Developing ontological model of computational linear algebra - preliminary
considerations
K. Wasielewska, M. Ganzha, M. Paprzycki, and I. Lirkov

Citation: AIP Conference Proceedings 1561, 133 (2013); doi: 10.1063/1.4827222

View online: http://dx.doi.org/10.1063/1.4827222

View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1561?ver=pdfcov
Published by the AIP Publishing

http://scitation.aip.org/content/aip/proceeding/aipcp?ver=pdfcov
http://scitation.aip.org/search?value1=K.+Wasielewska&option1=author
http://scitation.aip.org/search?value1=M.+Ganzha&option1=author
http://scitation.aip.org/search?value1=M.+Paprzycki&option1=author
http://scitation.aip.org/search?value1=I.+Lirkov&option1=author
http://scitation.aip.org/content/aip/proceeding/aipcp?ver=pdfcov
http://dx.doi.org/10.1063/1.4827222
http://scitation.aip.org/content/aip/proceeding/aipcp/1561?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov

Developing Ontological Model of Computational Linear
Algebra — Preliminary Considerations

K. Wasielewska*, M. Ganzha*, M. Paprzycki* and I. Lirkov,"

. *System Research Institute Polish Academy of Sciences, Warsaw, Poland
"Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria

Abstract. The aim of this paper is to propose a method for application of ontologically represented domain knowledge to
support Grid users. The work is presented in the context provided by the Agents in Grid system, which aims at development
of an agent-semantic infrastructure for efficient resource management in the Grid. Decision support within the system should
provide functionality beyond the existing Grid middleware, specifically, help the user to choose optimal algorithm and/or
resource to solve a problem from a given domain. The system assists the user in at least two situations. First, for users without
in-depth knowledge about the domain, it should help them to select the method and the resource that (together) would best
fit the problem to be solved (and match the available resources). Second, if the user explicitly indicates the method and
the resource configuration, it should “verify” if her choice is consistent with the expert recommendations (encapsulated in
the knowledge base). Furthermore, one of the goals is to simplify the use of the selected resource to execute the job; i.e.,
provide a user-friendly method of submitting jobs, without required technical knowledge about the Grid middleware. To
achieve the mentioned goals, an adaptable method of expert knowledge representation for the decision support system has
to be implemented. The selected approach is to utilize ontologies and semantic data processing, supported by multicriterial
decision making. As a starting point, an area of computational linear algebra was selected to be modeled, however, the paper
presents a general approach that shall be easily extendable to other domains.

Keywords: Semantic data processing, domain knowledge, user support
PACS: 02.10.Ud, 07.05.Kf

INTRODUCTION

The aim of this paper is to discuss practical aspects of application of ontologies and semantic data processing to
support users of Grid middleware. The context is provided by the Agents in Grid (AiG; [1, 2, 3]) system, which aims at
the development of an intelligent agent-based meta-level middleware for the Grid. In the AiG system, software agents
represent Grid users (both resource consumers and resource providers). In this paper we focus our attention on the
following scenario. Let us assume that the user would like to submit a job to be executed in the Grid. As discussed
in [4], in a real world settings (exemplified by the computing infrastructure of the University of Huddersfield), (i) users
are not willing to spend time to learn how to use Grid middleware, and (ii) once they learn how to use a specific method
/ library / code to solve their problems, they are not inclined to change their habits. Specifically, they tend to solve the
problem with the same method using the same resource configuration, which they mastered, despite the fact that there
may be more suitable algorithm and / or computational resource available in “their Grid.” As mentioned in [4], the
Grid middleware of choice in many scientific institutions e.g., University of Huddersfield (UoH) is the Globus Toolkit
(GT; [5]), which is mature and efficient. However, it lacks features such as “resource discovery for users.” This means
that a serious burden is placed upon system administrators, to continually publish up-to-date resource information so
that the users may be able to submit jobs to the evolving systems. At the UoH, the decision was made to additionally use
the European Middleware Initiative (EMI; [6]) middleware that enables the job submission system to communicate
directly with the information gathering systems; allowing up to date resource information to be collected, and then
allows users to submit their jobs using a single scripting language. However, even this configuration still requires
knowledge of technical details of the Grid (e.g., the submission scripting language), and the interplay between the
problem to be solved, the algorithms, the libraries that implement them, and the available computer hardware.
Therefore, for the solution to be regarded as fully user-friendly, the job submission system (to the “Grid system”)
should support the user in defining the task / problem to be executed / solved, help her with the selection of the
optimal method / algorithm / tool to solve it, as well as with defining the criteria to select the needed resource(s).
Then, such system should simplify the use of the selected resource(s) (from here on, the term “resource” may mean
either hardware or software resource; depending on the context). Specifically, the job submission process should be the

Application of Mathematics in Technical and Natural Sciences
AIP Conf. Proc. 1561, 133-143 (2013); doi: 10.1063/1.4827222
©2013 AIP Publishing LLC 978-0-7354-1189-0/$30.00

133

same regardless of the Grid middleware installed on a given resource, and no knowledge of scripting language should
be required. In this paper we focus on the first aspect of the problem, helping the user to select the right resources.
Note that, the proposed expert system is dedicated most of all to Grid users without in-depth knowledge about relation
between problems, algorithms and respective technical requirements. However, it can be also utilized by users who
want to verify if their approach to solve a given problem is consistent with available expert recommendations. Let us
start from a brief analysis of the related work.

Related work

It is easy to observe that our work represents another attempt at achieving goals summarized in [7, 8]. Michael
Lucks’s dissertation focuses on the problem of software selection for solving mathematical problems. In his work, a
generic mechanism for representing the software selection related expertise was proposed, i.e., domain experts could
express functional relationships between properties of mathematical problems and the performance of the software.
In the proposed representation scheme, attention was paid to evaluate how suitable is a given software for a given
problem. The suitability of a software was calculated with a set of functions expressing knowledge about the effects
of the problem properties on the performance. Moreover, author discusses the problem of knowledge acquisition. In
the case of the AiG system, the assessment of suitability is to be handled by experts that construct the knowledge base.
Therefore, the mechanisms described by M. Lucks can be utilized to improve the quality of their recommendation(s).
The latter issue corresponds to the complex and time-consuming task that we also try to address; i.e., how to construct
a knowledge base that can be easily extended and handled. In [7] the process of acquisition of new knowledge required
assistance from a “knowledge engineer,” due to the complexity of the functional relationships. Note that, another aspect
of designing a knowledge representation scheme is it is transparency and ease of use. Here, we hope that with growing
popularity of ontologies and semantic data processing, new generation of tools will be developed to help solving this
problem. We believe that expressiveness of ontological languages allows to specify expert knowledge in an intuitive
and user-friendly way.

Practical aspects of software selection were discussed in [8]. There, the authors propose a numerical problem solving
environment (named EPODE), which supported solving initial value problems for ordinary differential equations. The
expert features of the system include (i) specifying the problem, (ii) selecting algorithmic alternatives, (iii) determining
problem-oriented parameters of the algorithm, and (iv) identifying problem properties that can indicate which method
is suitable. Even though the EPODE was (and still is) an advanced tool that provides a broad functionality, it was
dedicated only to ordinary differential equations and, even more specifically, to initial value problems.

Other expert systems in the area of differential equations that deal with software selection problem are described
in [9, 10, 11]. They suggest the best numerical solver (for partial differential equations) based on input data properties.
Furthermore, additionally they can generate an appropriate execution code. The decision mechanisms are based, for
instance, on decision trees or data mining of the performance history. Here, let us note that the support mechanism
that is planned for the AiG system, is going to use a decision mechanism that does not use hard-coded decision rules
characteristic for a given domain, but a multicriteria decision method to select optimal expert recommendation, based
on expert knowledge that is stored in the AiG system knowledge base. Moreover, the knowledge representation scheme
(common conceptual model) in the AiG can be applied to different domains due to its adaptable nature.

Unfortunately, the presented work does not seem to attract much attention. According to our consultations with
Grid computation specialists, research centres rarely (if never) use expert systems to assist users with Grid utilization.
Usually, the situation is analogous to the one at UoH, where users have to master technical details and have knowledge
about correlations between problem properties and respective solution methods. We hope that with application of
modern tools, such as ontological representation of domain knowledge and semantic data processing, we will be able
to obtain some insightful effects in the area of application of domain knowledge to support Grid users.

DOMAIN KNOWLEDGE ONTOLOGY

The key challenge in designing and implementing any user decision support system is the construction of the
knowledge base. In our case it is going to be an ontology that stores expert knowledge regarding selected domain(s).
Note that, all knowledge in the AiG system is stored in / represented as an ontology. Furthermore, communication
protocols utilize messages with ontological content (for details see [12]). Specifically, during the development of the

system, a set of ontologies was designed to provide concepts necessary for: (i) resource and Grid structure description
(AiG Grid Ontology), (ii) contract requirements specification (AiG Conditions Ontology), and (iii) content of messages
exchanged in the system (AiG Messaging Ontology). Obviously, to develop the user support functionality, described
in previous sections, a need arise to add a new AiG Expert Ontology. The position of the new ontology in the hierarchy
of ontologies used in the AiG system is shown in Figure 1.

Core Grid Ontology

AiG Grid Ontology Time (W3C) Ontology
AiG Conditions Ontology
AiG Messaging Ontology AiG Expert Ontology

FIGURE 1. Hierarchy of AiG ontologies

&

The ontology with expert knowledge is an application ontology, which imports the AiG Conditions Ontology.
Furthermore, it uses the concept of the Grid resource from the AiG Grid Ontology, to point to resource(s) that is /
are most suitable for solving a given problem (according to the knowledge stored in the knowledge base).

As a starting point, and as a proof of concept for the selected approach to implement user support, we focus on
the domain of computational linear algebra. The ontology for this domain is described in detail in the following
subsections. However, it should be stressed that the structure that we design should be applicable to any domain (to be
later used within the system). Here, recall that jobs that can be executed in the Grid, span multitude of domains.

For the task at hand, formalized concepts have to capture three main aspects of a domain (this is the above mentioned
structure of the ontology that can be applied to other domains):

« Problem — hierarchy of problems from a given domain.

+ Algorithm — algorithms / methods that can be used to solve problems from a given domain (problems specified
in the Problem part of the ontology).

 Data Element — type of input data (objects) that algorithms / methods operate on. We use this concept to indicate
the type of the object: (i) simple, e.g., boolean, character, integer, real, or (ii) structured, e.g., matrix, string and
assign properties, e.g., for structured data elements: hasDimension, hasBlockDimension, hasSimpleType.

Additional concept that is used to describe a job is the Data Property — the hierarchy of properties that characterize
the input data. For the computational linear algebra, properties are grouped into two subclasses: Matrix Property,
and Matrix Element Property. The Data Property class is a range for the hasProperty object property that relates the
instance of the Data Element class and its characteristics. Other concepts from the ontology, used to match the expert
recommendations, are (see Figure 2):

« Domain Expert — concept representing experts (people or computer system) that provide recommendations
within a given domain. Property hasExpertOpinion points to instances of the Expert Opinion that were provided
by a given expert.

+ Job Profile — concept that relates instances of: Problem, Data Element and Algorithm classes, with instances of
the Expert Opinion class. The respective object properties to be used are: forData, forProblem, hasAlgorithm.

+ Expert Opinion — concept that relates instances of the Domain Expert and the Grid Entity classes, i.e., the re-
source recommended for solving a specific problem indicated with the instance of the Job Profile class. Obviously,

resources originate from the AiG Grid Ontology. Here, the applicable properties are: hasRecommendedResource
proposedByExpert, and hasJobProfile.

hasAlgorithm

m— L ot

forData 5 forData

“ forProblem
!

‘Domain Expert J " hasExpertOpinion

* +

) ‘Data Element']

isExpertin

hasExpertOpinion | | proposedByExpert

T)
Opinion’

FIGURE 2. Main concepts in AiG Expert Ontology involved in matching expert recommendations

99 GidEntty |

The expert ontology is to provide concepts necessary to capture main aspects of a given domain and at the same
time retain structure that is universal for any domain. It can be noticed that a new domain knowledge can be added to
the ontology by extending the hierarchy of subclasses for any of the main concepts, e.g., Problem, Algorithm and Data
Property classes. Alternatively, ontologies for different domains can be stored in separate OWL ontology files, but the

top level concepts and properties will be common.

Hierarchy of problems

Let us now present the hierarchy of problems distinguished in the area of computational linear algebra (see Figure 3).
The respective OWL classes represent the following problems: (i) eigen problem, (ii) least squares problem, (iii)
solution of a system of linear equations, (iv) singular value decomposition, and (v) calculation of a matrix norm.
Each of these problems can be further decomposed. Based on consultations with several experts, we believe that this

conceptualization is fairly complete.

ngle Right Hand Side Problem’

Matrix Narm Problem’

em of Linear Equations Problel
— ———F

Eigenvestor Prablem’

‘Multiple Right Hand Side Problem' > |~

ngular Walus Desomposition Problem'

- A .
 Problem J<i—=a—Linear Algebra Problem' <]
) el 82 i et

—— i =

Al Eigenvestor Prablem’

Largest Eigenvalus Prablem’

('Eigen Prablem'’

T ANl Eigsnvalue Problem’

“Least Squares Problem’ === "Nonlinera Least Squares Problem’ % =
Bl B b isa
=S 5

mallest Eigenvalue Prablem')

dinary Least Squares Prablem’ >

"Range Eigenvalue Problem'

FIGURE 3. Hierarchy of problems in AiG Expert Ontology

—_—
(98]
(o)

Hierarchy of algorithms

Figure 4 shows the first two levels of the hierarchy of classes representing algorithms / methods that can be used to
solve problems from Figure 3 hierarchy, for a given input data. This part of the ontology, along with instances of the
Job Profile and the Expert Opinion classes, is most crucial and is currently being developed on the basis of the domain

expert knowledge. In other words, here we depict only a preliminary representation, which is fairly complete, but is
expected to be further refined.
“Pa _Ett_Met;-o;:i':_ i)

lterative Refinement

Gram-Sehmidt Ortaghonalization'

;..'Givens Rotation'.-)
_lsa iy

———iga —— ——
_'Householder Transformation'

{ 'Fower Method')

acobi Algorithm')

A Algorithm s (Ej
TR
:

N, . ['_P'Eigen Factorization':_}
. =

b : T

N 7 E T

Ne-a \\ ___\.rv.i fa-tnx Transpose' 5

."\ -\\-'Matrix Operation' h

\ AT

':..'.LinearEquations Sol\ref‘“cf.l—i"*—'.
—— e

'.'-I;inear Equation lterative Sol\re‘l‘. P

——d=a

_'Linear Equations Direct Solvel‘:"

FIGURE 4. Part of the hierarchy of algorithms in AiG Expert Ontology

The algorithms are divided into five main classes that can be again decomposed, depending on how specific the
expert, or the Grid user, wants to be:

« Solution Accuracy Improvement — classes representing methods to improve accuracy of the numerical solutions
of the systems of linear equations.

« Transformation — classes representing commonly used transformations that are composed of more granular
operations and are used within certain algorithms.

« Eigen Solver — classes representing methods for solving eigen problems.

» Fundamental Operation — classes representing hierarchy of core operations in the area of computational linear
algebra. These classes are based on the classical BLAS and LAPACK libraries.

« Linear Equation Solver — classes representing hierarchy of algorithms for solving systems of linear equations,
further decomposed into direct (for more details see Figure 5) and iterative solvers (depicted in Figure 6).

"General Linear Equati

4 Linear Equations Direct Salu

(ABD Solver B
TR)
‘\ THed _

'BABD Solver B

__-[:h olesky Factorizatio n-

__"Tri:liagonal Factonzatinn‘ |3

FIGURE 5. Part of the hierarchy of linear equations direct solvers in AiG Expert Ontology

taunnarysc.lvgrjﬁ

(Linear Equation ltarative

o2

int Incomplete Factarization

1 ate Gradient Squared (i
— =
5 —
/o
N\ r
N\

anjugate Gradient

Biconjugate Gradient (BICGY

ralized Minimal Residual (GMRES} 7

si-Minimal Residual (|

ugate Gradients on the Normal Equati

o ‘Chebyshev Iteration

FIGURE 6. Part of the hierarchy of linear equations iterative solvers in AiG Expert Ontology

Hierarchy of data properties

To describe characteristics of input data, we utilize Data Element and Data Property classes (see Figure 7) and
the property hasProperty that defines their relationship. For the computational linear algebra we focus on the Matrix

subclass of the Data Element and the Matrix Property subclass of the Data Property that is also a superclass for a

G

hierarchy of properties that describe the matrix (e.g., symmetricity, density, structure, efc.).

! .'Dense Watri)

(Matix Storage' b .
- — = T,
T 1 'Sparse Matrix' |

is- 3 Sp——— --é}f;:_.__Jsm.-—-—‘_ —
-~ ('Matrix Density T

ive Semidefinite Matrix

"Matrix Definit

ite Matris'

sitive Definite Matrix)

Njsa s
\ ST
N Negative Definite Matrix'
N sl e s
\\ — e
I (3D Matrix') ("Matrix Special' B
\ e e 0 —
\— —— isg" — — —
{ 'Matrix Shape' | Matrix') 4 ('Matrix Norm' B _'Matrix Diagonal Dominance'_rb
— —_———— i e = =
T — —
- ~y ey . - .
\\‘--i&a ['20 Matrix' = by ar Matrix' atrix Conditioning' }
G —iga
D Matrie) Nga ('Square Matrix “Watrix Stucture' B
L g mm———————
(" Matrix Rank B . 'Matrix Symmetricity B

i " .
 Matrix Singularity B

FIGURE 7. Part of the hierarchy of data (matrix) properties in AiG Expert Ontology

Note that properties concerning matrix structure can be further decomposed, as in Figure 8. Obviously, Figures 7
and 8 do not show the full hierarchy of already available properties.

EXAMPLE

Let us now follow with an example of how the expert knowledge can be stored and extracted from the ontology using
the conceptual model presented in the previous section.

From user’s perspective, the crucial part is to specify the job profile and the resource requirements for the job to be
executed. In the AiG project all user interaction with the system are completed using a dynamic ontology-based web
interface (for more details, see [13]). Here, the user can specify only such requirements for resources needed to execute
the job that are available within the system — instantiated in the ontology (assuming that she is certain about her needs
and does not require expert system support). However, she can also “underdetermine” the request, by selecting an
instance of a subclass of the Problem class, e.g., the System Of Linear Equations Problem. The job profile instance
may optionally have properties: (i) forData that specify the input, e.g., an instance of the class Matrix, with values of
hasProperty being instances of the Positive Definite Matrix and the Symmetric Matrix classes, and (ii) hasAlgorithm
that specifies an iterative solver, e.g., an instance of the class Linear Equation Iterative Solver to be used to solve the
problem (here, it is assumed that the user does not have knowledge, which iterative method to use) see Figure 6 and
the snippet, below.

<equivalentClass><Class>
<intersectionOf rdf:parseType="Collection">
<rdf:Description rdf:about="http:// gridagents.sourceforge.net/AiGExpertOntology#
JobProfile"/>
<Restriction>
<onProperty rdf:resource="http:// gridagents.sourceforge.net/AiGExpertOntology#forData
">
<someValuesFrom><Class><intersectionOf rdf:parseType="Collection">
<rdf:Description rdf:about="http:// gridagents.sourceforge.net/AiGExpertOntology#
Matrix " />
<Restriction>
<onProperty rdf:resource="http:// gridagents.sourceforge.net/AiGExpertOntology#
hasProperty"/>

l.:_-'..-&lmost Block Diagonal Matrix“‘_‘_ 3

i e ——
/3/ Block Diagonal Matrix)
= et

isa=" o — —
= Block Bidiaganal Matrix

Block Structursd Matrix <]—isa— 'Arowhsad Matrix)
—r e i
5 . . o T g i AT
//(M“"'--J'S-a lock Tridiagonal Matrix') _'Triangular Banded hatrix' ﬂ_\'
Ea el i e ikt

S
/ e R i*f/a/" = —_
/ (_'Block-Banded Matri s entadiagenal Banded Matrix'

< —

s e —— -
/ 'Special Banded Matrix =—sa i
¢ == o - A < >
'5’-)/ e q’*ﬁ:\——-i&a___
;_-:_ﬂElanded I'u'latm.(__'é:;__ — ima o — ’ “isa ——— ——
,-"f e — [) 25 (_'Tridiagonal Banded hat
’/is— ” e =t \»\H_ —— ——
//a/ ('Toeplitz Matrix' — — —
/.-' Pt SN T 'Cireulant Matr [diagonal Banded Matr

'\..'Nolmal Matrix' |

T —bﬁ:-\::‘" —iga

£ Genelal Unstructure Matli:é-_:'

L Ega - o
. ~ — o N Lower |
~ e _ma— —

\ & CMaticHalr T en T
\ . s = 1 Upper |

4 _'Lower Hessenberg Matri
jpE =

pper Hessenberg Matri

FIGURE 8. Part of the hierarchy of matrix structure in AiG Expert Ontology

<someValuesFrom><Class><intersectionOf rdf:parseType="Collection">
<rdf:Description rdf:about="http:// gridagents.sourceforge.net/
AiGExpertOntology#PositiveDefiniteMatrix"/>
</intersectionOf></Class></someValuesFrom>
</Restriction>
<Restriction>
<onProperty rdf:resource="http:// gridagents.sourceforge.net/AiGExpertOntology#
hasProperty"/>
<someValuesFrom><Class><intersectionOf rdf:parseType="Collection">
<rdf:Description rdf:about="http://gridagents.sourceforge.net/
AiGExpertOntology#SymmetricMatrix" />
</intersectionOf></Class></someValuesFrom>
</Restriction>
</intersectionOf></Class></someValuesFrom>
</Restriction>
<Restriction>
<onProperty rdf:resource="http:// gridagents.sourceforge.net/AiGExpertOntology#
forProblem" />
<someValuesFrom><Class><intersectionOf rdf:parseType="Collection">
<rdf:Description rdf:about="http:// gridagents.sourceforge.net/AiGExpertOntology#
SystemOfLinearEquationsProblem" />
</intersectionOf></Class></someValuesFrom>
</Restriction>
<Restriction>

<onProperty rdf:resource="http:// gridagents.sourceforge.net/AiGExpertOntology#
hasAlgorithm"/>
<someValuesFrom><Class><intersectionOf rdf:parseType="Collection">
<rdf:Description rdf:about="http:// gridagents.sourceforge.net/AiGExpertOntology#
LinearEquationIterativeSolver"/>
</intersectionOf></Class></someValuesFrom>
</Restriction>
</intersectionOf>
</Class></equivalentClass>

On the other hand, in the AiG Expert ontology we store respective instances to be matched with what the user
specifies. Note, that (due to the space limitations) this is a very simplified example, in which not all available properties
are specified to conclusively adjust the algorithm and the resource proposed by expert. Below we include the ontology
snippet representing job profile with the related expert recommendation.

<owl:NamedIndividual rdf:about="&AiGExpertlnstances;jobProfilel ">
<rdf:type rdf:resource="&AiGExpertOntology;JobProfile"/>
<AiGExpertOntology:hasExpertOpinion rdf:resource="&AiGExpertlnstances;expertOpinionIndivl"/>
<AiGExpertOntology:forProblem rdf:resource="&AiGExpertlnstances;lseProblemlIndiv"/>
<AiGExpertOntology:hasAlgorithm rdf:resource="&AiGExpertlnstances;lseSolverIndivl"/>
<AiGExpertOntology:forData rdf:resource="&AiGExpertInstances; matrixIIndiv"/>

</owl:NamedIndividual>

<owl:NamedIndividual rdf:about="&AiGExpertlnstances;expertOpinionIndivl ">
<rdf:type rdf:resource="&AiGExpertOntology; ExpertOpinion"/>
<AiGExpertOntology:proposedByExpert rdf:resource="&AiGExpertlnstances; HPCExpertl"/>
<AiGExpertOntology:hasRecommendedResource rdf:resource="&AiGExpertlnstances;

requiredResourcelndivl"/>
</owl:NamedIndividual>

Respective requirements regarding, e.g., matrix properties and the algorithm that the job profile in the AiG Expert
ontology is referring to, are represented with the class expressions and instances in the following code snippet.

<owl:Class rdf:about="&AiGExpertlnstances; Matrix1">
<owl:equivalentClass><owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<rdf:Description rdf:about="&AiGExpertOntology ;Matrix"/>
<owl:Restriction>
<owl:onProperty rdf:resource="&AiGExpertOntology;hasProperty"/>
<owl:someValuesFrom><owl:Class><owl:intersectionOf rdf:parseType="Collection'’
>
<rdf:Description rdf:about="&AiGExpertOntology; PositiveDefiniteMatrix"/>
</owl:intersectionOf></owl:Class></owl:someValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="&AiGExpertOntology;hasProperty"/>
<owl:someValuesFrom><owl:Class><owl:intersectionOf rdf:parseType="Collection">
<rdf:Description rdf:about="&AiGExpertOntology;SymmetricMatrix"/>
</owl:intersectionOf></owl:Class></owl:someValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class></owl:equivalentClass>
</owl:Class>
<owl:NamedIndividual rdf:about="&AiGExpertIlnstances;matrix1Indiv">
<rdf:type rdf:resource="&AiGExpertInstances;Matrixl"/>
</owl:NamedIndividual>
<owl:Class rdf:about="&AiGExpertlnstances; LSEIterStatSolverl">
<owl:equivalentClass><owl:Class>
<owl:unionOf rdf:parseType="Collection">
<rdf:Description rdf:about="&AiGExpertOntology ; GaussSeidelMethod" />
<rdf:Description rdf:about="&AiGExpertOntology;JacobiMethod"/>
</owl:unionOf>
</owl:Class></owl:equivalentClass>
</owl:Class>
<owl:NamedIndividual rdf:about="&AiGExpertlnstances;lseSolverIndivl">
<rdf:type rdf:resource="&AiGExpertInstances; LSEIterStatSolverl"/>
</owl:NamedIndividual>

"

141

The system analyzes the ontologies and uses the expert knowledge from the indicated problem domain to suggest:
(i) what is the optimal algorithm / method to solve the problem, (ii) what resource configuration is recommended by the
experts. Let us assume, that for a given input data and problem, there exists one expert recommendation to use resource
with the configuration specified as the requiredResourcelndivi, and the user would be informed of two algorithm
alternatives (Jacobi method, and Gauss-Seidel method). Obviously, there can be a situation were more than one expert
opinion can be associated with a given job profile. In such a case, in the AiG system, the Analytical Hierarchy Process
(AHP; [14]) method for multicriterial decision making is applied to select the optimal recommendation and / or prepare
additional suggestions how to extend / modify the resource requirement(s). The way to combine ontologies and the
AHP method was introduced in [15, 16].

CONCLUDING REMARKS

The aim of this paper is to introduce an approach selected to apply domain knowledge to support users in the AiG Grid
management system. Moreover, an ontology used to store expert knowledge in the selected initial area of application
(computational linear algebra domain) was described in terms of its structure and possible semantic processing. Our
current goal is to continue the development of the ontology of computational linear algebra, and test its application
in a prototype of the user decision support subsystem. The key issue that has to be addressed, to efficiently help the
user, is to represent (in the domain ontology) as much of expert knowledge as possible, and this is an ongoing process
of ontology extension. Note that we do not have to deal with conflicting expert knowledge, as we can represent
knowledge of each individual expert as an ontology instance. Then, as mentioned above, we will apply the AHP
method to combine their recommendations to create the “ultimate one” to be presented to the user. Our future work
should also concentrate on assisting users with specifying properties of input data, since, for instance, some of the
properties of the matrix can be automatically recognized (with a set of rules) on the basis of such parameters. Finally,
the outstanding issue of submitting a job to “any” middleware has to be approached.

ACKNOWLEDGMENTS

Work presented here is a part of the Poland-Bulgaria collaborative grant “Parallel and distributed computing practices.”

REFERENCES

1. M.Dominiak, W.Kuranowski, M.Gawinecki, M.Ganzha, and M.Paprzycki, “Utilizing agent teams in grid resource
management—preliminary considerations,” in Proc. of the IEEE J. V. Atanasoff Conference, IEEE CS Press, Los Alamitos, CA,
2006, pp. 46-51.

2. W.Kuranowski, M.Ganzha, M.Gawinecki, M.Paprzycki, I.Lirkov, and S.Margenov, (2008) International Journal of
Computational Intelligence Research 4, 9-16.

3. K.Wasielewska, M.Drozdowicz, M.Ganzha, M.Paprzycki, N.Attaui, D.Petcu, C.Badica, R.Olejnik, and I.Lirkov, “Negotiations
in an Agent-based Grid Resource Brokering Systems,” in Trends in Parallel, Distributed, Grid and Cloud Computing for
Engineering, edited by P. Ivanyi, and B. Topping, Saxe-Coburg Publications, Stirlingshire, UK, 2011.

4. K. Lysik, M. Ganzha, K. Wasielewska, M. Paprzycki, J. Brennan, V. Holmes, and 1. Kureshi, “Combining AiG Agents with
Unicore grid for improvement of user support,” in Proceedings of the First International Symposium on Computing and
Networking — Across Practical Development and Theoretical Research, 2013 submitted for publication.

5. Ian Foster, Carl Kesselman, Steven Tuecke, The anatomy of the grid — enabling scalable virtual organizations, 2001, URL
http://arxiv.org/abs/cs/0103025.

6. EMI, MNA3.2 Open Source Software Initiative (2013), URL http://cds.cern.ch/record/1450878/files/
EMI-MNA3.2-1450878-0S_Initiative_Charter_v1.0.pdf?version=1, EMI Collaboration.

7. M.Lucks, “Knowledge-Based Framework for the Selection of Mathematical Software,” Ph.D. thesis, Southern Methodist
University, 1990.

8. D.Petcu, and V.Negru, “Interactive system for stiff computations and distributed computing,” in Proceedings of IMACS’98:
International Conference on Scientific Computing and Mathematical Modelling, IMACS, 1998, pp. 126-129.

9. P. Bunus, “A Simulation and Decision Framework for Selection of Numerical Solvers in Scientific Computing,” in Proceedings
of the 39th annual Symposium on Simulation, ANSS °06, IEEE Computer Society, Washington, DC, USA, 2006, pp. 178-187.

10. S. Weerawarana, E. N. Houstis, J. R. Rice, A. Joshi, and C. E. Houstis (1996) ACM Trans. Math. Softw. 22, 447-468.

11. M. Kamel, W. Enright, and K. Ma (1993) ACM Trans. Math. Softw. 19, 44-62.

142

12. M.Drozdowicz, K.Wasielewska, M.Ganzha, M.Paprzycki, N.Attaui, I.Lirkov, R.Olejnik, D.Petcu, and C.Badica, “Ontology
for Contract Negotiations in Agent-based Grid Resource Management System,” in Trends in Parallel, Distributed, Grid and
Cloud Computing for Engineering, edited by P.Ivanyi, and B.H.V.Topping, Saxe-Coburg Publications, Stirlingshire, UK, 2011.

13. M. Drozdowicz, M. Ganzha, M. Paprzycki, P. Szmeja, and K. Wasielewska, “OntoPlay - A Flexible User-Interface for
Ontology-based Systems,” in AT, 2012, pp. 86—100.

14. T.L.Saaty (1990) European Journal of Operational Research 48, 9-26.

15. K.Wasielewska, and M.Ganzha, “Using analytic hierarchy process approach in ontological multicriterial decision making -
Preliminary considerations,” in 4th AMiTaNS’12, edited by M.D. Todorov, AIP CP1487, 2012, pp. 95-103.

16. K. Wasielewska, M. Ganzha, M. Paprzycki, P. Szmeja, M. Drozdowicz, 1. Lirkov, and C. Badica, submitted to Information
Technology And Control.

143

