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Abstract. We are developing an agent-based intelligent middleware for
the Grid. It is based on agent teams as resource brokers and managers.
Our earlier work resulted in a prototype implementation. However, our
recent research led to a complete redesign of the system. Here, we discuss
the new and main technical issues found during its implementation.

1 Introduction

The Agents in Grid (AiG) project aims at utilizing teams of software agents as
resource brokers in the Grid. The initial overview of the approach can be found
in [1I], while the two main scenarios: (1) agents seeking teams to execute job(s),
and (2) agents attempting to join the team, were discussed in [4,5]. Since one
of the main assumptions was that the system will use ontologies and semantic
data processing, we have developed an ontology of the Grid (presented in [3]).
While the initial work led to a demonstrator system, our recent studies led to a
conclusion that redesign of the system is required, to assure more flexibility and
use technologies that are rapidly maturing. The aim of this note is to present the
new design, and outline main technical issues found during its implementation.
To this effect, we start with an overview of the proposed system. In what fol-
lows, we discuss issues involved in the implementation of the redesigned system,
moving from the front-end to the negotiation module.

2 System Overview

In our work, Grid is considered as an open environment in which agents rep-
resenting users interact to either (a) join teams, or (b) find teams to execute
job(s). In [1] we have outlined the system based on the following tenets (for more
details, see the Use Case diagram and the discussion presented in [§]):

— agents work in teams (groups of agents)
— each team has a single leader—LMaster agent
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— each LMaster has a mirror LMirror agent that can take over its job

— incoming workers (worker agents) join teams based on user-criteria

— teams (represented by LMasters) accept workers based on team-criteria

— each worker agent can (if needed) play role of the LMirror or the LMaster
— matchmaking is facilitated by the CIC component.

Let us now briefly focus our attention on interactions between components of
the system, i.e. the User and its representative the LAgent, and agent teams
represented by LMaster agents (more information can be found in [I]). Let us
assume that team “advertisements” describing: (1) what resources they offer,
and (2) characteristics of workers they would like to “hire,” are posted with the
Client Information Center (CIC). Here, we concentrate our attention on two
main scenarios in the system: User is looking for a team (1) to commission job
execution, or (2) to join (to be paid for use of her resources). In both cases, the
User interacts with her LAgent, and formulates conditions for (1) job execution,
or (2) team joining. The LAgent communicates with the CIC to obtain a list of
teams that satisfy these criteria. Next, the LAgent communicates with LMasters
of selected teams, and utilizes the FIPA Iterated Contract-Net Protocol [8,12]
to negotiate the contract. If the LAgent finds an appropriate team, a Service
Level Agreement (SLA) is formed. If no such team is found, the LAgent informs
the User and awaits further instructions. Let us now present the new design of
the system, outlining of the initial implementation, and proposed solutions to
specific technical problems.

3 Ontologies in the System

As stated above, we assume that all data in the system will be ontologically
demarcated. Therefore, we needed a robust ontology, covering concepts ranging
from descriptions of hardware and software, through grid structure, to the SLA
and contract definitions. After a comprehensive investigation of existing grid
ontologies (see, [2]) we decided to use the Core Grid Ontology (CGO, [10,1T]).
While the CGO provided us with excellent base-terms concerning grid resources
and structure, we had to extend it to include the remaining concepts. The com-
plete description of the ontology can be found in [2,[3]. The extended CGO
(the AiG Ontology) is structured into three layers (its core classes depicted in

Figure [I)):

1. Grid Ontology—directly extending the CGO concepts.

2. Conditions Ontology—includes classes required by the SLA negotiations (e.g.
pricing, payment mechanisms, worker availability conditions, etc.); it imports
the Grid Ontology, to use terms related to the Grid structure and resources.

3. Messaging Ontology—contains definitions of messages exchanged by the
agents, forming the communication protocols of the system (uses the Grid
Ontology and the Conditions Ontology to specify content of messages).
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Fig. 1. Ontology diagram for AiG ontologies

The crucial aspect of ontological modeling was the representation of con-
straints. For example, when a user is looking for a team to have a job executed,
she needs to specify the necessary hardware configuration. In this case, the com-
mon way of assigning values to class properties is not enough, as we also need
to specify minimum, maximum, and range conditions. After considering several
approaches, we have settled on class expressions. Here, requirements are defined
as a new class that restricts the set of individuals to these satisfying conditions
on class properties. We can thus ask a reasoner to infer a list of individuals of
the generated class and receive the ones fulfilling the constraints.

4 Negotiations in the System

Obviously, automated negotiations, and SLA management, are the key part of
system. The SLA, is a result of negotiations, and defines agreement reached by
the parties. Here, by negotiation we understand flow of messages between par-
ties: LAgents and LMasters. As stated in [8], the negotiation process is based
on the FIPA Iterated Contract-Net Protocol, and involves both negotiable and
static parameters specified by the User through the front-end (described in the
next Section). These parameters are passed to the LAgent, which forwards them
to the CIC), which responds with list LMasters representing potential partners.
Next, the LAgent construct a Call-For-Proposal message with an OWL instance
of required resource description—for the job execution scenario; or of resource
that User wants to sell—for the team joining scenario. The CFP contains also
restrictions on contract conditions (for both cases). This message is sent to the
selected LMasters, and those interested in the proposal reply with OWL in-
stances representing their offers. Both parties shall use multicriterial analysis to
evaluate received proposals and make offers that take into consideration their
own ability to fulfill required conditions, as well as preferences.
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5 Front-End Design and Implementation

In the current implementation, the front-end subsystem is mostly a means to
provide ontological data for the negotiations. It consists of three parts, allowing
specification of requirements concerning:

1. Scheduling job execution—Tlets User specify constraints on conditions of the
contract regarding job execution. These include hardware and software re-
quirements that a team has to satisfy in order to be taken into consideration.

2. Joining a team—specify information needed for negotiating joining a team,
i.e. description of available resources, and restrictions on the contract.

3. Worker acceptance criteria—also concerns worker joining a team. Here, the
owner of the LMaster can specify conditions that must be met by any worker
willing to join the team. These may include hardware and software configu-
ration, as well as terms of contract.

In the initial system prototype, the front-end was a desktop application with
the LAgent running in the background (on the same machine). Advantages of
that approach included simple architecture, and ease of interactions between the
client application and the agent. However, this also meant that: 1) the LAgent
could only work while the front-end application was running, and 2) at least
part of the User’s data was stored on the local machine. Therefore, interacting
with the LAgent from different machines would be difficult. Since the possibility
of accessing an application from any computer becomes a necessity, we decided
to develop a web application that can be hosted in a shared environment.

The core of the front-end is a condition builder—a set of condition boxes,
each representing a description or constraint on a single class-property relation-
ship (see, Figure ). Depending on the selected class, the User may choose one
of properties that the class is in domain of. Next, she can specify an opera-
tor, from within the applicable ones, to the selected property. For example, for
datatype properties these may include: equal to, or greater than, whereas for
object properties these would be is equal to individual and is constrained by.
When an operator is selected, the system generates a fragment of user interface
used to specify value of the property. Again, controls depend on the selected
operator—be it a simple text box, or a drop down list of applicable individuals.

Interesting is the case of nested constraints. For object properties, when the
User selects the operator is constrained by, for a class to be further specified, a
new condition box is created within the existing one. It is used to describe the
details, or requirements, regarding the value of the selected property. Front-end
supports also setting constraints on multiple properties of the same class, using
and buttons, which add a new condition box at the same level as the previous.

When the User finishes specifying conditions and pushes the submit button,
the system parses the internal representation of conditions, and transforms it
into an OWL Class Expression (see, Figure[Z). This OWL fragment is passed to
a JADE GatewayAgent, responsible for passing information between the appli-
cation server, and the JADE agent container. The GatewayAgent forwards the
data to the LAgent, to handle it within the system.
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Fig. 2. A condition builder section

In the front-end, all elements from which the User builds the ontological
conditions and descriptions are generated dynamically, from the structure of
the ontology. Therefore, all changes to the ontology can be applied automati-
cally during system runtime. This is extremely important, especially in the case
of ontology matching and enriching, based on information received from other
agents. It also simplifies maintenance of changes in the ontology.

Furthermore, user interface elements are build dynamically, as responses to user
actions. For example, if the User wishes to specify a particular CPU architec-
ture, individuals of the CPUArchitecture class will only be fetched from the ontol-
ogy when the User selects an equal to individual condition on the hasArchitecture
property. This allows us to process only the needed parts of the ontology. More-
over, it allows to base displayed options on User’s previous choices. Such function-
ality could be a mechanism for providing automated assistance, by suggesting the
most useful or common options, or by filtering out inconsistent options.

6 Passing Ontological Information

Communication in the system relies on extracting information from, and manip-
ulating instances of, ontologies. Unfortunately, the default codecs for ontological
data, found in the JADE framework, are very limiting in terms of what kind of
ontological data can be transferred as a part of the message.
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In our case we found it essential to be able to transfer arbitrary fragments
of OWL ontologies, including TBox definitions of classes, used for representing
constraints and requirements. This problem has been discussed in [7], and re-
sulted in creation of the JADEOWL Codec [6]. Unfortunately, this plug-in was
extremely tightly integrated with the commercial RacerPro [17] reasoner, and its
development seems to have stopped before the release of the OWL 2.0 specifica-
tion. Therefore, we have developed our own JADE plug-in, aiming at providing
OWL support to the agent message processing.

Direct mapping of OWL 2.0 [I5] into any static object-oriented programming
language is not possible; i.e. there is no way to represent OWL as Java classes
while preserving its dynamic structure and properties (partial solution to this
problem can be found in [9]). Therefore, as opposed to the JADEOWL Codec,
we have decided that any information instance, such as information about teams
or negotiation deals, will be stored and accessed as OWL formatted text files.
Thus, the plug-in had to provide interface to files viewed both as raw text, and
as OWL ontology; i.e. after passing a raw file, we had to be able to probe the
structure of ontology, extract classes and instances, as well as their properties.
In this way the plug-in can serve as a high level interface to the structure and
content of ontological messages, passed between JADE agents.

In any communication scenario, data is prepared in the form of OWL class or
instance. For example, advertising a team by the LMaster involves sending an
instance of an OWL class (describing the team) to the CIC, which recognizes
it as a team advertisement and stores it in an OWL file. When asked by the
LAgent, it filters all stored instances, to satisfy specified constraints.

Although messages contain raw OWL data, their interpretation is done inter-
nally by the plug-in. In this way agents can access the information without the
need to parse the text. This interpretation requires reasoning about the data, so
an instance of a semantic reasoner is bundled with the communication plug-in.
Currently, the HermiT [I3] reasoner is used. However, OWL API supports also
other popular reasoners (e.g. Pellet [16], Fact++ [14]).

To extract data (e.g. an OWL instance) from an ontology, a custom OWL
class is created. The exact structure of the class depends on the data that needs
to be extracted. For example, if the CIC is asked for agent teams with an IBM
Linux machine, it sends information received from the LAgent to the plug-in.
The plug-in creates an OWL class that extends the definition of OWL class de-
scribing team advertisements, but also contains an OWL property restrictions
that forces any instance of this class to be a team with an IBM Linux computer.
Other types of restrictions (like the cardinality restriction) supported by OWL
2.0 [I5] are also available.

Here, the reasoner performs consistency and satisfiability tests on the new
class in the context of the ontology. If the tests fail, it means that the class
cannot have any instances. An exception is thrown and the reasoner output is
routed back to the creator of the instance, to inform about the problem and,
possibly, how to fix it. After passing the tests, the class prepared in this way
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is presented to the reasoner that finds all its instances. The prepared OWL
instances are sent back (as text) to the LAgent that requested the information.

Summarizing, the plug-in aids creation of OWL classes and instances by pro-
ducing and structuring the actual OWL text, while the reasoner (that is internal
to the plug-in) performs validity/consistency checks and filtering. This solution
makes full ontological communication available, while preserving constraints set
upon ontologies in OWL format.

6.1 Reasoning in Team Selection

After user specifies input data (e.g. worker’s description, team members accep-
tance conditions, etc.), it is passed to the appropriate LAgent. The LAgent,
interprets the received message and locally stores the information. To obtain list
of candidate teams, message with the OWL Class represented as the raw OWL
data describing criteria is constructed, and passed to the CIC (see, Section []).
Reasoning in the back-end part of the system is required for both negotiating
parties, i.e. the LAgent and the LMasters. In the proof of concept application,
the LAgent utilized a linear-additive model for three predefined criteria, in an
offer selection process. This model is a simple MCA model, therefore, in the
redesigned system implementation we plan to use also other MCA methods to
evaluate offers received by the LAgent. We are also going to consider additional
criteria available in the ontology. On the other hand, LMasters use MCA to
determine e.g. cost of job execution. Each resource needed for job execution e.g.
memory, bandwidth has a pricing property in the ontology that specifies pricing
type and price. To evaluate total price of job execution, the LMaster combines
prices for each required component.

Reasoning is also used by the LMasters to verify if they are able to execute
a given job i.e. if there is an available member in the team that has resources
required to execute a job. So far, team members resource descriptions have been
stored in CIC component, however, they will be stored also locally so that the
LMaster can use reasoner on it’s local ontological database.

7 Concluding Remarks

The aim of this paper was to discuss an outline of the implementations and solu-
tions applied to selected technical problems within the scope of the AiG project.
Currently, we are proceeding with testing of the above described components of
the system, i.e. the front-end web application, the back-end agent-based applica-
tion, and a communication bridge between these components—the OWL plug-in
for ontology-based interactions.
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