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Abstract. It was shown that block-circulant preconditioners applied to a conjugate gradient
method used to solve structured sparse linear systems arising from 2D or 3D elliptic problems
have good numerical properties and a potential for high parallel efficiency. In this paper the con-
vergence rate and the parallel performance of a circulant block-factorization based preconditioner
applied to a 3D problem are analyzed. A portable parallel code is developed based on Message
Passing Interface (MPI) standards. The performed numerical tests on parallel computer systems
clearly demonstrate the high level of efficiency of the developed algorithm.
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1 Introduction

We are concerned with the numerical solution of linear boundary value problems of elliptic type. After
discretization, such problems are reduced to find the solution of linear systems of the form Ax = b. We
consider here symmetric and positive definite problems. We assume also, that A is a large scale matrix. In
practice, large problems of this class are often solved by iterative methods, such as the conjugate gradient
(CG) method. At each step of these iterative methods only the product of A with a given vector v is
needed. Such methods are therefore ideally suited to exploit the sparsity of the matrix A.

Typically, the rate of convergence of these methods depends on the condition number κ(A) of the
coefficient matrix A: the smaller κ(A) is, the faster convergence. Unfortunately, for elliptic problems of
second order, usually κ(A) = O(n2), where n is the number of mesh points in each coordinate direction,
and hence grows rapidly with n. To accelerate the iteration convergence a preconditioner M is combined
with the CG algorithm. The theory of the Preconditioned CG (PCG) method says that M is considered
as a good preconditioner if it reduces significantly the condition number κ(M−1A), and at the same
time, if the inverse matrix vector product M−1v can be efficiently computed for a given vector v. A third
important aspect should be added to the above two, namely, the requirement for efficient implementation
of the PCG algorithm on recent parallel computer systems.

One of the most popular and the most successful class of preconditioners is the class of incomplete
LU (ILU) factorizations, see e.g. [2, 8]. One potential problem with the ILU preconditioners is that they
have limited degree of parallelism. Some attempts to modify the method and to devise other more par-
allel methods often result in a deterioration of the convergence rate. Another class of preconditioners is
proposed in [3]. These preconditioners are based on averaging coefficients of A to form a block-circulant
approximation (see also [10, 12, 25]). The usage of the block-circulant approximations is motivated by
their fast inversion based on the FFT (see [6, 20]). In addition, the research on circulant preconditioners
for Toeplitz systems [5, 4, 11, 12] shows good results for favorable clustering of eigenvalues of the precon-
ditioned system. The block-circulant preconditioners are highly parallelizable, see, e.g., [13, 17, 21], but
they are substantially sensitive with respect to a possible high variation of the coefficients of the elliptic
operator.

The sensitivity of the block-circulant approximations with respect to a high variation of the problem
coefficients was relaxed in the Circulant Block-Factorization (CBF) preconditioners in [18]. This pre-
conditioning technique incorporates the circulant approximations into the framework of the LU block-
factorization. The computational efficiency and parallelization of the resulting algorithm is as high as of
the block circulant one (see [3, 13, 17]).

The goal of the present work is to study the convergence rate of the CBF preconditioners for 3D elliptic
problems as well as their parallel performance. The relative condition number κ(M−1A) is estimated with
O(n) which is the same as for the 2D elliptic problems. The analysis of the parallel complexity shows
that the algorithm is asymptotically optimal. The presented numerical tests demonstrate the features of
the CBF preconditioners for 3D elliptic problems.
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2 Circulant Block-Factorization Preconditioner

Let us recall that a circulant matrix C has the form (Ck,j) =
(

c(j−k) mod m

)

, where m is the size of C.
Let us also denote for any given coefficients (c0, c1, . . . , cm−1) by C = (c0, c1, . . . , cm−1) the circulant
matrix
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Any circulant matrix can be factorized as

C = FΛF ∗, (1)

where Λ is a diagonal matrix containing the eigenvalues of C, and F is the Fourier matrix

F =
1√
m

{

e2π
jk

m
i

}

0≤j,k≤m−1
.

Here i stands for the imaginary unit.
Let us consider the following 3D elliptic problem:

− ∂

∂x1

(

k1(x1, x2, x3)
∂u

∂x1

)

− ∂

∂x2

(

k2(x1, x2, x3)
∂u

∂x2

)

− ∂

∂x3

(

k3(x1, x2, x3)
∂u

∂x3

)

= f(x1, x2, x3), ∀(x1, x2, x3) ∈ Ω,

0 < σmin ≤ k1(x1, x2, x3), k2(x1, x2, x3), k3(x1, x2, x3) ≤ σmax,

u(x1, x2, x3) = 0, ∀(x1, x2, x3) ∈ Γ = ∂Ω,

(2)

on the unit cube [0, 1]3. Let the domain be discretized by a uniform grid with n grid points in each coor-
dinate direction. Consider the usual seven-point centered difference approximation. This discretization
leads to a system of linear algebraic equations

Ax = b. (3)

If the grid points are ordered along the x1 and x2 directions first, the matrix A admits a block-tridiagonal
structure. The diagonal blocks are block-tridiagonal matrices and the off-diagonal blocks are diagonal
matrices. The matrix A can be written in the following form

A = tridiag(Ai,i−1, Ai,i, Ai,i+1) i = 1, 2, . . . , n, (4)

where Ai,i are block-tridiagonal matrices which corresponds to one x3-plane.
We use now the general form of the CBF preconditioning matrix M for the matrix A by

M = tridiag(Ci,i−1, Ci,i, Ci,i+1) i = 1, 2, . . . n, (5)

where Ci,j = Block − Circulant(Ai,j) is block-circulant approximation of the corresponding block Ai,j .
The approach of defining block-circulant approximations can be interpreted as simultaneous averaging
of the matrix coefficients and changing of the Dirichlet boundary conditions to periodic ones.

The algorithm (sequential and parallel) of the CBF preconditioner is described in [14–16]. In the
next section an estimate of the relative condition number of the preconditioner for a model problem is
derived.

3 Model Problem Analysis of the Condition Number

We consider in this section the model 3D elliptic problem

−k1ux1x1
− k2ux2x2

− k3ux3x3
= f(x1, x2, x3), ∀(x1, x2, x3) ∈ Ω, (6)

u(x1, x2, x3) = 0, ∀(x1, x2, x3) ∈ Γ = ∂Ω,
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where coefficients k1, k2 and k3 are positive constants. Then, the matrix A can be written in the following
form

A = k1In ⊗ In ⊗ T + k2In ⊗ T ⊗ In + k3T ⊗ In ⊗ In (7)

where T = tridiag(−1, 2,−1). The CBF preconditioner is defined by the following equation:

M = k1In ⊗ In ⊗ C + k2In ⊗ C ⊗ In + k3T ⊗ In ⊗ In (8)

where C = (2,−1, 0, . . .0,−1) is circulant matrix. Our goal is to estimate the relative condition number
κ(M−1A) where matrices A and M are defined in (7) and (8). We estimate in the next lemma the
condition number κ(M−1A) by the eigenvalues of eigenproblems of a reduced size n2.

Lemma 1. The condition number of the preconditioned system satisfies the estimate

κ(M−1A) =
maxm λmax

(

R−1
m Qm

)

minm λmin

(

R−1
m Qm

) ,

where

Rm = k1In ⊗ C + k2C ⊗ In + k3δmIn ⊗ In,

Qm = k1In ⊗ T + k2T ⊗ In + k3δmIn ⊗ In,

and δm = 4 sin2 mπ
2(n+1) , m = 1, 2, . . . n.

Proof. For simplicity we will use the notation I for n× n identity matrix In. To estimate the condition
number of the CBF preconditioned matrix we shall analyze the eigenvalues of the generalized eigenvalue
problem

(k1I ⊗ I ⊗ T + k2I ⊗ T ⊗ I + k3T ⊗ I ⊗ I)w = (9)

λ (k1I ⊗ I ⊗ C + k2I ⊗ C ⊗ I + k3T ⊗ I ⊗ I)w .

It is easy to compute the eigenvalues of the matrix T , that are expressed by

δm(T ) = 4 sin2 mπ

2(n+ 1)
, m = 1, 2, . . . n.

Then the matrix T can be factorized in the form T = V TDV , where D is the diagonal matrix of the
eigenvalues of T , the matrix V has the corresponding eigenvectors of T and V is orthogonal matrix (i.e.,
V TV = I). Following the introduced notations we rewrite (9) in the form

(

k1(V
TV ) ⊗ I ⊗ T + k2(V

TV ) ⊗ T ⊗ I + k3(V
TDV ) ⊗ I ⊗ I

)

w = (10)

λ
(

k1(V
TV ) ⊗ I ⊗ C + k2(V

TV ) ⊗ C ⊗ I + k3(V
TDV ) ⊗ I ⊗ I

)

w

(V T ⊗ I ⊗ I)(k1I ⊗ I ⊗ T + k2I ⊗ T ⊗ I + k3D ⊗ I ⊗ I)(V ⊗ I ⊗ I)w =

λ(V T ⊗ I ⊗ I)(k1I ⊗ I ⊗ C + k2I ⊗ C ⊗ I + k3D ⊗ I ⊗ I)(V ⊗ I ⊗ I)w .

Denoting by u = (V ⊗ I ⊗ I)w we obtain

(k1I ⊗ I ⊗ T + k2I ⊗ T ⊗ I + k3D ⊗ I ⊗ I)u = λ(k1I ⊗ I ⊗ C + k2I ⊗ C ⊗ I + k3D ⊗ I ⊗ I)u. (11)

It follows from (11) that the eigenvalues of (9) are solutions of the split system of eigenvalue problems

(k1I ⊗ T + k2T ⊗ I + k3δmI ⊗ I)um = λ(k1I ⊗ C + k2C ⊗ I + k3δmI ⊗ I)um

m = 1, 2, . . . n. (12)

Obviously, the statement of the lemma follows directly from (12).

We denote by

ρ =
k3

k1 + k2
δm. (13)
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Then the above problem (12) can be rewritten as

(k1I ⊗ T + k2T ⊗ I + (k1 + k2)ρI ⊗ I)um = λ(k1I ⊗ C + k2C ⊗ I + (k1 + k2)ρI ⊗ I)um,

(k1I ⊗ (T + ρI) + k2(T + ρI) ⊗ I)um = λ(k1I ⊗ (C + ρI) + k2(C + ρI) ⊗ I)um.

Hence
λmax

(

R−1
m Qm

)

= λmax

(

(C + ρI)−1(T + ρI)
)

and
λmin

(

R−1
m Qm

)

= λmin

(

(C + ρI)−1(T + ρI)
)

.

We will use in the rest part of this section the determinants ∆i, defined for a fixed value of ρ.

Definition 1. We denote by ∆i = det(tridiag(−1, 2 + ρ,−1)), where i stands for the dimension of the
determinant.

Now, we derive directly from the definition the recurrence equation

∆i = (2 + ρ)∆i−1 −∆i−2, (14)

where ∆0 = 1 and ∆1 = 2 + ρ. We determine ∆i from the recurrence equation (14), and find

∆i =
1 − ψ2i+2

ψi(1 − ψ2)
, (15)

where ψ is one of the roots (to be chosen later) of the square equation

ψ2 − (2 + ρ)ψ + 1 = 0. (16)

Here we use Lemma 2 from [19] which define explicitly the eigenvalues of a generalized eigenvalue
problem of the form involved in Lemma 1.

Lemma 2. The matrix (T + ρI)−1(C + ρI) has exactly two eigenvalues different from unity, and they
are

λ1,2 = 1 +
1 ±∆n−1

∆n

. (17)

Let us remind that the goal of this section is to estimate the condition number of the CBF preconditioned
matrix in the terms of k1, k2, k3 and n. This result is the contents of the next theorem.

Theorem 1. The condition number of the CBF preconditioned matrix for the model problem (6) satisfies
the inequality

κ
(

M−1A
)

<

√

4 + 2
k1 + k2

k3
(n+ 1)2 <

√

2
k1 + k2

k3
(n+ 1) + 2.

Proof. From Lemma 1 and Lemma 2 it follows the estimate

κ(M−1A) =
maxm λ1

minm λ2
, (18)

where λ1,2 are given by (17), depending on m, as ρ = k3
k1+k2

δm. Now we chose ψ to be the larger root of
(16), which implies ψ > 1. It follows from (15), that ∆i can be expanded in the form

∆i =
1

ψi
+

1

ψi−2
+ · · · + ψi−2 + ψi.

Hence

∆n = ψ∆n−1 +
1

ψn
,

and therefore

λ2 = 1 +
1 −∆n−1

∆n

= 1 +
1 −∆n−1

ψ∆n−1 + 1
ψn

=
(ψ − 1)∆n−1 + 1 + 1

ψn

ψ∆n−1 + 1
ψn

>
(ψ − 1)∆n−1

(ψ + 1)∆n−1
=
ψ − 1

ψ + 1
=

1
√

1 + 4/ρ
, (19)
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and

λ1 < 2. (20)

Combining the estimates (18), (19) and (20) we get the estimate for the condition number

κ(M−1A) < 2 max
m

√

1 +
4

ρ
= 2 max

m

√

1 +
4(k1 + k2)

k3δm
.

At the end, we use the inequality δm = 4 sin2 mπ
2(n+1) >

8
(n+1)2 , and obtain the final result of the theorem,

namely

κ(M−1A) <

√

4 + 2
k1 + k2

k3
(n+ 1)2 <

√

2
k1 + k2

k3
(n+ 1) + 2. (21)

Corollary 1. The condition number of the CBF preconditioned matrix for the Poisson problem satisfies
the inequality

κ
(

M−1A
)

< 2
√

1 + (n+ 1)2 < 2(n+
√

2).

It is well known that the ordering of the unknowns has a strong influence on the convergence rate
of the PCG algorithms for anisotropic problems. For example, the winning strategy for the ILU, the
multilevel, and the multigrid algorithms can be formulated as following the mesh points along the lines
of dominating anisotropy [7, 9, 22]. The following remark shows that when CBF preconditioners are used,
just the opposite ordering (along the lines of week anisotropy) improves the convergence.

Remark 1. From equation (21) it follows that the convergence of PCG method with CBF preconditioner
is faster if the grid points are ordered along directions with smaller coefficients of the differential equation
first.

4 Analysis of the Parallel Complexity

We assume that the computations and communications are not overlapped and therefore, the execution
time of the parallel implementation is the sum of the computation time and the communication time.

We shall use in our analysis standard models for the arithmetic and communication times [23]. First,
assuming no arithmetic vectorization, the execution of M arithmetic operations on one processor takes
time Ta = M ∗ta, where ta is the average unit time to perform one arithmetic operation on one processor.
Let us consider a parallel computer system consisting of p processors. The communication time of transfer
of M words between two neighbor processors is approximated by Tc = ts+M ∗tc, where ts is the start-up
time and tc is the incremental time necessary for each of all M words to be sent.

We denote the following two communication times:

– b(p) — broadcasting a number from one processor to all others;
– g(M,p) — gathering p data packets, each packet with M/p words, in one processor from all others.

For example for cluster the communication times (see [1]) are respectively:

b(p) = ⌈log p⌉(ts + tc)

g(M,p) = (p− 1)

(

ts +
M

p
tc

)

To achieve a low cost of the processor synchronization and communication, we partition the compu-
tational domain into p layers so that each layer contains n/p x1-planes. We map all grid points in one
layer onto one processor. In this way, the CG method requires a communication of only values from one
grid plane with “neighbor” processors. Parallel algorithm for solving a system with CBF preconditioner
is constructed in [14].

We can now estimate the total execution time TPCG for one PCG iteration for the considered circulant
block-factorization preconditioner on a parallel system. Each iteration consists of one matrix vector
multiplication with the matrix A, one solving a system of equations with preconditioner M , two inner
products and three linked triads (a vector updated by a vector multiplied by a scalar). Consequently

TPCG(p) = Tmult + Tprec + 2Tinn prod + 3Ttriads,
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Tmult = 13
n3

p
ta + 4(ts + n2tc), Tinn prod = 2

n3

p
ta + b(p),

Ttriads = 2
n3

p
ta, Tprec = 4

n2

p
TFFT (n) + 12

n3

p
ta + 2g(

n3

p
, p),

and where TFFT (n) is the time for execution of FFT on a given n-vector on one processor. If n is equal
to an exact power of two, i.e., n = 2l and we use 2-radix algorithm, then TFFT (n) = 5n lognta.

Combining these results we obtain the following estimates of the execution time for the studied
computer system

TPCG(p) = 5 (7 + 4 logn)
n3

p
ta + 4

(

ts + n2tc
)

+ 2g(
n3

p
, p) + 2b(p)

and for cluster we obtain

TPCG(p) = 2 (p+ log p+ 1) ts + 2

[

(p− 1)
n3

p2
+ 2n2 + log p

]

tc + 5 (7 + 4 logn)
n3

p
ta.

The leading terms of the parallel time complexity functions are:

TPCG(p) ≈ 2pts + 2
n3

p
tc + 5(7 + 4 logn)

n3

p
ta. (22)

Our next goal is to analyze the relative speed-up Sp and the relative efficiency Ep, where Sp = T (1)
T (p) ≤ p

and Ep =
Sp

p
≤ 1. We apply now (22) and obtain:

Sp ≈
5(7 + 4 logn)

2 p
2

n3

ts
ta

+ 2 tc
ta

+ 5(7 + 4 logn)
p. (23)

Obviously, for our preconditioner, limn→∞ Sp = p and limn→∞Ep = 1, i.e., the algorithm is asymptoti-

cally optimal. More precisely, if logn≫ p2

n3

ts
ta

+ tc
ta
, then Ep is near to 1. Unfortunately, the start-up time

ts is usually much larger than ta, and for relatively small n the first term of the denominator in (23) is
significant, in this case the efficiency is much smaller than 1.

5 Numerical Tests

The numerical tests presented in this section illustrate the convergence rate as well as the parallel
performance of the CBF algorithm for 3D elliptic problems. Both the right hand side and the initial
guess are chosen to be random vectors. The computations are done with double precision. The iteration
stopping criterion is ||rNit ||/||r0|| < 10−6, where rj stands for the residual at the jth iteration step of the
preconditioned conjugate gradient method. The code has been implemented in C and the parallelization
has been facilitated using the MPI [24] library. We report the results of the experiments executed on two
parallel computer systems located in Bologna, Italy.

Example 1. The first test problem is the model problem (6). Table 1 shows the number of iterations
as a measure of the convergence rate, where the mesh size n and coefficients k2 and k3 are varied.
The presented data demonstrate a behavior of the convergence, which confirms the high accuracy of
the estimate of the condition number of the preconditioned matrix. In particular, the results confirm
Remark 1. One can see that in Table 1 the number of iterations for small k3 is greater than for large k3

where the same problem is solved. The “—” sign denotes that the number of iterations is greater than
999.

Example 2. Next we compare the number of iterations for Poisson problem with mesh anisotropy,
i.e. when the mesh-size is different in each direction. The domain is discretized by a uniform grid with
n1×n2×n3 grid points. It is shown in Table 2 that the number of iterations depends only on max(n1, n2)
and almost does not depend on n3.

Example 3. We consider further test problems with variable coefficients in the form

∂

∂x1

[

(

1 +
ǫ

2
sin (2π (x1 + x3))

) ∂u

∂x1

]

+
∂

∂x2

[

(

1 +
ǫ

2
sin (2π (x1 + x2))

) ∂u

∂x2

]

+
∂

∂x3

[

(

1 + ǫex1+x2+x3

) ∂u

∂x3

]

= f (x1, x2, x3) (24)
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Table 1. Number of iterations for the model problem (6) for k1 = 1.

n k3 k2

1000 100 10 1 0.1 0.01 0.001

8 35 31 19 12 13 14 13
16 53 42 23 14 16 18 16
32 1 90 57 28 18 20 24 22
64 142 76 36 22 25 31 32

128 210 103 47 29 33 40 43
192 245 114 54 34 39 46 52
256 305 119 61 35 43 51 58

8 37 22 13 8 8 7 7
16 51 29 16 11 11 9 8
32 10 75 38 20 13 15 13 11
64 98 48 25 16 19 18 15

128 136 64 33 21 25 25 21
192 159 75 40 24 28 30 27
256 191 78 44 27 31 34 31

8 23 14 8 5 4 4 4
16 34 19 11 7 6 5 4
32 100 47 25 15 9 8 6 6
64 62 31 19 11 11 9 8

128 85 40 25 15 15 13 11
192 98 47 28 17 18 16 13
256 108 52 31 19 20 19 16

8 13 7 4 3 3 3 3
16 16 9 6 4 3 3 3
32 1000 22 13 8 5 5 4 4
64 32 18 11 7 6 5 4

128 43 25 15 9 8 5 6
192 53 30 18 10 10 8 7
256 58 35 20 12 11 9 8

8 49 48 27 17 19 22 22
16 82 69 35 20 23 29 34
32 0.1 146 91 43 26 28 39 44
64 214 129 55 31 35 49 61

128 326 159 74 41 47 63 84
192 429 197 80 45 53 76 100
256 532 205 86 49 60 78 106

8 54 48 35 21 27 30 37
16 121 94 55 34 34 40 50
32 0.01 282 166 77 43 43 58 74
64 431 249 96 52 54 77 99

128 590 297 120 67 70 104 136
192 796 338 134 72 79 114 170
256 899 395 146 80 81 126 188

8 50 45 36 26 35 42 34
16 136 93 67 40 55 67 61
32 0.001 346 227 125 74 76 85 91
64 714 401 201 104 99 128 142

128 — 665 272 135 119 168 215
192 — 786 381 140 135 190 249
256 — 888 328 158 144 206 298
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Table 2. Number of iterations for Poisson problem for n3 = 8, 16, 32, 64, 128, 192, 256.

n1 n2

8 16 32 64 128 192 256

8 11–12 13–14 16–18 20–23 26–29 31–34 34–37
16 13–14 13–14 17–19 21–24 26–30 31–34 35–38
32 17–18 17–19 17–19 21–23 26–30 32–34 37–39
64 20–23 21–23 21–23 21–23 27–29 32–34 36–38

128 26–30 28–29 27–30 27–30 28–30 32–34 35–37
192 31–33 32–35 32–35 31–34 32–34 31–34 36–38
256 33–37 35–37 37–38 34–38 35–37 35–38 35–37

where ǫ ∈ [0, 1] is a parameter. It is well known that the circulant preconditioners are competitive with
the incomplete LU factorization for moderately varying coefficients. This reflects the averaging of the
coefficients, used in the block-circulant approximations. Such a fact was already observed in [3, 18] for
2D problems. Table 3 shows that for our test problem the anisotropy reduces slightly the number of
iterations.

Table 3. Number of iterations for CBF preconditioner for problem (24).

n ǫ = 0 ǫ = 0.01 ǫ = 0.1 ǫ = 1

8 12 11 11 14
16 14 15 15 17
32 18 19 20 24
64 22 24 28 39

128 29 33 43 63
192 34 41 55 87
256 35 47 66 108

Table 4 shows execution time TPCG for one PCG iteration on an IBM SP Cluster 1600 made of
64 nodes p5-575 (see http://www.cineca.it/pagine/ibmsp5.htm). A p5-575 node contains 8 SMP
processors IBM Power5 at 1.9 GHz. One can see that the parallel efficiency obtained on up to 8 processors
is close to 1. This result was expected because communications between processors in one node are very
fast. Moreover, a superlinear speed-up is observed in some cases. The main reason is better usage of
cache memories in parallel algorithm.

Table 5 shows execution time on an IBM Linux Cluster 1350 made of 512 2-way IBM X335 nodes (see
http://www.cineca.it/pagine/ibmlinux.htm). Each computing node contains 2 Xeon Pentium IV

processors at 3 GHz. The obtained parallel efficiency confirms the theoretical estimates from the previous
section. For relatively large problems the observed parallel efficiency is above 50% even for large number
of processors.

Figure 1 shows the execution time for one PCG iteration on two parallel computer systems and
figure 2 shows the speed-up obtained for n = 32, 96, and 128. The comparison between two IBM clusters
shows that IBM Power5 processors and communication between processors in one node of IBM SP cluster
are faster but in general the performance of the studied parallel algorithm on the second cluster is much
better.
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Table 4. Parallel time, speed-up and parallel efficiency for the CBF preconditioner on IBM SP cluster.

p Tp Sp Ep Tp Sp Ep

n = 32 n = 64

1 0.013 0.130 1.00
2 0.007 1.94 0.968 0.058 2.23 1.115
4 0.003 3.71 0.926 0.029 4.52 1.129
8 0.002 7.24 0.905 0.026 5.03 0.629

16 0.120 0.11 0.007 0.016 8.22 0.514
32 0.120 0.11 0.003 0.155 0.84 0.026
64 0.167 0.78 0.012

n = 48 n = 96

1 0.135 1.00 1.235
2 0.066 2.03 1.014 0.620 1.99 0.996
3 0.045 2.97 0.991 0.412 3.00 1.000
4 0.034 3.99 0.997 0.404 3.06 0.765
6 0.022 6.03 1.006 0.223 5.53 0.922
8 0.017 7.75 0.969 0.153 8.09 1.011

12 0.019 7.24 0.603 0.281 4.39 0.366
16 0.053 2.55 0.159 0.210 5.88 0.367
24 0.046 2.90 0.121 0.212 5.83 0.243
32 0.168 7.36 0.230
48 0.121 1.12 0.023 0.109 11.29 0.235
96 0.367 3.36 0.035

n = 128
1 1.561
2 0.676 2.31 1.155
4 0.326 4.79 1.198
8 0.161 8.52 1.065

16 0.164 9.55 0.597
32 0.220 7.10 0.222
64 0.218 7.15 0.112

128 0.466 3.35 0.026
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Table 5. Parallel time, speed-up and parallel efficiency for the CBF preconditioner on IBM Linux Cluster.

p Tp Sp Ep Tp Sp Ep

n = 32 n = 64

1 0.039 0.355
2 0.021 1.86 0.932 0.213 1.67 0.835
4 0.011 3.53 0.882 0.119 2.99 0.748
8 0.006 6.47 0.809 0.059 6.00 0.750

16 0.004 10.68 0.667 0.032 11.05 0.690
32 0.003 12.37 0.387 0.016 22.01 0.688
64 0.012 28.54 0.446

n = 48 n = 96

1 0.246 2.311
2 0.135 1.82 0.911 1.273 1.82 0.908
3 0.092 2.66 0.887 0.864 2.68 0.892
4 0.072 3.42 0.854 0.675 3.42 0.856
6 0.046 5.33 0.888 0.479 4.83 0.804
8 0.038 6.42 0.802 0.371 6.23 0.779

12 0.025 9.70 0.808 0.243 9.50 0.792
16 0.019 12.98 0.811 0.190 12.16 0.760
24 0.012 19.80 0.825 0.120 19.29 0.804
32 0.090 25.58 0.799
48 0.009 26.61 0.554 0.062 37.00 0.771
96 0.041 56.79 0.592

n = 128 n = 192

1 3.689 19.635
2 2.111 1.75 0.874 10.543 1.86 0.931
3 7.188 2.73 0.910
4 1.185 3.11 0.778 5.553 3.54 0.884
6 3.929 5.00 0.833
8 0.628 5.88 0.734 3.037 6.46 0.808

12 1.999 9.82 0.819
16 0.335 11.02 0.689 1.578 12.44 0.777
24 1.031 19.04 0.793
32 0.165 22.33 0.698 0.832 23.61 0.738
48 0.562 34.93 0.728
64 0.084 44.03 0.688 0.386 50.85 0.795
96 0.288 68.21 0.711

128 0.059 63.00 0.492
192 0.193 101.74 0.530
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