
Forming and managing agent teams acting as resource brokers in the Grid —
preliminary considerations

Wojciech Kuranowski
Software Development Department,

Wirtualna Polska
ul. Traugutta 115C, 80–226 Gdansk

wkuranowski@wp-sa.pl

Maria Ganzha, Maciej Gawinecki
Systems Research Institute,
Polish Academy of Science,

ul. Newelska 6, 01-447 Warszawa, Poland
(maria.ganzha,maciej.gawinecki)@ibspan.waw.pl

Marcin Paprzycki
Institute of Computer Science,

Warsaw School of Social Psychology,
ul. Chodakowska 19/31,

03–815 Warszawa, Poland,
Systems Research Institute, Polish Academy of Science,

ul. Newelska 6, 01-447 Warszawa, Poland
marcin.paprzycki@swps.edu.pl

Ivan Lirkov, Svetozar Margenov
Institute for Parallel Processing,
Bulgarian Academy of Sciences,

Acad. G. Bonchev, Bl. 25A,
1113 Sofia, Bulgaria

(ivan,margenov)@parallel.bas.bg

Abstract-
Recently, we can observe an increasing interest in uti-

lization of software agents in computational Grids. In
our work agent teams play role of Grid resource bro-
kers and managers. Previously we have discussed how
to efficiently implement matchmaking services, as well
as proposed a way by which agents select a team that
will execute their job. In this paper we focus our atten-
tion on processes involved in agents joining a team.

1 Introduction

Following an interesting trend claiming that software agents
have an important role to play in Grid computing ([11, 18])
we have started investigating how teams of agents can
be utilized as resource brokers and managers in the Grid.
Specifically, in [10] we have presented an initial overview
of the proposed approach. In [9] we followed with a study of
the most effective way of implementing yellow-page based
matchmaking services. Finally, in [8] we considered pro-
cesses involved in agents seeking teams to execute their
jobs. The aim of this paper is to start addressing the ques-
tion: how agent teams are formed?

We start with an overview of the proposed system, be-
ginning from the basic assumptions and following with an
UML Use Case Diagram. In the next section we discuss is-
sues involved in agent to agent-team matchmaking. Paper
is completed with UML-based formalization of the main
process involved in agent-team formation and agent team
management and report on the status of the implementation.
Work presented here is an extended version of [13].

2 System overview

Let us start by making it explicit that in our work we fol-
low these researchers who claim that software agents will
play an important role in design, implementation and long-
term upkeep of large-scale software systems (see e.g. [16]).
Second, more specifically in the context of this paper, our

work explicitly assumes that there is an important role to
be played by software agents in the future development of
the Grid. While arguments to this effect can be found in
[11, 18], in our view this assumption is further supported
by the existing body of research devoted to combining soft-
ware and the Grid and increasing number of conference pa-
pers which follow this path. Specifically, contributions of
(1) J. Cao and colleagues, who combined PACE methodol-
ogy with a hierarchical agent-based structure used for re-
source discovery [6], (2) B. Di Martino, O. Rana and col-
laborators, who have developed MAGDA (Mobile AGent
Distributed Application) toolkit designed to support (1) re-
source discovery, (2) performance monitoring and load bal-
ancing, and (3) task execution within the grid [17], (3) S.S.
Manvi and colleagues who suggested utilization of mobile
agents which traverse the network to complete a user de-
fined task [14] and (4) D. Ouelhadj and collaborators who
studied negotiation (and re-negotiation) of a Service Level
Agreement between agents representing resources and re-
source users [15] are worth mentioning as the most impor-
tant thus far (for more details, see [8]). This being the case,
we do not want to get involved in a discussion about im-
portance or lack thereof of software agents (while admitting
that there exist critics of this approach who claim, among
others, that software agents are nothing more that active ob-
jects that are known since 1980th). In our work we assume
that software agents do have a role to play in future of com-
puting and investigate ways of utilizing them in context of
Grid computing.

While in [8] we have summarized pros and cons of solu-
tions proposed in the above mentioned key research results,
here let us make explicit fundamental assumptions that un-
derline our work (and are in a way a positive response to
observed shortcomings of work done in the past).

1. The Grid is viewed as a global infrastructure; rather
than a local / company / laboratory-based Grid and in
this way we return to the most fundamental view of
the Grid presented by Foster and Kesselman ([12]).

In the context of our work, the main difference is that
in a “local” Grid nodes can be assumed to be under
control of a “local administrator.” However, in the
case of a global Grid (consisting of, among others,
home computers), the situation is similar to the P2P
environment, where no centralized control over indi-
vidual Grid nodes is exerted.

2. As a result, we have to take into account the fact
that the global Grid understood this way is a highly
dynamic environment, where node loads can change
rapidly and, furthermore, nodes can disappear with-
out much of a warning (e.g. envision a dog that
runs in the room and disconnects the computer from
the power outlet or the network, while its owner is
at work and will notice this fact only about 8 hours
later).

3. In the Grid, workers (in our case agent workers) that
want to contribute their resources (and be paid for
their usage), meet and interact with users (in our case
agent users) that want to utilize (and are ready to pay
for) offered services to complete their tasks.

4. From 2 and 3 follows that assuring Service Level
Agreement (SLA) and fulfilling Quality of Service
(QoS) conditions may be rather difficult (e.g. nobody
can assure that a home PC that is executing users’
job will be rebooted and job restarted when the ma-
chine goes down accidentally). While in the case
of a project like SETI@HOME, this does not make
much difference in which order results are collected
and when a given specific result will be obtained, this
is clearly no the case when money and deadlines are
involved.

5. Agent mobility has to be treated with caution as it can
solve problems of network congestion (rather than
generating them) only when decisions: what to move,
when and where are part of system design and the to-
tal agent mobility minimized. If an agent carrying a
code and data has to make multiple jumps before it
finds the place where the job will be executed, then
the price may be very high (depending directly on the
number of hops and size of the load) making this ap-
proach much worse that its static counterpart.

As a result of these assumptions in [10] we have pro-
posed a system based on the following tenets:

• agents work in teams (groups of agents)

• each teams has a single leader—LMaster agent

• each LMaster agent has a mirror LMirror agent that
can take over its job in case when it “goes down”

• incoming workers (worker agents) join agent teams
based on individual set of criteria (which can change
over time)

• teams (represented by their LMasters) accept workers
based on individual set of criteria (which can change
over time)

• decisions about joining and accepting involves multi-
criterial analysis

• each worker agent can (if needed) play role of an
LMaster or an LMirror

• matchmaking is provided through yellow pages [19]
and facilitated by the CIC agent [4]

Combining these propositions resulted in the system rep-
resented in Figure 1 as a Use Case diagram.

Let us now focus our attention on interactions between
the User and its representative: the LAgent and agent teams
existing in the system (additional discussion can be found
in [10, 8]). Let us assume that the system is already “run-
ning for some time”, so that at least some agent teams have
been formed and collected data about their interactions with
Users of the system. Similarly, Users of the system had a
chance to collect data about using various teams to execute
their jobs and about being a member of various teams. Fur-
thermore, team “advertisements” describing: (1) what re-
sources they offer for prospective users, and (2) characteris-
tics of workers they would like to see joining their team, are
posted with the Client Information Center (CIC) (an exten-
sive discussion about the role of the CIC and its implemen-
tation can be found in [9]. Let us note that the User depicted
in Figure 1, can either contribute resources to the Grid, or
utilize resources available there and these roles can change.
Specifically, one day the User may find in the Grid (within
one of agent teams) Maple software that it needs, but does
not have, while another day she may contribute and be paid
for the raw computational power of her multi-core PC. In-
terestingly, both situations are “Use Case symmetric” and
involve the same pattern of interactions between agents rep-
resenting the User and agent teams in the system.

User who wants to utilize resources available in the
Grid communicates with its local agent (LAgent) and for-
mulates conditions for executing a job (e.g. the computa-
tional resources needed and the price she is willing to pay).
The LAgent communicates with the CIC to obtain a list of
agent teams that satisfy its predefined criteria (e.g. have the
right hardware and software configurations). After obtain-
ing such a lit, the LAgent eliminates from it teams that are
not deemed trustworthy (e.g. teams that broke the SLA in
the past; see [5] for more details about trust management
in a similar system). If no team is trustworthy enough,
the LAgent communicates this to its User and awaits fur-
ther instructions. If there were teams deemed trustworthy,
the LAgent communicates with their representatives (LMas-
ters). This communication takes form of the FIPA Contract
Net Protocol [1]. First, the LAget communicates what job it
needs executing and under what conditions; second, it ob-
tains job execution proposals; and third, it evaluates them
using multicriterial analysis. If the LAgent finds a team that
it would like to execute its job, a contract is formed. If no
such team is found (e.g. if nobody is willing to execute a

Mirror
LMaster
Recreation

LMaster
Recreation

DB Agent

Negotiation

Collaboration

Request
information/
propositions

Proposition
creation/ update

CIC

Gathering
knowledge

Job Joining <<extend>>

<<extend>>

Mirror LMaster

<<extend>><<extend>>

LMasterUser

LMaster MCDM

Definition
conditions

Communication

LAgent

Gathering
Knowledge

LDB Agent

LAgent
MCDM

Figure 1: Use Case diagram of the proposed system

10 hour job for 5 cents), the LAgent informs its User and
awaits further instructions. For a complete description of
this process, see [8].

The remaining part of this paper will be devoted to the
situation when User requests that its LAgent joins a team
and work within it (e.g. to earn extra income for the User).

3 Selecting team to join

The overall schema of interactions involved in an LAgent
selecting a team to join is very similar to that described
above for an agent selecting a team to execute its job. First,
the User specifies the conditions of joining, e.g. minimum
payment for job execution, times of availability etc. Then
she provides its LAgent with the description of resources
offered as a service, e.g. processor power, memory, disk
space etc. The LAgent queries the CIC which agent teams
seek workers with specified characteristics. Upon receiving
the list of such teams, it prunes teams deemed untrustwor-
thy (e.g. teams that did not deliver on promised payment,
or that never send a job to be executed by a given LAgent)
and contacts LMasters of the remaining teams (if no team is
left on the list, the LAgent informs its User and awaits fur-
ther instructions). Again, negotiations between the LAgent
and the LMasters take form of the FIPA Contract Net Proto-
col. The summary of this process is depicted as a sequence
diagram in Figure 2.

For clarity, this sequence diagram is simplified and does
not include possible negative responses and/or errors that

can take place during message exchanges. Observe also that
registering with the CIC takes place only once — when a
new LAgent joins the system. All subsequent interactions
between the CIC and a given LAgent involve only checking
credentials (making sure that a given agent is registered with
the system). The sequence diagram includes also processes
involved in “mirroring.” As stated in Section 2, in our sys-
tem we assume that the LMaster has its mirror, the LMirror
agent. The role of this agent is to become the LMaster in
the case when the current LMaster “disappears.” To under-
stand this design, let note that it is only the LMaster that
has complete information about team members, jobs that
are executed (and by which team member), etc. Therefore,
sudden disappearance of the LMaster, for all practical pur-
poses, would “destroy the team” as all this vital information
would be lost. Furthermore, worker agents would have no
way to communicate results of their work (as they would not
know who is the job owner), etc. To avoid such a situation
the LMaster shares all necessary information with the LMir-
ror, who will take over immediately if it recognizes that the
LMaster is “gone,” and as its first order of business will
promote one of worker agents to become the new LMaster.
Note that in the case when the LMirror agent “goes down,”
the LMaster will immediatly promote one of agent workers
to become the new LMirror. Obviously, it is possible that
both the LMaster and the LMirror “fail” simultaneously and
the team will be dissolved. However, our goal is not to build
a fault tolerant environment, but only to introduce some de-
gree of resilience (for a reasonable price). However, since

Figure 2: Sequence diagram of interactions when an agent is seeking a team to join.

this interesting in its own right subject is out of scope of this
paper it is omitted from further considerations.

3.1 Representing conditions of joining

Let us now discuss representation of resources that the LA-
gent brings to the team and its conditions of joining. Based
on current prevailing trends, we have decided to extensively
utilize ontologies (semantical data demarcation) in our sys-
tem. Since we want to use our agents in the Grid, an ideal
situation would be if an all-agreed “ontology of the Grid”
(that would include both specification of resources and of
the economical model) would exist. We would then sim-
ply utilize it directly in our agent system. Unfortunately,
while there exist separate and incompatible attempts at de-
signing such an ontology (some of them focused on a partic-
ular Grid middleware, while others on a domain of Grid ap-
plication), currently they can only be considered as “work in
progress” toward the common ontology of the Grid. There-
fore, instead of selecting one of them and paying the price
of dealing with a large and not necessarily fitting our needs
ontology (which would in turn mean that we would have to
make changes in an ontology that we have not conceived
and have no control over), we focus our work on the agent-

related aspects of the system (designing and implementing
agent system skeleton) while utilizing simplistic ontologies;
and readers should keep this fact in mind. Obviously, when
a common Grid ontology will be agreed on, our system will
be ready for it and adaptation will be rather simple. Cur-
rently, our ontology of Grid resources is focused on their
“computational” aspects, e.g. processor, memory and avail-
able disk space. What follows is a snippet of our OWL Lite
based ontology:

: Computer
: a owl : C l a s s .

: hasCPU
: a owl : O b j e c t P r o p e r t y ;
r d f s : r a n g e :CPU ;
r d f s : domain : Computer .

:CPU
: a owl : C l a s s .

: hasCPUFrequency
: a owl : D a t a P r o p e r t y ;
r d f s : comment ” i n GHz” ;
r d f s : r a n g e xsd : f l o a t ;

r d f s : domain :CPU .

: hasCPUType
: a owl : O b j e c t P r o p e r t y ;
r d f s : r a n g e : CPUType ;
r d f s : domain :CPU .

: CPUType
: a owl : C l a s s .

I n t e l : a : CPUType .
AMDAthlon : a : CPUType .

: hasMemory
: a owl : D a t a t y p e P r o p e r t y ;
r d f s : comment ” i n MB” ;
r d f s : r a n g e xsd : f l o a t ;
r d f s : domain : Computer .

: hasUse rDiskQuota
: a owl : D a t a t y p e P r o p e r t y ;
r d f s : comment ” i n MB” ;
r d f s : r a n g e xsd : f l o a t ;
r d f s : domain : Computer .

: LMaster
: a owl : C l a s s ;

: hasContactAID
: a owl : O b j e c t P r o p e r t y ;
r d f s : r a n g e xsd : s t r i n g ;
r d f s : domain : LMaster .

: hasUse rDiskQuota
: a owl : D a t a t y p e P r o p e r t y ;
r d f s : comment ” i n MB” ;
r d f s : r a n g e xsd : f l o a t ;
r d f s : domain : Computer .

Let us now assume that worker PC1425 which has a 3.2
GHz Intel processor, 1025 Mbytes of memory and 2000
Mbytes of disk space available as a “Grid service.” In our
ontology it would be represented as:

: PC1425
: a : Computer ;
: hasCPU
[

a :CPU;
: hasCPUType : I n t e l ;
: hasCPUFrequency ” 3 . 2 ” ;

] ;
: hasUserDi skQuota ” 2000 ” ;
: hasMemory ” 1024 ” .

Observe that resource describing information is used in
two situations. First, each team looking for members adver-
tises specific resources it is looking for. Such an advertise-
ment is an instance of an ontology. However, in the case
of seeking team members we have to assume that parame-
ters with numerical values (e.g. processor speed or available
disk space) have to be treated as minimal requirements. In
other words, asking for team members with processor speed

of 2.5 GHz does not exclude computers with processors run-
ning at 2.7 GHz. At the same time, alphanumeric parame-
ters that describe, for instance, necessary software have to
be treated as hard constraints that have to be satisfied (if
a team is seeking members that own MATLAB, then only
such computers are of interest). Note also that descriptions
of sought workers include only resource describing param-
eters, but they do not include specific offers related to, for
instance, payments for working for the team, as these are
subject to negotiations.

Second, when the LAgent requests list of teams that look
for members, information about its own resources is used as
a filter in the query. In our work, we use Jena [2] to store
ontologically demarcated information, and SPARQL query
language [3]. Therefore, when the LAgent representing the
above described computer communicated with the CIC, the
following SPARQL query would be executed.

PREFIX Grid : <h t t p : / / G r i d a g e n t s . s o u r c e f o r g e . n e t / Gr id#>
SELECT ? team
WHERE {

? team Grid : needs ? machine .
? machine Gr id : hasCPU ? cpu ;

Gr id : hasMemory ?mem ;
Gr id : ha s Quo ta ? q u o t a .

FILTER (? cpu <= ” 3 . 2 ” ˆ xsd : f l o a t) .
FILTER (?mem <= ” 1024 ” ˆ xsd : i n t e g e r) .
FILTER (? q u o t a <= ” 20000 ” ˆ xsd : i n t e g e r) .

}

Obviously, our decision of utilizing ontologies in the sys-
tem extends beyond computational resources and includes
also description of various “conditions” that are imposed on
various “actions.” This is the most natural way of provid-
ing semantic support for agent-agent negotiations. In [8] we
have presented the way that we represent conditions of se-
lecting team to execute a job. In the case of conditions of
joining a team we are currently utilizing only three param-
eters: (1) price per work-hour (requested by the Lagent or
offered by the LMaster), (2) work time—specific times of
the day when the resource is to be available (may include
non-stop availability), and (3) length of contract—time in-
terval that a given LAgent is offering to be a member of a
given team. In the latter case we assume that it is realistic
that a given LAgent joins a given team for a specific limited
time. Obviously, while a contract holds for such a limited
time, if both sides are satisfied, it can be extended for sub-
sequent (and possibly longer) time periods. While such a
contract extension could be conceptualized in a special form
of negotiations (that would involve only a given LAgent and
a given LMaster), this does not have to be so. Note that
we assume that our system will employ trust management
procedures. This being the case, very high level of trust be-
tween the LAgent and a given team will naturally influence
their choice of continuing working together. Finally, note
that again, we are using a very simplistic set of conditions.
However, extending this set to a more robust one is purely a
technical issue that does not affect the proposed approach.

Let us now present an instance of a Call for Proposals
(the first step of the FIPA Contract Net) that is send by the
LAgent and that consists of two parts (depicted in Figure
3.1). First, the description of the same computer as above;
this time being offered to become a member of a team: (1)

(c f p
: s e n d e r (agen t− i d e n t i f i e r : name pro teus@bach : 1 0 9 9 / JADE)
: r e c e i v e r (ag en t− i d e n t i f i e r : name zerg@chopin : 1 0 9 9 / JADE)
: c o n t e n t

((a c t i o n
(ag e n t− i d e n t i f i e r : name zerg@chopin : 1 0 9 9 / JADE)
(t ak e−me

: c o n f i g u r a t i o n (h a rd ware
: cpu 3 . 2
: memory 1024
: q u o t a 2000)

: c o n d i t i o n s (c o n d i t i o n
: a v a i l a b i l i t y (f r e q u e n c y

: u n i t (day)
: day−t ime (p e r i o d

: from 00000000 T23500000
: t o 00000000 T08150000))

: c o n t r a c t −d u r a t i o n +00000007T000000000))
: l a n g u a g e f i p a−s l 0
: o n t o l o g y j o i n i n g−o n t o l o g y
: p r o t o c o l f i p a−c o n t r a c t −n e t

)

Figure 3: Call for proposals utilizing FIPAS SL and ontology of resources and conditions of joining.

with an Intel processor running at 3.2 GHz, (2) that offers
to users 1024 Mbytes of RAM and (3) 2 Gbytes of disk
space. Second, the specific conditions that are imposed by
its User: (4) it is to be available every night between 23:50
and 8:15, and (5) the suggested length of contract is to be 7
days. Note that payment conditions are not specified; they
are private to the LAgent. Since we use the FIPA Contract
Net Protocol, we assume that the proposed payment is a
part of the response of the LMaster. The message is utiliz-
ing the FIPA Semantic Language to specify that it is a FIPA
Contract Net proposal message. This message utilizes on-
tologically demarcated information about the computer and
about conditions of joining. In this way we are combining
two ontological demarcations. One on the level of agent
messaging and one representing the semantics of the Grid.

Separately, let us note that each time a given LAgent is-
sues a CFP it may specify different resource as: (1) the same
LAgent may represent User’s different machines, or (2) for
a single machine at one time available disk space may be 5
Gbytes, while at another time 25 Gbytes (e.g. depending on
the number and size of JPEG files just uploaded from the
camera).

3.2 Negotiations

Let us now focus our attention on negotiations. The first
step is the LAgent sending a CFP (arrow 5 in Figure 2) con-
taining resource description and conditions of joining (see
Figure 3.1) to all LMaster agents remaining on the list of
contact points of trusted teams. Upon receiving the CFP
each LMaster contacts the CIC to make sure that this par-
ticular LAgent is registered with the system (arrows 6 and 7
in Figure 2). This step has been added to somewhat improve

the overall security of the system. We have simply assumed
that only LAgents that are registered with the CIC can join
agent teams (or have their jobs executed by teams existing in
the system). In other words, in addition to providing match-
making services, the CIC keeps track of all agents regis-
tered with the system and only such agents are allowed to
participate in it. Let us note that the apparent single point
of failure of the system (the CIC agent) is in reality only a
technical problem. To understand this point observe that, for
instance, all gmail users log in into gmail through a single
address: http://www.gmail.com/ and it does not matter how
the gmail service is actually implemented. This solution is
our metaphor behind the CIC and services it provides.

On the basis of the CFP, LMasters prepare their re-
sponse. First, CFPs that do not satisfy hardware / software
requirement are refused (e.g. worker that does not have
Maple, cannot join a team that requires Maple). Let us note
that this step is necessary not only because some LAgents
may send incorrect offers in their CFP. What we are more
concerned with is the following scenario (resulting from a
completely asynchronous nature of the system). Let us as-
sume that a given team X25 decided to change its condi-
tions of joining. While it send message to this effect to the
CIC an LAgent executed a query that returned team X25
within the list of candidates, still based on its old joining
conditions. It then submitted a CFP to team X25, which did
not match its current conditions of joining. Obviously, such
offers have to be rejected immediately. Second, for each
acceptable CFP, each LMaster prepares an offer to be send
back. While there are multiple ways of doing so, we pro-
pose the following relatively simple one. The LMaster uti-
lizes its knowledge about past jobs to establish a base price

per hour: Bc and a base system that matches it. For exam-
ple, it can establish that a system like the one that appears in
our example will be pail 5 cents per hour of utilization. Let
us note that, due to the way that our ontology of resources
has been developed, this price is split between three compo-
nents (processor speed: Pb, memory: Mb, disk space: Db).
Obviously, in a case of a more complicated ontology of re-
sources, a similar formula that includes all of them would
be created. As a result we obtain what can be named as:
processor cost Pc, memory cost Mc and disk cost Dc; spec-
ified in such a way that the base cost Bc = Pc + Mc + Dc.
This information is then used to estimate the “value” of the
new potential worker in the following way, (let us assume
that the potential worker has processors speed P , memory
M and disk space D):

Cost = α
(P

Pb
Pc +

M

Mb
Bc +

D

Db
Dc

)
, (1)

Where α ∈ [0, 1] denotes the overhead charged by the
LMaster. For instance α = 0.9 means that the LAgent will
be offered 90% of its value calculatd on the basis of its three
components, while 10% will be collected by the LMaster.

Obviously, this model is extremely simplistic, but our
goal was not to build a complete economical model of the
Grid (for this, one would need a Grid ontology to start with).
Note, however that replacing it with a more complicated one
requires just substitution of a single module in the LMaster.

Responses from LMasters can have the following forms:
(1) rejection (an ACL-REFUSE message) — in the case
when the initial offer was incorrect, (2) lack of response
in a predefined by the LAgent time — which could repre-
sent a connectivity problem, or the fact that the LMaster
went down before the information about the incoming CFP
was forwarded to the LMirror, (3) a specific offer (an ACL-
RESPONSE message) — in our simplistic model such an
offer would contain only the price offered in the case of
joining the team.

The LAgent awaits for a specific time for responses from
LMasters and then evaluates them. Since currently the re-
sponse contains only the price, there are two possibilities.
First, neither of proposals contains an offer that is higher
than the user specified minimal price. In this case the User
is informed and the LAgent awaits further instructions (this
allows the User to “manually” accept one of the proposals
even if they did not match her original requirements). Sec-
ond, at least one of the offers is above LAgent’s reservation
price, an agent teams is selected to be joined (arrow 9 in Fig-
ure 2). Note that in the case when two offers are the same,
trust information can be naturally used to evaluate them and
the team with a higher trust score wins the contract. Let
us also note that as soon as a more complicated response
is to be used (e.g. response that would contain tiered pric-
ing and a guarantee of a certain number of contracts within
the timespan of the contract) a multicriterial analysis would
have to be applied [7].

Finally, observe that the final (re)confirmation is de-
picted as arrow number 11 in Figure 2. According to the
Contract Net Protocol, since the LAgent was the originator
of the negotiations, it has to be the receiver of the final con-

firmation that closes the protocol

4 Implementation

Currently we are in the process of implementing the above
described processes. However, to be able to implement
agents joining the team, we have to implement also ad-
ditional mechanisms involved in agent team management.
To illustrate the state of our implementation, in Figure 4,
we present the GUI of an LMaster agent. Obviously, this
GUI is presented only for illustration purposes (and used
for testing the system), as we assume that each LMaster will
run autonomously, with Agent-User interaction taking place
only in a few, above described, conditions. In the context of
agents joining teams, the most important informations, are
(1) the Workers requirements box and (2) the My Workers
box. The first one specifies that this LMaster is interested in
workers that have (at least) 1 processor with speed between
1.0 and 3.0 GHz, memory of 1-4 Gbytes and that have disk
space of (at least) 5 Gbytes available as a service. At the
same time we can see that this LMaster is currently manag-
ing a team of 5 workers.

4.1 Managing the team

Let us now discuss in some detail the remaining functions
that have been implemented and are related to team man-
agement. Here, the most important function that we started
our work from is the “liveness” of the team. In other words,
we want to give the LMaster ability to make sure that its
team members are still alive (which should mean that they
are executing their jobs—see below). Our current approach
is summarized within the Other configuration box.

To assess the state of each team member, LMaster is per-
forming testing functions in rounds (monitoring sessions).
Each monitoring session consists of a certain number of
tests (parameter Number of tests; in our case 10), while each
test consist of a certain number of pings (parameter Pings
per test; in our case 15). Therefore, in the case depicted
in Figure 4, 10 tests of 15 pings would be send to each of
5 team members. Pings are send in an interval (parameter
Ping interval; in our case 500 milliseconds). A given ping is
counted as a success if a response comes within predefined
time (parameter Max ping reply; in our case 300 millisec-
onds). Pings are send in a round-robin fashion and a ping
to the next agent is send only when processing the ping to
the given agent is completed. Failed pings are counted (as
percent of failures) against the total number of pings in a
single test. At the end of each test a score is produced for
each agent and an agent fails a test if its percent failure is
higher than the Max loss parameter (in our case loss higher
than 50% would result in failing the test). We have also
specified the number of tests that a given LAgent has to pass
(parameter Tests to pass; in our case, with 8 tests in a round)
to be considered to be a “live” worker agent. Our system
allows that the LMaster automatically removaes failing LA-
gents from the team. In other words, worker agents that
have been recognized as non-responsive in a given moni-
toring session will be removed from the team (this is the

Figure 4: GUI of the LMaster agent.

case in Figure 4 since an apprpriate box is checked). After
a completed monitoring session, all counters are zeroed and
a new such session starts.

Finally, in the Other configuration box we can also see
there that this LMaster will accept no more that 5 workers
(which means it has a complete set of workers and should
de-list its advertisement that it is seeking workers from the
CIC). Let us also observe the Ping statistics box which pro-
vides statistical results of a current monitoring sessions.

All these functions have been implemented and tested for
variety of parameter values. However, what is missing is a
more involved logic that would answer at least two ques-
tions: (1) when an agent should actually be removed from a
team? (is really a single failure within a monitoring round
enough to disqualify a team member?), (2) what to do in the
case of removing an agent from a team (how to deal with the
job that a given agent was responsible for, what if this agent
comes back and delivers expected results on time, what if it
delivers results too late? etc.). Let us also note that the pro-
posed mechanism is only providing us with information that
a given agent is “alive” (as long as it is willing to respond
to our pings) but tells us nothing if it actually executes a
job. Furthermore, since LAgents can “lie” about what they
are doing, dealing with this issue will involve, among oth-

ers, trust considerations and has to be considered within a
big picture of trust considerations involved in utilization of
agent teams in the Grid. We plan to address this issue (truss
management) in a comprehensive way in the near future.

5 Concluding remarks

The aim of this paper was to introduce basics of agent team
formation and management, within the framework of the
earlier proposed agent-team-based Grid resource brokering
and management system. We have presented a complete
description of processes involved in agent joining the team,
which while relatively simplistic at this stage, can be easily
augmented to a more robust version. Currently we are pro-
ceeding with implementation of the above described pro-
cesses. This involves also development of agent team man-
agement tools that have been presented in Section 4. Obvi-
ously, there exists a number of research issues that have to
be addressed and at least some of them have been outlined
above. Our first goal will be to conceptualize trust manage-
ment in the proposed system and we plan to report on this
issue in the near future.

Acknowledgments

Work presented here is a part of the Poland-Bulgaria col-
laborative grant: “Parallel and distributed computing prac-
tices”.

Bibliography

[1] Fipa contract net protocol specification.
http://doi.www.fipa.org/specs/
fipa00029/SC00029H.html.

[2] Jena—a semantic framework for java. http://
jena.sourceforge.net.

[3] Sparql query language for rdf. http://www.w3.
org/TR/rdf-sparql-query.

[4] C. Bádicá, A. Báditá, M. Ganzha, and M. Paprzycki.
Developing a model agent-based e-commerce system.
In J. L. et. al., editor, E-Service Intelligence - Method-
ologies, Technologies and Applications. Springer. in
press.

[5] C. Bádicá, M. Ganzha, M. Gawinecki, P. Kobzdej, and
M. Paprzycki. Towards trust management in an agent-
based e-commerce system - initial considerations. In
A. Zgrzywa, editor, Proceedings of the MISSI 2006
Conference, pages 225–236. Wroclaw University of
Technlogy Press, Wroclaw, Poland.

[6] J. Cao, D. J. Kerbyson, and G. R. Nudd. Use of agent-
based service discovery for resource management in
metacomputing environment. In Euro-Par ’01: Pro-
ceedings of the 7th International Euro-Par Conference
Manchester on Parallel Processing, pages 882–886,
London, UK, 2001. Springer-Verlag.

[7] J. Dodgson, M. Spackman, A. Pearman, and
L. Phillips. DTLR multi-criteria analysis manual. UK:
National Economic Research Associates, 2001.

[8] M. Dominiak, M. Ganzha, and M. Paprzycki. Select-
ing grid-agent-team to execute user-job—initial solu-
tion. In Proceedings of the Conference on Complex,
Intelligent and Software Intensive Systems, pages 249–
256, Los Alamitos, CA, 2007. IEEE CS Press.

[9] M. Dominiak, W. Kuranowski, M. Gawinecki,
M. Ganzha, and M. Paprzycki. In Proceedings of
the International Multiconference on Computer Sci-
ence and Information Technology, pages 327–335. PTI
Press.

[10] M. Dominiak, W. Kuranowski, M. Gawinecki,
M. Ganzha, and M. Paprzycki. Utilizing agent teams
in grid resource management—preliminary considera-
tions. In Proceedings of the IEEE J. V. Atanasoff Con-
ference, pages 46–51, Los Alamitos, CA, 2006. IEEE
CS Press.

[11] I. Foster, N. R. Jennings, and C. Kesselman. Brain
meets brawn: Why grid and agents need each other. In
AAMAS ’04: Proceedings of the Third International
Joint Conference on Autonomous Agents and Multia-
gent Systems, pages 8–15, Los Alamitos, CA, 2004.
IEEE CS Press.

[12] I. Foster and C. Kesselman. The grid 2: Blueprint for
a new computing infrastructure. 2003.

[13] W. Kuranowski, M. Paprzycki, M. Ganzha, M. Gawi-
necki, I. Lirkov, and S. Margenov. Agents as resource
brokers in grids—forming agent teams. In Proceed-
ings of the 6th conference Large-Scale Scientific Com-
putations, London, UK, 2007. Springer-Verlag.

[14] S. Manvi, Birje, and B. Prasad. An agent-based re-
source allocation model for computational grids. Mul-
tiagent and Grid Systems, 1(1):17–27, 2005.

[15] D. Ouelhadj, J. Garibaldi, J. MacLaren, R. Sakellar-
iou, K. Krishnakumar, and A. Meisels. A multi-agent
infrastructure and a service level agreement negotia-
tion protocol for robust scheduling in grid comput-
ing. In Advances in Grid Computing - EGC 2005,
volume 3470 of Lecture Notes in Computer Science,
pages 651–660, Germany, 2005. Springer Verlag.

[16] J. N. R. An agent-based approach for building com-
plex software systems. 44.

[17] O. F. Rana and B. D. Martino. Grid performance and
resource management using mobile agents. Perfor-
mance analysis and grid computing, pages 251–263,
2004.

[18] H. Tianfield and R. Unland. Towards self-organization
in multi-agent systems and grid computing. Multia-
gent and Grid Systems, 1(2):89–95, 2005.

[19] D. Trastour, C. Bartolini, and C. Preist. Semantic web
support for the business-to-business e-commerce life-
cycle. In WWW ’02: Proceedings of the 11th inter-
national conference on World Wide Web, pages 89–
98, New York, NY, USA, 2002. ACM Press. http:
//acm.org/10.1145/511446.511458.

