
Reengineering and Extending
the Agents in Grid Ontology

Pawe�l Szmeja1, Katarzyna Wasielewska1, Maria Ganzha1, Micha�l Drozdowicz1,
Marcin Paprzycki1, Stefka Fidanova2, and Ivan Lirkov2(B)

1 Systems Research Institute, Polish Academy of Sciences,
ul. Newelska 6, 01-447 Warsaw, Poland

{pawel.szmeja,katarzyna.wasielewska,drozdowicz}@gmail.com,
{maria.ganzha,marcin.paprzycki}@ibspan.waw.pl

2 Institute of Information and Communication Technologies,
Bulgarian Academy of Sciences, Acad. G. Bonchev, bl. 25A, 1113 Sofia, Bulgaria

{stefka,ivan}@parallel.bas.bg

Abstract. Ontology engineering, despite considerable progress, is still
relatively new and dynamically evolving discipline. As a result, the uni-
versal standards for creating and/or editing an ontology, have not been
established. This leads to problems with reusing and updating exist-
ing ontologies. It also makes writing an ontology from scratch seem like
a good idea. The aim of this paper is two-fold. First, to discuss key
issues encountered during re-engineering of an existing ontology. Second,
to show how the good practices of ontology development were applied
to model the area of computational linear algebra. Here, special atten-
tion is paid to the application of this ontology in the user support
system.

1 Introduction

The context for this paper is provided by the Agents in Grid project (AiG ;
[2,5,8]), which aims at development of an agent-based infrastructure for intel-
ligent resource management in the Grid. The AiG project combines software
agents and semantic data processing. Specifically, all knowledge in the system
is stored in/represented as an ontology, while communication protocols utilize
messages with ontological content [4]. During the development of the system,
three ontologies were designed to provide concepts necessary for: (i) resource
and Grid structure description, (ii) contract and requirements specification, and
(iii) content of messages exchanged in the system.

As the development of the system progressed, the ontological structures
started to become complex (ontology consisting of 401 entities). Furthermore,
when reasoning moved beyond simplistic examples (ontologies with a few con-
cepts), we have been confronted with recurring errors generated by the reasoners.
Therefore, the ontology reengineering became a necessity.

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 565–573, 2014.
DOI: 10.1007/978-3-662-43880-0 65, c© Springer-Verlag Berlin Heidelberg 2014



566 P. Szmeja et al.

2 AiG Ontology Reengineering

The original AiG grid ontology was created on the basis of the Core Grid Ontol-
ogy (CGO ; 217 entities). The CGO was extended (adding 88 entities) and mod-
ified to match the needs of the AiG project (see, [4,8]). During this process,
features identified as most problematic, from the point of view of the AiG
project, have been modified. Furthermore, constraints and messaging ontolo-
gies have been created (96 additional entities). However, no major “checking”
of the CGO has been performed at that stage. Let us, therefore, summarize key
issues encountered when such check was performed for the complete set of AiG
ontologies.

2.1 Documentation Standards

It is crucial that the ontology is intuitive enough and that the intended use of
its entities is clear. In OWL [10], this can be achieved through proper documen-
tation, clear naming scheme, and overall consistency. The ontology should be
uniform when representing the real world concepts and objects as OWL classes,
properties and individuals. However, as we have found, the original CGO had
problems in this area, and some of them carried over to the AiG ontology.

General ontology engineering standards state that names of OWL classes
should be capitalized, whereas OWL property names should start with a lower-
case letter, preferably in the format of “has[Property]” or “is[Property]”. This is
particularly important for a hierarchy of ontologies, because the naming schemes
carry over to all ontologies that import a given ontology. If ontologies in a hier-
archy use different naming conventions, the overall naming scheme is broken.

Here, an example is the operatingSystem property that not only conflicted the
naming scheme (it applied to properties such as hasCPU and hasFileSystem),
but also could be easily confused with the OperatingSystem class. Recall that
in OWL, IRIs should be unique in the scope of an ontology, regardless of the
type of the entity. To solve the problem, the property has been renamed to
hasOperatingSystem. The remaining (similar) problems have also been fixed.

Proper documentation should help reusability, e.g. by explaining how the
ontology is intended to be used. While the OWL annotations can be used as the
documentation, this was not the case with the CGO (only 7 classes had comment-
ing annotations). The AiG ontologies are constantly updated with annotations
that are to serve both as guidelines for the users and as reminders for the devel-
opers. In the future, we plan to use annotations in the dynamic user interface
(see [3] for more details). Here, the GUI, in addition to adjusting to the ontology
structure, would also display information (contained in annotations) to explain
to the users (a) the entities in the ontology, and (b) their intended meaning.

2.2 Ontology Hierarchy

Recall, that the AiG grid ontology extended the CGO ontology to better fit
the needs of the AiG system. When analyzing the interplay between these two



Reengineering and Extending the Agents in Grid Ontology 567

Fig. 1. Hierarchy of ontologies in AiG

ontologies it becomes clear that they are “conceptually” on the same level. Enti-
ties defined in the CGO could be transferred to the AiG grid ontology and
vice-versa. This could be done without disturbing the main ideas underlying
both ontologies and the AiG system. Furthermore, this could be done without
impacting the work of the AiG system. However, this means that the AiG grid
ontology must be used together with the CGO. This demonstrates a more gen-
eral issue that is rarely discussed. The typical ontology hierarchy does not take
into account the fact that, on each conceptual level, there may exist multiple
ontology files. In the AiG system, the ontological base consists of the CGO and
the AiG ontologies, with the messaging (AigMessagingOntology), the contract
constraints (AiGConstraintsOntology), and the domain (expert, AiGExpertOn-
tology) ontologies placed deeper in the hierarchy. Figure 1 presents the relation
of ontology files within the actual ontology hierarchy.

The reengineering that started with the CGO involved changes that had
to be immediately reflected in the AiG grid ontology, in order to preserve the
connection between them, and to prevent introducing (new) errors. An exam-
ple of how the original CGO was unsuitable for being extended was the clock-
Speed property. It’s original use, in the CGO, is summarized by two constructs:
the restriction on the CPU class, and the domain specification on itself. The
first states that every CPU needs a defined property clockSpeed. The latter
restricts the clockSpeed to the CPUs only. The AiG grid ontology introduced the
GPUs that had also to be described by the clock speed. Because of the domain
restriction it was impossible to use the clockSpeed property from the CGO. Any
GPU that used this property would be inferred to be a CPU. While technically



568 P. Szmeja et al.

correct, such inference was against our intentions. To avoid changing the CGO
file, a hasClockSpeed property was introduced in the AiG grid ontology. There,
it had the same interpretation as the clockSpeed from the CGO, only with the
GPU, as well as the CPU, in its domain.

This is an example of a “too specific” upper ontology. When narrowing the
domain, one might come to a false conclusion that the CPUs are the only objects
characterized by clock speed. Furthermore, it serves no purpose in the scope of
the ontology itself. Associating clock speed with CPUs is the suggested use,
not the only use and, therefore, it should be put in annotations. Similarly, the
extension of the domain (in the original AiG grid ontology) was incorrect. Note
that, if we added some Accelerated Processing Unit to the ontology, we would
face the same problem, and could end with three properties, each representing
clock speed, but for different entities and with differently scoped domains.

During the reengineering, we put the hasClockSpeed property in place of the
clockSpeed, with the domain specification set to Thing or CPU or GPU . In
other words, we use the CGO defined property (not defining our own) and add
suggested use in both annotation and domain definition (without narrowing it
down). In this way we fixed similar problems associated with other properties.

2.3 Cleaning Conceptual Inconsistencies

A number of entities with the same intended meaning were present (at the
same time) in both in the CGO and the AiG ontologies. For example, both
ontologies included a CPU class. They had a different IRI base and a different
definition (e.g. one had the clockSpeed property in the definition). Individuals
that should belong to a single CPU class were divided between them. As a result,
the reasoning about individuals in the CPU class never gave a complete result
(unless done in the scope of the IRI bases of both ontologies and then combined).
As a consequence, multiple reasoners (tried in the system) had problems with
creating an inferred hierarchy, or classifying the ontology. Note that, these errors
became apparent only after reasoners started to be used in a working system
on the full-blown ontology (400+ entities) rather than on mini-examples (10–20
entities) used in testing the agent infrastructure.

We have found that this problem resulted from a misconception (or a bug)
in earlier versions of the Protegé platform that assumed that classes of newly
created individuals belong to the active ontology, and asserted their existence
(if they were not present). The newer versions of Protegé do not suffer from this
problem. This shows that growth of knowledge about “ontologies in practice”
leads to development of better tools, but leaves behind ontologies with limited
usability. All such problems were fixed, which also solved the reasoning errors.

3 Lessons Learned

Here, let us note that literature considers mostly ontology creation, rather than
long-term (re)use (see, for instance [1]). Furthermore, ongoing research concerns



Reengineering and Extending the Agents in Grid Ontology 569

ontology merging, alignment, mapping, but almost nothing concerns “software
engineering like” principles for ontology re-use. This being the case let us sum-
marize the most important lessons learned from our work.

First, one should be mindful of the existing (or planned) ontology hierarchy,
and how a new/modified ontology would fit into it. Hierarchies can vary but it’s
always good to remember that upper ontologies should contain “general con-
cepts” and avoid introducing unnecessary conditions that would restrict usage
of upper entities. Consequently, the hierarchy level should be reflected in the
level of ontological specialization, when moving deeper into the imports chain.

Second, ontologies are meant to be reused. Thus, it is crucial to clearly com-
municate their intended use (e.g. by providing complete annotations and adher-
ing to the naming standards). As seen in the examples above, this can help
prevent misusing a concept or (re)defining it more times than intended.

Finally, the crucial lesson is that applying an ontology in practice is an indis-
pensable for identifying the problems that exist in its design. It also helps to
understand the importance of developed standards and best practices.

4 Adding a Domain Ontology

During the development of the AiG system, the need to add a new (created from
scratch) ontology arose. Note that the AiG system is to provide support beyond
the functionalities found in the existing Grid middlewares. Specifically, ontolog-
ical representation of domain knowledge is to be a part of the decision support
provided to the user. For instance, it should help the user to choose optimal algo-
rithm and/or resource to solve her problem. Hence, this is another attempt (using
modern tools) to achieve goals summarized in [6,7]. While work completed in
1990’s did not gain traction, we believe that with help of ontologies and semantic
data processing we may have more success. As a starting point, we have focused
on computational linear algebra. The ontology under development is extending
the existing AiG ontologies, and created taking into account the lessons learned
from the reengineering of the AiG ontologies. The main goal of the AiGExpertOn-
tology is to provide concepts necessary to capture three aspects of the domain:
(i) problems to be solved, (ii) algorithms to solve them, (iii) objects that these
algorithms operate on. Additionally, classes DomainExpert and ExpertOpinion
where introduced to represent experts knowledge (recommendations) allowing
matching of problems and algorithms. Therefore, the ExpertOpinion class has
property hasRecommendedResource, which points to a resource that is most suit-
able for solving a specific problem (according to the expert). Obviously, resources
originate from the AiG ontology. Let us now present the preliminary hierarchy
of problems in computational linear algebra (Fig. 2). Here, we distinguished five
types of problems represented with OWL classes: eigenproblem that can be fur-
ther categorized into eigenvalue or eigenvector problem, least squares problem,
solution of a system of linear equations, and calculation of a matrix norm.

The second part is the Algorithm; a superclass for classes (in Fig. 3, we
present a fragment of this hierarchy) representing algorithms that can be used



570 P. Szmeja et al.

Fig. 2. Hierarchy of problems in AiGExpertOntology

Fig. 3. Part of hierarchy of algorithms in AiGExpertOntology

to solve problems from Fig. 2, for a given input data (represented in the Matrix
class). This part of the ontology is going to be most complex and is being devel-
oped based on domain expert knowledge.

Finally, we develop Matrix and MatrixProperty classes (Fig. 4) and the
property hasMatrixProperty that defines their relationship. The MatrixProperty
class is a superclass for a hierarchy of properties that describe the matrix (e.g.



Reengineering and Extending the Agents in Grid Ontology 571

symmetricity, density, structure, etc.). Obviously, in Fig. 4 we present only frag-
ments of the ontology that is being extended on the basis of expert opinions.

Fig. 4. Part of hierarchy of matrix properties in AiGExpertOntology

To illustrate how we plan to use the AiGExpertOntology ontology, let us
consider a scenario, where the user is looking for a team to commission a job.
Here, she could specify only requirements for resources needed to execute the job
(assuming that she is certain about her needs). However, she could also indicate
an individual of a subclass of the Problem class (Fig. 2), e.g. SystemOfLinearE-
quationsProblem. Such individual may have (optional) properties that specify (i)
the input, e.g. individual of class Matrix with values of hasProperty being indi-
viduals of classes PositiveDefiniteMatrix and SymmetricMatrix, and (ii) algo-
rithm, e.g. individual of class CholeskyFactorization. The first use case is to
validate user request for a resource against resources recommended by experts
for a combination of problem, input data, and algorithm. User’s resource specifi-
cation is evaluated against experts suggestions using Saaty’s Analytical Hierar-
chy Process (AHP) for multicriterial assessment. The way to combine ontologies
and the AHP method was introduced in [9].

Here, two use cases can be distinguished. First, when user requirements are
significantly disjoint from the expert suggestions (e.g. request for GeneralSolver
is made for a SymmetricMatrix ), he will be provided with alternative sugges-
tion(s) and thus may modify his request. Second, when user requirements are
not very detailed, they will be made more specific by accommodating experts
opinions. For instance, when user specified the problem, the matrix type (and
size), and the algorithm, the system can additionally suggest the CPU / GPU
type, and/or memory, and/or number of processors. Similarly, when the user
specified only the problem and the matrix type, the expert knowledge and the
AHP shall be utilized to suggest the algorithm and resources to be used.

In the AiGExpertOntology we follow, earlier specified, guidelines for ontology
engineering, e.g. naming conventions for classes and properties, filling annota-
tions for ontology elements. Moreover, we decided that new ontology has to
become a new module (separated from previously designed ones).



572 P. Szmeja et al.

5 Concluding Remarks

The aim of this paper was, first, to discuss important issues involved in ontology
reengineering, based on our experiences with the AiG ontology. Here, we have
discussed problems that one can encounter when ontology has been created using
earlier state of the art knowledge and tools and has to be extended and modern-
ized. Second, to introduce a new ontology that is going to be used in the user
decision support in the AiG system. This ontology has been developed follow-
ing the guidelines established during the reengineering process. The reengineered
ontology is available at: http://gridagents.sourceforge.net/AiGGridOntology.
Our current goal is to continue development of the ontology of computational
linear algebra and apply it in a prototype of the user decision support subsystem.

Acknowledgments. Work of the authors was in part supported by bilateral grant
between Polish Academy of Sciences and Bulgarian Academy of Sciences and grant
DCVP 02/1 of the Bulgarian NSF.

References

1. Dieter, F.: Ontologies: A Silver Bullet for Knowledge Management and Electronic
Commerce. Springer-Verlag, New York (2003)

2. Dominiak, M., Kuranowski, W., Gawinecki, M., Ganzha, M., Paprzycki, M.: Uti-
lizing agent teams in Grid resource management-preliminary considerations. In:
Proceedings of the IEEE John Vincent Atanasoff Conference, pp. 46–51. IEEE CS
Press, Los Alamitos, CA (2006)

3. Drozdowicz, M., Ganzha, M., Wasielewska, K., Paprzycki, M., Szmeja, P.: Using
ontologies to manage resources in grid computing: practical aspects. In: Ossowski,
S. (ed.) Agreement Technologies, Law, Governance and Technology Series, vol. 8,
pp. 149–168. Springer, Netherlands (2013)

4. Drozdowicz, M., Wasielewska, K., Ganzha, M., Paprzycki, M., Attaui, N.,
Lirkov, I., Olejnik, R., Petcu, D., Badica, C.: Ontology for contract negotia-
tions in agent-based grid resource management system. In: Ivanyi, P., Topping, B.
(eds.) Trends in Parallel, Distributed, Grid and Cloud Computing for Engineering,
pp. 335–354. Saxe-Coburg Publications, Stirlingshire, UK (2011)

5. Kuranowski, W., Ganzha, M., Gawinecki, M., Paprzycki, M., Lirkov, I.,
Margenov, S.: Forming and managing agent teams acting as resource brokers in
the grid-preliminary considerations. Int. J. Comput. Intell. Res. 4(1), 9–16 (2008)

6. Lucks, M.: A knowledge-based framework for the selection of mathematical soft-
ware. Ph.D. thesis, Southern Methodist University (1990)

7. Petcu, D., Negru, V.: Interactive system for stiff computations and distributed
computing. In: Proceedings of IMACS’98: International Conference on Scientific
Computing and Mathematical Modelling, pp. 126–129. IMACS (1998)

8. Wasielewska, K., Drozdowicz, M., Ganzha, M., Paprzycki, M., Attaui, N.,
Petcu, D., Badica, C., Olejnik, R., Lirkov, I.: Negotiations in an agent-based grid
resource brokering systems. In: Ivanyi, P., Topping, B. (eds.) Trends in Paral-
lel, Distributed, Grid and Cloud Computing for Engineering, pp. 355–374. Saxe-
Coburg Publications, Stirlingshire, UK (2011)

http://gridagents.sourceforge.net/AiGGridOntology


Reengineering and Extending the Agents in Grid Ontology 573

9. Wasielewska, K., Ganzha, M.: Using analytic hierarchy process approach in onto-
logical multicriterial decision making - preliminary considerations. In: Todorov,
M. (ed.) Proceedings of 4th International Conference-AMiTaNS’12 Memorial
Volume devoted to Prof. Christo I. Christov. AIP Conference Proceedings,
vol. 1487, pp. 95–103 (2012)

10. OWL 2 Web Ontology Language. http://www.w3.org/TR/owl2-overview/

http://www.w3.org/TR/owl2-overview/

	Reengineering and Extending the Agents in Grid Ontology
	1 Introduction
	2 AiG Ontology Reengineering
	2.1 Documentation Standards
	2.2 Ontology Hierarchy
	2.3 Cleaning Conceptual Inconsistencies

	3 Lessons Learned
	4 Adding a Domain Ontology
	5 Concluding Remarks
	References


