 102.94 200 200 200 219.07 200 200 400 447.72 200 400 400 925.29
64 200 200 200 101.81 200 200 400 220.03 200 400 400 437.99 400 400 400 933.07
128 200 200 400 110.91 200 400 400 221.31 400 400 400 456.42 400 400 800 963.69
256 200 400 400 114.54 400 400 400 236.37 400 400 800 481.54 400 800 800 980.73
512 400 400 400 112.40 400 400 800 238.32 400 800 800 468.68 800 800 800 982.00
1024 400 400 800 126.38 400 800 800 249.90 800 800 800 494.18 800 800 1600 1048.29
2048 400 800 800 136.22 800 800 800 275.03 800 800 1600 593.02 800 1600 1600 1154.40
4096 800 800 800 170.64 800 800 1600 357.42 800 1600 1600 677.97 1600 1600 1600 1374.78

1 100 100 200 1822.27 100 200 200 3797.75 200 200 200 7715.32
2 100 200 200 1813.75 200 200 200 3836.06 200 200 400 7660.58
4 200 200 200 1865.64 200 200 400 3839.99 200 400 400 7749.17
8 200 200 400 1867.87 200 400 400 3884.58 400 400 400 7870.17
16 200 400 400 1862.39 400 400 400 3919.05 400 400 800 7810.51
32 400 400 400 1904.62 400 400 800 3918.49 400 800 800 7874.35
64 400 400 800 1907.69 400 800 800 3957.46 800 800 800 8006.56
128 400 800 800 1961.68 800 800 800 4062.99 800 800 1600 8088.98
256 800 800 800 1988.93 800 800 1600 4096.10 800 1600 1600 8177.80
512 800 800 1600 1997.28 800 1600 1600 4119.41 1600 1600 1600 8269.49
1024 800 1600 1600 2122.42 1600 1600 1600 4242.13 1600 1600 3200 8422.26
2048 1600 1600 1600 2266.55 1600 1600 3200 4645.32
4096 1600 1600 3200 2663.84

TABLE V
SPEED-UP ON IBM BLUE GENE/P.

nx ny nz c

2 4 8 16 32 64 128 256 512 1024 2048 4096

100 100 100 2.12 4.18 9.06 17.30 33.61 64.88 117.22 206.55 357.78 454.72 635.06 872.79
100 100 200 2.05 4.20 8.57 18.05 34.65 68.43 123.19 213.54 408.99 535.78 716.23 1156.77
100 200 200 2.09 4.21 8.94 18.70 36.89 72.23 130.94 240.37 427.99 620.19 966.68 1535.38
200 200 200 2.01 4.14 8.46 17.91 35.22 75.78 136.65 254.69 451.79 793.12 1263.89 1800.66

TABLE VI
PARALLEL EFFICIENCY ON IBM BLUE GENE/P.

nx ny nz c

2 4 8 16 32 64 128 256 512 1024 2048 4096

100 100 100 1.061 1.046 1.133 1.081 1.050 1.014 0.916 0.807 0.699 0.444 0.310 0.213
100 100 200 1.024 1.049 1.072 1.128 1.083 1.069 0.962 0.834 0.799 0.523 0.350 0.282
100 200 200 1.047 1.053 1.118 1.169 1.153 1.129 1.023 0.939 0.836 0.606 0.472 0.375
200 200 200 1.006 1.034 1.058 1.119 1.101 1.184 1.068 0.995 0.882 0.775 0.617 0.440

by inexperienced user, who does not have multiple machines

to run tests of her/his code on.

V. CONCLUSIONS AND FUTURE WORK

We have studied parallel performance of the recently de-

veloped parallel algorithm based on a new direction splitting

approach for solving of the 3D time dependent Stokes equation

on a finite time interval and on a uniform rectangular mesh.

The performance was evaluated on two different parallel

architectures. Satisfactory parallel efficiency was obtained on

both parallel systems, on up to 1024 processors. Out of the

two machines, the faster CPUs on the Sooner lead to shorter

run-time, on the same number of processors.

In the near future, it is our intention to consider and compare

the performance of this algorithm to other efficient methods

for solving of the time dependent Stokes equation. In order to

get better parallel performance using four cores per processor

on the IBM Blue Gene/P (and future multi-core computers) we

plan to develop mixed MPI/OpenMP code. Furthermore, we

plan to synchronize the decomposition of the computational

domain into sub-domains with the topology of the compute

nodes in the Blue Gene connectivity network. In such way

we will minimize the communication time in the parallel

algorithm.
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notes in computer science, 6068, Springer, 2010, 135–144.

[25] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Series in
Computational Methods in Mechanics and Thermal Sciences, Mc Graw
Hill, 1980.

[26] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere
Publishing Corporation, New York, 1980.

[27] S. V. Patankar, D. A. Spalding, A calculation procedure for heat,
mass and momentum transfer in three dimensional parabolic flows,
International Journal on Heat and Mass Transfer, 15, 1972, 1787–1806.

[28] M. ur Rehman, C. Vuik, G. Segal, Preconditioners for the steady
incompressible Navier-Stokes problem, International Journal of Applied
Mathematics, 38, 2008, 223–232.

[29] M. ur Rehman, C. Vuik, G. Segal, SIMPLE-type preconditioners for the
Oseen problem, International Journal for Numerical Methods in Fluids,
61(4), 2009, 432–452.

[30] Y. Saad, Iterative Methods for Sparse Linear Systems (2nd edn), SIAM,
Philadelphia, PA, 2003.

[31] Y. Saad, M. H. Schultz, GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems, SIAM Journal on

Scientific and Statistical Computing, 7, 1986, 856–869.
[32] M. Snir, St. Otto, St. Huss-Lederman, D. Walker, J. Dongarra, MPI: the

complete reference, Scientific and engineering computation series. The
MIT Press, Cambridge, Massachusetts, 1997, Second printing.

[33] J. L. Steger, R. F. Warming, Flux vector splitting of the inviscid gas
dynamics equations with application to finite difference methods. J.

Comput. Phys., 40 (2), 1981, 263–293.
[34] R. Temam, Sur l’approximation de la solution des équations de Navier-
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