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Abstract. Recent years have seen growing interest in collecting and processing sensor data, in distributed mobile environments.
In this context, two, somewhat contradictory, trends have emerged: (1) growing popularity of crowdsourcing-type mechanisms,
for (sensor) data collection, and (2) collecting sensed data in data “silos”, which are not only unavailable to “outsiders”, but most
often incompatible, thus reducing their usability for data mining. Given these limitations in data accessibility, and compatibility,
enormous potential for knowledge discovery is lost. To counter this trend, we propose a generic, adaptive, system that will allow
voluntary participation in arbitrary crowdsensing initiatives, with the output stored in a standard data format. The system utilizes
a rule-based multiagent approach to instructing sensors when to make readings and how to, if necessary, preprocess them, before
sharing the data with user-selected initiatives. The initial version of the system has been implemented, and tested in artificial use
case scenario.

INTRODUCTION

Leveraging the ability to collect data by pervasive, sensor equipped, mobile devices (often referred to as Crowdsens-
ing) has attracted significant attention from mobile computing researchers, seeing applications in, e.g., environmen-
tal [1, 2, 3, 4], infrastructure [5, 6, 7] and social [8, 9] scenarios.

Crowdsensing is generally thought to exist in two “styles”. These are: participatory crowdsensing and oppor-
tunistic crowdsensing [10]. In participatory crowdsensing, users have awareness of, and are involved in, the sensing
process. As an example of a purely participatory crowdsensing scenario, consider the case of Alice, who is a graduate
student. She is interested in implementing a crowdsensing campaign to gain insight into how city dwellers view vari-
ous artistic installations around her city. Contributors are prompted for their opinions, whenever objects of interest are
found in their vicinity. No data, other than such feedback, is to be sent / collected.

Opportunistic crowdsensing, on the other hand, is a more autonomous process, with minimal user involvement.
Here, let us assume that Bob is the owner of a logistics company. He would like to use crowdsensing to perform an
analysis of routes taken by company vehicles during daily operations. Except for being in possession of company
issued smartphones, drivers are not involved in the sensing process. This is an example of a purely opportunistic
crowdsensing scenario.

Crowdsensing campaigns may also use a hybrid approach. Consider the case of Eve, who is an urban planner.
She works in a project to upgrade her city’s public transportation infrastructure. To gather supporting data, and to gain
insight into the current commute patterns in her city, she would like to use crowdsensing to check commuter density,
across the city, during rush hours. In addition, she plans to prompt contributors to provide feedback concerning their
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commute experiences. This is an example of a hybrid approach to crowdsensing, as collected is both the data sent by
the smart phones and the data volunteered by participants.

Considering that crowdsensing usually spans a spectrum from participatory to opportunistic, [10] coined the
term mobile crowdsensing (MCS) to refer to a broad range of paradigms that utilize both styles. Next, [11] further
elaborated on MCS and highlighted its roots in participatory sensing [12], while [13] expanded this concept into
mobile crowd sensing and computing (MCSC), thereby highlighting the increased computing power possessed by the
current generation of mobile devices. Since then, the field has seen a steady increase in publications across the major
journals. Figure 1 is an illustration of this phenomenon. Here, data was compiled by reviewing contributions returned
while searching for “Mobile Crowdsensing” or “Mobile Crowd Sensing”, in the ACM DL, IEEE Xplore and Springer
Link digital libraries. Selected papers were examined for relevance, and those that were deemed relevant were tallied.
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FIGURE 1. Papers mentioning “Mobile Crowdsensing” or “Mobile Crowd Sensing”

PROBLEM TO BE ADDRESSED

Given the growing prevalence of MCSC systems, in academic and industrial applications, there exists a pronounced
need for a generic platform that could be quickly adapted to different scenarios, encountered when implementing
such systems. Such a platform would reduce the time and cost associated with prototyping systems in the MCSC
domain and would, therefore, speed up the validation of system designs. In this context, our work is focused on three
processes, namely, data gathering and integration, local preprocessing of data and software defined sensing, and the
concepts of value-added applications and sensing coordination via a task specification language. Let us now briefly
describe each one of them.

1. Data gathering involves aggregating data from multiple sources. Data integration, on the other hand, deals with
combining the gathered data into valuable information. The two tasks are not necessarily performed by the same
application. For example, our characters, Alice, Bob and Eve may all have different data management workflows
for their intended MCSC campaigns. Alice may wish to make the resulting data available for download and use
within Excel worksheets, while Bob and Eve may be more comfortable using applications developed using
Matlab-like suite of tools.

2. Local Preprocessing of data, as a concept, originates from the increasing computing power of smart devices,
and involves data transformations that are performed by the sensing devices, before forwarding the data to an
aggregator. For example, if Alice’s application needs to calculate the distance of a data contributor from a given
artistic installation (and use it further on the device), she may require that the device completes appropriate
calculations, to avoid sending data to a central server and back.

3. Software defined sensing involves “soft sensors” that are capable of detecting aspects of the environment that
cannot be directly detected by hardware sensors. For example, consider a situation where a study needs to be
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conducted, involving a number of applications running on a mobile device throughout the day. Since hardware
sensors do not exist for such phenomena, a sensor fully defined in software is a viable alternative. Here, note
that in the same way platforms such as Android use a common interface to access all sensors, it would be helpful
if all software defined sensors presented a common interface for accessing readings and return data values in
a standard format. As a matter of fact, it would be highly desirable is such interface would be “as close as
possible”, in its form, to the one exposed by the operating system of the mobile device.

4. Value-added applications are applications that give device owners insight into what is being done with the
data that is collected. For instance, in Bob’s campaign, it may be beneficial for the drivers to have access to
the generated data, superimposed on a real time traffic congestion map, to better assist them in route planning.
Bob may develop a plugin application to satisfy this need. However, allowing such applications a “carte blanche
access” to the data generated, poses numerous security and privacy risks. A system utilizing a plugin architecture
must, therefore, provide a standard, controlled, interface for them to access the data.

5. A Task Specification Language (TSL), in the context of this research, is an approach to communicating “how”
sensors are to be read and the resulting data processed.

PROPOSED SOLUTION

Upon an in-depth analysis of possible ways of instantiating the needed platform (details of which are omitted for
brevity), we have decided to develop a solution in the form of a multiagent system (MAS). MASs are distributed
computing environments consisting of subsystems that are capable of flexible autonomous action in dynamic and un-
predictable domains [14]. Here, the most typical conceptualization of the approach is based on the following metaphor:
each identified subsystem is referred to as an agent. Given the distributed nature of both MCSC and MASs, the fusion
of the paradigms was a natural choice in designing an architecture that supports autonomous, and adaptive, behaviour
on the part of sensing devices. The proposed architecture is rule-based, and founded on five main concepts: data col-
lection channels, sensor rules, orchestration agents, local agents and an aggregation server. Figure 2 introduces the
top-level schematics of the proposed architecture.
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FIGURE 2. Proposed system architecture

Let us now describe each of defined components of the proposed architecture.

1. Data Collection Channels (DCCs) – are abstractions of MCSC campaigns. Each campaign, therefore, has an
associated DCC and, also, has a set of Sensor Rules that define the specifics of the campaign.

2. Sensor Rules (SRs) – are “wrappers for knowledge” concerning how a given sensor type is to be handled (what
to read, how often, etc.) and, if necessary, how the collected data is to be preprocessed. SRs and DCCs share
a many-to-many relationship. In other words, the same SR may be used in multiple campaigns, while a single
DCC may collect data from multiple sensors (while applying multiple rules).
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3. Orchestration Agents (OAs) – live within an agent platform, initialized in the cloud. They are responsible for
coordinating communication in the system (data transfers), by being aware of existing DCCs, their associated
SRs, and the subscribed devices.

4. The Aggregation Server (AS) – is a document storage server, interfaced by the OAs, where all sensing data
(deemed worthy of saving) is accumulated. When sensor data is to be passed back to the AS, it is first passed to
an appropriate OA, which, in turn, stores the data into the AS.

5. Local Agents (LAs) – are entities that are split between the agent platform and the sensing devices and act as
conduits for communication between devices and the wider sensor network. Additionally, they are aware of the
DCCs that a device belongs to, and, inherently, SRs governing the behaviour required by these DCCs.

The parties involved in an MCSC campaign can be abstracted to two “conceptual human actors”, the data col-
lector and the device owner and two “conceptual agent actors”, the orchestration agent and the local agent. Success
of a given campaign depends on these four actors having the “right tools” to perform tasks expected of them. Figure 3
gives an overview (in the form of a use case diagram) of the functions that each actor needs to be able to perform.

In the use case diagram, we can see:

1. A Data collector, which is an initiator of an MCSC campaign, and is expected to perform all configurations,
related to the campaign, providing a way for the device owners to participate. In order to achieve this mandate,
the data collector requires a campaign management interface providing the ability to (1) create SRs and (2)
create DCCs.

2. An OA requires the ability to (1) discover the existence of DCCs and (2) coordinate and supervise the activity
of LAs.

3. An LA requires the ability to coordinate sensing tasks taking place within a sensing device. In order to receive
details on the DCC(s) its device is subscribed to, when joining the multiagent platform, an LA must broadcast
its presence. This event triggers a notification to an OA, which provides the details of the DCC(s). Using the
information obtained from the OA, the LA can configure sensor alarms for each DCC, based on its respective
SRs.

4. The device owner requires a sensing device interface that provides the ability to (1) subscribe to DCC(s), (2)
unsubscribe from DCC(s), (3) configure sensor data sharing, (4) update the device’s node data and (5) view a
list of plugins (value-added applications) present on the device.

Task Specification Language
Because not much work has been done at the intersection of MCSC and MASs and, in particular, on using a rule-based
approach for sensing coordination, a suitable specification language (e.g., a Domain Specific Language) could not be
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TABLE 1. TSL Properties

Property Required Allowed values Requires
samplemode Yes “fixed”, “interval” or “continuous” time if “fixed”, frequency if “interval”

tolerance No number or string -

preprocess Yes boolean preprocessing if true

preprocessing No* object -

time No* integer array -

frequency No* integer or string -

* Conditionally required.

found to fit the use case of the proposed system, especially in the context of supporting complex data processing
at the level of a sensing device. Based on this premise, it was decided that a new specification language has to be
developed. Two factors were considered when selecting a format for the Task Specification Language (TSL): (1)
ease of reading and writing by a human, and (2) ease of parsing and generating by computers. Given these factors,
the Javascript Object Notation (JSON) data interchange format was a natural choice for implementing the TSL.
JSON is lightweight and language independent but, nevertheless, “facilitates structured data interchange between all
programming languages” [15]. It is inspired by the JavaScript programming language [16] and is based on two data
structures, namely, objects, which are collections of name/value pairs, and ordered lists (arrays).

Key Features of the TSL

It was decided that, in the TSL, an SR is going to be represented using an object that is made up of a combination
of six properties. The properties are samplemode, preprocess, preprocessing, time, frequency and tolerance. Table 1
gives an overview of these properties, their expected values and their interdependencies.

The following information can be found in the Table.

1. The samplemode property is a string value that specifies when a sensor is to be read. It may have a value of
either fixed, interval or continuous. A value of fixed implies that the sensor is to be read at a specific time of the
day, every day. When using fixed, the time property is required. Using a value of interval implies that the sensor
is to be read at predetermined intervals, starting from the time the alarm is set. This value causes the frequency
property to be required. A value of continuous implies that the sensor is to be read every time its value changes.
This value triggers no other required properties.

2. The tolerance property is an integer or string expression, representing milliseconds, dictating that the sensor
data should be reused if it has been read within the specified time frame. For example, let the tolerance value
of a particular SR be set at thirty seconds. If the relevant sensor has been read less than thirty seconds ago,
to collect data to be used by any DCC, then that data is going to be reused (rather than a measurement being
performed again). This creates a resource saving mechanism that could possibly reduce sensor device battery
drain.

3. The preprocess property is a boolean value that indicates whether or not the data read from the sensor has to
be processed locally, before being sent for aggregation. A value of false indicates that no processing is to be
done and the data is sent as soon as it is read. A value of true indicates that local processing is to be done and,
consequently, causes the preprocessing property to be required. If no value is specified, false is assumed.

4. The preprocessing property is where the rules for applying transformations to sensed data are represented. It
is a JSON object that contains two sub-properties, variables (an object) and rules (an array). The variables
object is where data values, required during local preprocessing, are kept. For example, in the case of the
continuous sampling mode, the data collector may want to set a “change threshold” that is used to determine if
the sensor values have changed enough to warrant being recorded (sent to the Aggregation Server). The rules
array contains an ordered list of procedures that must be executed in order to transform the sensed data to a
required format, calculate needed data, or perform any other operations on the data.
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5. The time property specifies the time of day a sensor is to be read, accurate to the second.

6. The frequency property specifies how often a sensor is to be read, in milliseconds.

Preprocessing Rules

Let us now discuss in some details the form of preprocessing rules in the current version of the TSL. Here, Arith-
metic rules are essentially mathematical expressions that dictate what operations to perform on sensor values, if some
arbitrary condition is met. Listing 1 gives an example of an arithmetic rule. In this example, after the expression is
evaluated, the result is stored into a variable called arithmeticOpOne. The rule, however, is only executed if the condi-
tion is met that the value at index zero of the the sensor data values is greater than the value specified by the threshvar
variable. The threshvar variable could be one set in the variables object or the result of a previously executed rule.
The expression is evaluated and the result should be the square root of the sum of the first two values of the sensor
data values array.

The Human input rules (HIRs) are the mechanisms that allow a device owner to have direct input into the
sensing process. HIRs, similarly to the arithmetic rules, only run if some arbitrary condition is met. Listing 2 shows
an example of a HIR. The rule is always executed, when data is required from the relevant sensor, as the condition for
execution always evaluates to true.

The Query rules run select queries against the database of values stored on the sensing device, if some arbitrary
condition is met, and stores the resulting value to a variable. They are, therefore, best suited to extracting single valued
results from the database. It should be noted that the queries are restricted to rows where the sensor identifier is equal
to the identifier of the sensor for which the rule is written. The query clauses also support sensor values and variables
placeholders. Listing 3 gives an example of a query rule.

The Store rules indicate that the result of the rule should be saved to the database, if some arbitrary condition is
met, to be used for future querying and possibly for use by plugin applications. If no expression is given, the entire
value array of the sensor data is stored to the database. Listing 4 gives an example of a store rule.

Lastly, the return rules indicate that, if some arbitrary condition is met, the result of executing rule should be
sent for aggregation. If the return type is string, variable replacement is performed and the string returned as is. If it
is eval, however, the expression will be evaluated mathematically and the result returned. If no expression is given,
the entire value array of the sensor data is returned. It should be noted that without a return rule, SRs that have the
preprocess property set to true will not send any data for aggregation. Listing 5 gives an example of a return rule.

Listing 1. An example of an arithmetic rule.

1 {

2 ...

3 {

4 "type": "arithmetic",

5 "id": "arithmeticOpOne",

6 "if": "[0] > {threshVar}",

7 "expr": "SQRT ([0] + [1])"

8 }

9 ...

10 }

Listing 2. An example of an HIR.

1 {

2 ...

3 {

4 "type": ‘‘human_input",

5 "id": ‘‘hirOne",

6 "if": "true",

7 "datatype ": "string",

8 "message ": "Is the sky cloudy ?"

9 }

10 ...

11 }
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Listing 3. An example of a query rule.

1 {

2 ...

3 {

4 "type": "query",

5 "id": "queryOpOne",

6 "if": "[0] > {threshVar}",

7 "select ": "SUM(column1) as queryOpOne",

8 "where ": "column1 != column2",

9 "groupby ": "column3",

10 "having ": "search_condition",

11 "orderby ": "column3",

12 "limit": "100"

13 }

14 ...

15 }

Listing 4. An example of a store rule.

1 {

2 ...

3 {

4 "type": "store",

5 "if": "[0] > {threshVar}",

6 "expr": "[0]"

7 }

8 ...

9 }

Listing 5. An example of a return rule.

1 {

2 ...

3 {

4 "type": "return",

5 "if": "[0] > {threshVar}",

6 "returntype ": "eval",

7 "expr": "[0]"

8 }

9 ...

10 }

Technology Stack
The management interface utilizes the Linux-Nginx-MySQL-Python (LEMP) technology stack together with the
MongoDB document database. The flavor and version of Linux used for the server is Ubuntu Server 16.04.2 LTS [17].
Powering the management interface, on the Ubuntu server, is a combination of the Nginx web server [18] and the
uWSGI application container [19], while Python was selected to implement the web application. More specifically,
the Python based Flask web application micro-framework [20] has been used. In the case of data storage, a hybrid
approach was used. MySQL [21] was used to store data explicitly related to user (data collector) management, while
MongoDB [22] was used as a document storage for all MCSC campaign-related data.

The framework behind the agent platform subsystem is the Java Agent DEvelopment Environment (JADE) [23].
In the split container mode of JADE, a peripheral container, in which an agent lives, is split into two constituent
containers, a front-end container and a back end container. The front-end container exists on the peripheral machine
while the back-end container exists on the main container’s machine. Communication between the front-end and
back-end is achieved via Transmission Control Protocol (TCP) sockets. The split container execution mode was
especially designed for mobile environments, in which network connectivity is intermittent and most ports are closed
to incoming traffic. Split containers are, therefore, a natural choice for the LAs that are domiciled on sensing devices
in an MCSC scenario. To reduce the time needed to deploy an always online, fault tolerant agent platform using JADE,
the PhaseMetrics.io platform [24] was used. PhaseMetrics.io is a cloud based platform-as-a-service (PaaS) offering
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that allows developers to launch JADE based multiagent systems with just a few clicks. Nevertheless, we realize that
the selection of split-container approach is not without potential problems; i.e., caused by lack of Internet. Therefore,
we will investigate this issue further (see, also, Section e)).

The current iteration of the system supports only sensing devices running the Android operating system [25].
Android is a Linux based operating system, designed especially for smartphones, used on various consumer elec-
tronic devices. The implemented system supports devices running Android versions 4.4 (KitKat) and above. Android
applications are developed using the Android Software Development Kit (SDK). The Android SDK is a Java based
environment, and, as such, the core of Android applications are developed in the Java. Native code in languages such
as C and C++ is also supported. Given that the applications are developed using Java, it was easy to integrate the
JADE based agent platform to run the LAs on the sensing device. To equip LAs with the ability to parse mathematical
and boolean expressions in SRs represented in the TSL, EvalEx [26], a Java based expression evaluator, has been
used.

RELATED WORK

Not many attempts have been made at merging the MCSC paradigm with that of MASs. In fact, a search across major
publishers in the field has only uncovered one such attempt. Here, [27] introduced a system of mobile agents for the
MCSC, where campaigns are role-based implementations of mobile agents. In this system, agents are responsible for
tasks including collecting data, analyzing data and sharing data in campaigns. These tasks are considered to be the
roles of the agents. The agents are equipped with the ability to migrate to and from participating devices, and take
into account the available resources of the specific device, such as battery level, in carrying out their assigned tasks.
Agents in the system also try to match participants’ privacy requirements to campaign requirements.

Though the work of [27] is also based on combining MCSC with MASs, our approaches are fundamentally
different. Whereas our approach uses a single MAS to coordinate collaboration between arbitrary campaign operators
and data contributors, cited work implements each campaign as a separate MAS composed of role-based agents
migrating to and from participating devices to perform specialized tasks. The “campaigner”, who is the initiator of
a campaign, is required to actively monitor the availability of potential contributors in the system and inject agents,
as needed, to service the available participants. This increases the man power needed to monitor campaigns and is in
contrast to our approach, where campaigns are created, open calls for participation are published, and the campaign
initiator can then step away and let the campaign manage itself.

Additionally, the agent migration approach, used in [27], was consciously avoided in our system design. Allowing
arbitrary agents to migrate to participant devices is a huge privacy and security risk for participants, that may deter
their participation, as the intentions of these agents can never be guaranteed. Our approach recommends a single
agent, permanently domiciled on the sensing device, over which the campaign operator has no control, except for
configuring how existing sensors are to be read. Overall, the work reported in [27] showed that there is shared interest,
in the research community, in combining MCSC and MASs. Their architectural approach, however, is not well suited
to the aims of our work.

PRELIMINARY TESTS OF THE DEVELOPED SYSTEM

We will now discuss the use case scenarios that were introduced earlier, of campaign initiators, Alice, Bob and Eve,
and how they would go about launching their MCSC campaigns using the developed system. The focus will be on the
user interfaces, provided in accordance with the use cases, given in Figure 3, for both the data collector and the device
owner. To begin, Figure 4 shows the interface used to create SRs. The area for entering the SR is supported by syntax
highlighting and auto-indentation to make editing easier.

After creating SRs, campaign initiators can now attach them to DCCs. An example of a DCC, with an SR
referenced, via selecting a checkbox near its name, is shown in Figure 5. When creating a DCC, the initiators may
enter a description that would be shown to potential data contributors, when they search for DCCs to subscribe to.
Also, as seen in Figure 5, when a DCC is created a unique QR code is generated.

Once created, DCCs are discoverable by OAs and device owners can subscribe their devices to the DCCs using
the developed Android application. Subscription can take place either by using the search interface provided in the
application (Figure 6a) or by scanning a QR code (Figure 6b). The search term, entered by the application user, is
matched against both the titles of DCCs and their descriptions. The QR code, generated for a DCC, encodes the DCC’s
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FIGURE 4. Interface for creating SRs

FIGURE 5. Interface for editing DCCs

unique system identifier and it is this identifier that is used to subscribe the device, when the code is scanned. Both
methods of subscribing to a DCC result in an entry to the list of subscribed DCCs (Figure 6c).

In addition to facilitating the subscription process, the Android application provides device owners with features
that allow setting non-identifying demographical data (Figure 7a), configuring which sensors to share data from (Fig-
ure 7b), and viewing/accessing plugins installed on the device (Figure 7c). With regards to the demographical data,
the device owner is allowed to set their gender and age range, while, in the case of sensors, they are able to select
hardware or software sensors.

When data aggregation starts, campaign initiators are able to access the data entries via the data pages of their
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(a) (b) (c)

FIGURE 6. Interfaces for subscribing to DCCs

(a) (b) (c)

FIGURE 7. Additional interfaces provided by the Android application.

respective DCCs. These pages are accessible via the interface used to edit the DCCs and, for each data entry, indicates
the associated sensor, the date that the sensor reading was made (accurate to the second) and the values that were read.
Figure 8 shows how this page would look like in a situation when an initiator creates an SR to detect how many apps
are running on a device at a given instance. Clicking on any of the entries would output the JSON representation of
the sensor reading for that entry (Figure 9). In summary, while the developed system has not been used in an actual
campaign, we have shown that, using the provided interfaces, data collectors and device owners are able to execute all
required tasks, based on the stipulated use cases.
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FIGURE 8. Interface for viewing DCC data

FIGURE 9. Sample JSON output for a sensor reading entry

DISCUSSION

Two deficiencies that became apparent, while evaluating the system, were: lack of branching and looping language
structures, and structures that would enable device-owner-initiated interactions, in the TSL. Having branching and
looping structures in the TSL would be beneficial when there is a need for data collectors to represent complex work-
flows. For example, in the campaign run by Alice, if SRs supported loops, instead of having one place of interest per
SR, there could be multiple places and rules in the preprocessing object, and they could each be iterated over to deter-
mine if any are close by. In the case of the campaign run by Eve, if SRs supported specifying device-owner-initiated
interactions, instead of waiting for the specified times to give feedback on wait times to access public transportation,
data contributors could initiate the process, if they happen to have time to deal with it.

Supporting a more complex, expressive, TSL, however, has also its disadvantages. The more complex the TSL
becomes, the more skilled the administrators (rule writers) have to be. The TSL will, at some point, approach the
difficulty of more traditional high level scripting languages and will, thus, require administrators with skills similar to
those of traditional programmers. This point brings us to another limitation of the implemented solution: there is no
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simple, graphical, rule building tool, to act as a layer of abstraction between the data collector and the deeply technical
aspects of the TSL. Not having a graphical rule builder raises the barrier of adoption as potential data collectors would
have to at least have working proficiency with the JSON data interchange format.

Challenges were also encountered during the implementation of the system. The first challenge was that of
hosting the OAs in the cloud. Though the PhaseMetrics.io platform provides an intuitive way of launching the critical
infrastructure required to deploy the agent platform, it does not provide a way to spawn custom agents on the machine
that hosts the main container. This meant that there was no way, by default, to deploy the OAs, since they are domiciled
in the agent platform subsystem, and, thus, cannot be placed with the management interface subsystem or the sensing
device subsystem. To overcome this challenge, the code for the OAs were developed in isolation from the rest of
the system and deployed to a Linux-based cloud server, specifically configured for this purpose. Once started, the
container in which the OAs live establishes a connection to the main container via TCP/IP networking. This distributed
architecture is supported by JADE and stays true to the nature of the MASs.

Another challenge was in relation to the LA name clashes that prevented devices from reconnecting to the net-
work after the agent would have died. In situations where an LA dies, a “ghost” of the agent remains in the system
as the back-end of its split container is left running. Examples of this includes when the device loses power abruptly
or the application somehow crashes. This ghost agent prevents the LA from reconnecting to the agent platform, as
agents with duplicate names are not allowed. To overcome this challenge, a transient agent was introduced to the boot
process of an LA. When an LA wishes to start, an initiator agent is first launched. This initiator agent connects to
the agent platform, with its name being a combination of the LA’s name and a random string. The initiator agent
checks if a ghost agent is present in the system and, if present, makes a request to the agent platform to have it killed.
After performing this task, the initiator agent removes itself from the agent platform and triggers the boot process of
the LA. This method has proved effective and LAs are now able to avoid duplicate name errors on joining the agent
platform. Nevertheless, this issue will be returned to in the future.

CONCLUSIONS AND FUTURE WORK

In this paper, we have explored the development of a generic, adaptive, system to support arbitrary mobile crowd-
sensing and computing (MCSC) scenarios. The focus was on three processes, namely, data gathering and integration,
local preprocessing of data, and software defined sensing, and the concepts of value-added applications and sensing
coordination using a task specification language (TSL). We proposed, within the context of these processes and con-
cepts, a system that combines the MCSC paradigm with that of multiagent systems (MASs). The objectives of the
research were to design an architecture for such system, design a (domain specific) task specification language, used
to instruct intelligent agents on how to coordinate sensor reading, and implement a prototype that demonstrates the
feasibility of the proposed designs.

We presented a comprehensive description of both the architecture and the TSL, and the technology stack used
during the implementation. Further to this, a discussion of related work taking place at the intersection of MCSC and
MASs was presented. Finally, the developed prototype was evaluated against a set of use cases deemed essential to the
success of such a system, and a discussion was presented on the current limitations of the system and some challenges
that were encountered during the implementation. It is our conclusion that the prototype satisfies the objectives of the
research and truly represents a generic, and adaptive, platform for MCSC. With further development, the system could
reach a point of maturity where it will have significant impact on the way mobile data is collected, used for knowledge
discovery, and shared between different applications, organizations and the wider public.

Future work can be divided into three categories, namely, theoretical, language specification and software en-
gineering. In the case of theoretical work, it would be beneficial, to the mobile computing field, if work is done to
establish a sound theoretical framework for the discussion of MAS-based MCSC systems. This would involve per-
forming a thorough literature review in both fields and extracting the significant concepts that can be used to classify
and characterize such a system. In addition, exploring open challenges in the field of MCSC, as outlined in [13] would
prove a worthy endeavour. With regards to the language specification category, work would focus on improving the
expressiveness of the domain specific TSL. The JSON-based TSL lacked support for branching and looping structures
in the rules used to preprocess sensor data. This shortcoming should be addressed. The question of other developments
of the TSL, however, needs to be approached judiciously, so as not to over-complicate the language, thus reducing its
uptake.

In the software engineering category, future work would focus on completing the functionality of the platform,
e.g., making published MCSC campaigns visible through a public page of the web application used to manage them,
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and operational testing to examine the scalability of the system. The platform must be able to handle large num-
ber of MCSC campaigns, each with large numbers of sensing devices, and must be evaluated as such. Operational
testing would include evaluating simulations of data transfers at massive scales, concurrently across multiple MCSC
scenarios.
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