
Performance Analysis of Parallel Alternating

Directions Algorithm for Time Dependent
Problems

Ivan Lirkov1, Marcin Paprzycki2, and Maria Ganzha2

1 Institute of Information and Communication Technologies,
Bulgarian Academy of Sciences, Acad. G. Bonchev, Bl. 25A, 1113 Sofia, Bulgaria

ivan@parallel.bas.bg

http://parallel.bas.bg/~ivan/
2 Systems Research Institute, Polish Academy of Sciences,

ul. Newelska 6, 01-447 Warsaw, Poland
{paprzyck,maria.ganzha}@ibspan.waw.pl
http://www.ibspan.waw.pl/~paprzyck/

http://inf.ug.edu.pl/~mganzha/

Abstract. We consider the time dependent Stokes equation on a finite
time interval and on a uniform rectangular mesh, written in terms of
velocity and pressure. In a parallel algorithm, based on a new direction
splitting approach, the pressure equation is derived from a perturbed
form of the continuity equation, in which the incompressibility constraint
is penalized in a negative norm induced by the direction splitting. The
scheme used in the algorithm is composed of: pressure prediction, velocity
update, penalty step, and pressure correction. In order to achieve good
parallel performance, the solution of the Poison problem for the pressure
correction is replaced by solving a sequence of one-dimensional second
order elliptic boundary value problems in each spatial direction. The
parallel code was developed using MPI and tested on modern computer
systems. The performed numerical tests illustrate the parallel efficiency,
and the scalability, of the direction-splitting based algorithm.

1 Introduction

The objective of this paper is to analyze the parallel performance of a novel frac-
tional time stepping technique, based on a direction splitting strategy, developed
to solve the incompressible Navier-Stokes equations.

Projection schemes were introduced in [2,9] and they have been used in Com-
putational Fluid Dynamics (CFD) since. During these years, such techniques
went through some evolution, but the main paradigm, consisting of decompos-
ing vector fields into a divergence-free part and a gradient, has been preserved;
see [4] for a review. In terms of computational efficiency, projection algorithms
are far superior to the methods that solve the coupled velocity-pressure system,
making them the most popular techniques for solving unsteady Navier-Stokes
equations.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 173–182, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://parallel.bas.bg/~ivan/
http://www.ibspan.waw.pl/~paprzyck/
http://inf.ug.edu.pl/~ mganzha/


174 I. Lirkov, M. Paprzycki, and M. Ganzha

The alternating directions algorithm proposed in [3] reduces the computa-
tional complexity of the enforcement of the incompressibility constraint. The
key idea consists of abandoning the projection paradigm in which vector fields
are decomposed into a divergence-free part plus a gradient part. Departure from
the projection paradigm has been proved to be very efficient for solving vari-
able density flows [5,6]. In the new method, the pressure equation is derived
from a perturbed form of the continuity equation, in which the incompressibility
constraint is penalized in a negative norm induced by the direction splitting.
The standard Poisson problem for the pressure correction is replaced by the se-
ries of one-dimensional second-order boundary value problems. This technique
is proved to be stable and convergent (see [3]). Furthermore, a very brief initial
assessment, found in [3], indicates that the new approach should be efficiently
parallelizable. The aim of this paper is to experimentally investigate this claim
on three distinct parallel systems, for two dimensional problems.

2 Stokes Equation

We consider the time-dependent Navier-Stokes equations on a finite time interval
[0, T ], and in a rectangular domain Ω. Since the nonlinear term in the Navier-
Stokes equations does not interfere with the incompressibility constraint, we
henceforth mainly focus our attention on the time-dependent Stokes equations
written in terms of velocity with components (u, v) and pressure p:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut − ν (uxx + uyy) + px = f
vt − ν (vxx + vyy) + py = g in Ω × (0, T )
ux + vy = 0
u|∂Ω = v|∂Ω = 0, ∂np|∂Ω = 0 in (0, T )
u|t=0 = u0, v|t=0 = v0, p|t=0 = p0 in Ω

, (1)

where a smooth source term has components (f, g), ν is the kinematic viscosity,
and (u0, v0) is a solenoidal initial velocity field with a zero normal trace. The
time interval [0, T ] was discretized on a uniform mesh and τ was the time step.

3 Parallel Alternating Directions Algorithm

Guermond and Minev introduced (in [3]) a novel fractional time stepping tech-
nique for solving the incompressible Navier-Stokes equations, based on a direc-
tion splitting strategy. They used a singular perturbation of Stokes equation
with a perturbation parameter τ . The standard Poisson problem was replaced
by series of one-dimensional second-order boundary value problems.

3.1 Formulation of the Scheme

The scheme used in the algorithm is composed of the following parts: pres-
sure prediction, velocity update, penalty step, and pressure correction. We now
describe an algorithm that uses the direction splitting operator



Performance Analysis of Parallel Alternating Directions Algorithm 175

A :=

(

1− ∂2

∂x2

)(

1− ∂2

∂y2

)

.

– Pressure predictor.
Denoting p0 the pressure field at t = 0, the algorithm is initialized by setting
p−

1
2 = p−

3
2 = p0. Then for all n ≥ 0 a pressure predictor is computed:

p∗,n+
1
2 = 2pn−

1
2 − pn−

3
2 . (2)

– Velocity update.

The velocity field is initialized by setting u0 =

(
u0
v0

)

, and for all n ≥
0 the velocity update is computed by solving the following series of one-
dimensional problems

ξn+1 − un

τ
− νΔun +∇p∗,n+ 1

2 = fn+
1
2 , ξn+1|∂Ω = 0, (3)

ηn+1 − ξn+1

τ
− ν

2

∂2(ηn+1 − un)

∂x2
= 0, ηn+1|∂Ω = 0, (4)

un+1 − ηn+1

τ
− ν

2

∂2(un+1 − un)

∂y2
= 0, un+1|∂Ω = 0, (5)

where fn+
1
2 =

(
f |t=(n+ 1

2 )τ
g|t=(n+ 1

2 )τ

)

.

– Penalty step
The intermediate parameter φ is approximated by solving Aφ = − 1

τ∇·un+1.
Owing to the definition of the direction splitting operator A, this is done by
solving the following series of one-dimensional problems:

ψ − ψxx = − 1
τ∇ · un+1, ψx|∂Ω = 0,

φ− φyy = ψ, φy|∂Ω = 0,
(6)

– Pressure update
The last sub-step of the algorithm consists of updating the pressure:

pn+
1
2 = pn−

1
2 + φ− χν∇ · u

n+1 + un

2
(7)

The algorithm is in a standard incremental form when the parameter χ = 0;
while the algorithm is in a rotational incremental form when χ ∈ (0, 12 ].

3.2 Parallel Algorithm

We use a rectangular uniform mesh combined with a central difference scheme for
the second derivatives for solving equations (4–5), and (6). Thus the algorithm
requires only the solution of tridiagonal linear systems. The parallelization is
based on a decomposition of the domain into rectangular sub-domains. Let us



176 I. Lirkov, M. Paprzycki, and M. Ganzha

associate with each such sub-domain a set of coordinates (ix, iy), and identify
it with a given processor. The linear systems, generated by one-dimensional
problems that need to be solved in each direction, are divided into systems for
sets of unknowns corresponding to the internal nodes for each block that can be
solved independently by a direct method. The corresponding Schur complement
for the interface unknowns between the blocks that have an equal coordinate
ix or iy is also tridiagonal and can be inverted directly. The overall algorithm
requires only exchange of the interface data, which allows for a very efficient
parallelization with an efficiency comparable to that of explicit schemes.

4 Experimental Results

The problem (1) is solved in Ω = (0, 1)2, for t ∈ [0, 2] with Dirichlet boundary
conditions. The discretization in time is done with time step 10−2, the parameter
χ = 1

2 , the kinematic viscosity ν = 10−3. The discretization in space uses mesh
sizes hx = 1

nx−1 and hy = 1
ny−1 . Thus, (4) leads to linear systems of size nx

and (5) leads to linear systems of size ny. The total number of unknowns in the
discrete problem is 600nx ny.

To solve the problem, a portable parallel code was designed and implemented
in C, while the parallelization has been facilitated using the MPI library [8,10].
We use the LAPACK subroutines DPTTRF and DPTTS2 (see [1]) for solving
tridiagonal systems in equations (4), (5), and (6) for the unknowns corresponding
to the internal nodes of each sub-domain. The same subroutines are used to solve
the tridiagonal systems with the Schur complement.

The parallel code has been tested on three computer systems: Galera, lo-
cated in the Centrum Informatyczne TASK; Sooner, located in the Oklahoma
Supercomputing Center (OSCER); and the IBM Blue Gene/P machine at the
Bulgarian Supercomputing Center. In our experiments, times have been collected
using the MPI provided timer and we report the best results from multiple runs.
We report the elapsed time Tc in seconds using c cores, the parallel speed-up
Sc = T1/Tc, and the parallel efficiency Ec = Sc/c.

Table 1 shows the results collected on the Galera. It is a Linux cluster with
336 nodes, and two Intel Xeon quad core processors per node. Each processor
runs at 2.33 GHz. Processors within each node share 8, 16, or 32 GB of mem-
ory, while nodes are interconnected with a high-speed InfiniBand network (see
also http://www.task.gda.pl/kdm/sprzet/Galera). Here, we used an Intel C
compiler, and compiled the code with the option “-O3”.

Table 2 shows the results collected on the Sooner, a quad core Linux cluster (see
http://www.oscer.ou.edu/resources.php). It has 486Dell PowerEdge1950 III
nodes, and twoquadcoreprocessors (DellPentium4XeonE5405; runningat 2GHz,
sharing 16 GB of memory) per node. Nodes are interconnected with a high-speed
InfiniBand network.We have used an Intel C compiler, and compiled the code with
the following options: “-O3 -march=core2 -mtune=core2”.

The results in each column of Tables 1 and 2 are obtained for an equal number
of unknowns per core. For large discrete problems the execution time is much

http://www.task.gda.pl/kdm/sprzet/Galera
http://www.oscer.ou.edu/resources.php


Performance Analysis of Parallel Alternating Directions Algorithm 177

Table 1. Execution time on Galera

c nxny/c
104 2 104 4 104 8 104 1.6 105 3.2 105 6.4 105 1.28 106 2.56 106 5.12 106 1.024 107

1 0.38 0.67 1.55 3.59 9.16 24.06 53.32 109.73 228.37 508.85 1204.13
2 0.38 0.67 1.51 3.97 10.73 26.67 57.74 120.03 245.60 572.72 1399.29
4 0.35 0.73 1.77 5.17 14.22 34.93 77.91 160.31 331.14 772.65 2171.64
8 0.36 0.84 3.29 9.56 24.05 54.78 113.65 232.26 517.02 1416.69 3606.02

16 0.40 0.93 3.44 9.61 24.18 54.13 114.15 237.16 526.47 1408.33 3680.95
32 0.48 1.03 3.48 9.90 24.48 55.41 114.57 233.91 530.87 1452.24 3664.30
64 0.74 1.22 3.91 10.19 25.26 55.88 117.21 243.30 550.54 1454.70 3826.07

Table 2. Execution time on Sooner

c nxny/c
104 2 104 4 104 8 104 1.6 105 3.2 105 6.4 105 1.28 106 2.56 106 5.12 106 1.024 107

1 0.58 1.38 2.78 5.72 12.52 27.56 59.60 120.33 248.72 511.40 1196.21
2 0.59 1.37 2.76 5.83 12.55 28.73 61.20 126.34 255.50 543.37 1268.61
4 0.58 1.38 2.77 5.88 13.57 32.42 72.43 147.28 301.04 628.10 1636.03
8 0.61 1.42 3.32 9.02 23.02 53.37 109.13 220.54 455.72 1226.75 3308.30

16 0.63 1.44 3.35 9.02 23.01 52.26 109.56 219.52 456.44 1213.96 3352.22
32 0.67 1.51 3.45 9.21 23.21 54.49 110.22 222.13 457.92 1235.84 3454.01
64 0.73 1.57 3.61 9.34 23.55 53.28 111.74 222.56 463.14 1256.47 3499.66
128 0.85 1.85 3.96 10.21 24.52 56.61 114.53 235.95 471.35 1283.83 3507.78
256 0.98 1.88 4.13 10.01 25.07 55.00 116.02 227.57 476.61 1288.46 3580.68
512 1.36 2.39 5.15 12.99 27.61 63.71 126.36 250.11

larger on two processors (8 cores) than on one processor, but on more processors
the time is approximately constant. The obtained execution times confirm that
the communication time between processors is larger than the communication
time between cores of one processor. Furthermore, the execution time for solving
one and the same discrete problem decrease when increasing the number of cores,
which shows that the communication in our parallel algorithm is mainly local.

The somehow slower performance using 8 cores is clearly visible. The same
effect was observed during our previous work, see [7]. There are some factors
which could play role for the slower performance using all processors of a single
node. Generally, they are a consequence of limitations of memory subsystems
and their hierarchical organization in modern computers. One such factor might
be the limited bandwidth of the main memory bus. This causes the processors
literally to “starve” for data, thus decreasing the overall performance. Since the
L2 cache memory is shared among each pair of cores within the processors,
this boost the performance of programs utilizing only a single core within such
pair (this core can monopolize use of the L2 cache). Conversely, this leads to a
somehow decreased speedups when all cores are used. For the memory intensive
programs, these factors can play a crucial role for the performance.

Comparing the performance of the Galera and the Sooner we can observe that
times on Sooner are shorter across the board. This is somewhat surprising, as



178 I. Lirkov, M. Paprzycki, and M. Ganzha

Table 3. Execution time on IBM Blue Gene/P

c nxny/c
104 2 104 4 104 8 104 1.6 105 3.2 105 6.4 105 1.28 106 2.56 106 5.12 106 1.024 107

1 5.79 12.33 24.51 49.02 103.58 210.81 431.43 877.01 1764.68 3586.12 7416.03
2 5.96 11.84 24.93 49.89 105.23 214.55 437.71 880.14 1793.94 3604.56 7526.88
4 6.16 13.01 25.68 51.34 108.00 219.95 450.15 913.40 1839.21 3742.63 7706.22
8 6.34 12.48 26.21 52.59 109.85 223.77 455.95 917.29 1865.41 3764.16 7813.90

16 6.61 13.80 27.31 54.38 113.83 230.67 471.25 959.19 1930.85 3908.36 8049.69
32 6.71 13.24 27.45 54.92 114.41 232.50 473.96 952.89 1931.31 3882.43 8059.08
64 6.84 14.19 27.71 55.15 115.56 233.56 476.84 964.14 1935.43 3925.14 8070.35

128 7.04 13.72 28.15 56.20 116.68 236.12 478.39 962.12 1944.61 3915.91 8117.98
256 7.17 14.69 28.34 56.44 117.87 237.57 482.76 978.74 1959.50 3980.72 8183.79
512 7.55 14.59 29.10 58.08 119.14 241.37 486.01 972.81 1971.07 3958.97 8205.10

1024 7.91 15.70 29.78 58.66 120.68 242.69 488.99 987.21 1980.31 4003.01 8216.88
2048 8.81 16.71 31.35 62.83 124.67 251.24 501.47 1027.31 2028.63 4200.09
4096 9.86 18.31 33.81 65.22 130.91 268.78 559.89 1163.18 2443.63

Galera is much newer and has more powerful processors. We plan to investigate
this peculiarity in the near future.

Table 3 presents execution time on the IBM Blue Gene/P machine at the Bul-
garian Supercomputing Center (see also http://www.scc.acad.bg/). It consists
of 2048 compute nodes with quad core PowerPC 450 processors (running at 850
MHz). Each node has 2 GB of RAM. For the point-to-point communications a
3.4 Gb 3D mesh network is used. Reduction operations are performed on a 6.8
Gb tree network. We have used the IBM XL C compiler and compiled the code
with the following options: “-O5 -qstrict -qarch=450d -qtune=450”.

We observed that using 2 or 4 cores per processor leads to slower execution
time, e.g. the execution time for nx = ny = 6400, c = 512 is 58.08 seconds
using 512 nodes, 58.83 seconds using 256 nodes, and 60.34 seconds using 128
nodes. This fact shows that using the MPI communication functions, the com-
munication between processors is faster than the communication between cores
of one processor. In order to get better parallel performance we plan to develop a
mixed MPI/OpenMP code and to use the nodes of the Blue Gene supercomputer
in the SMP mode with 4 OpenMP processes per node. This code will also al-
low us to run efficiently on the upcoming machines with 16-core AMD processors
(and future computers with ever increasing number of cores per processor). Note
that, for the time being, in our work we omit all issues concerning GPU-based
parallelization.

To round up the performance analysis, the speed-up obtained on Galera is
reported in Table 4 and the parallel efficiency is shown in Table 5, while the
speed-up on Sooner — in Table 6 and the parallel efficiency — in Table 7. Finally,
the speed-up on the IBMBlue Gene/P— in Table 8, and the parallel efficiency —
in Table 9. In each case, when increasing the number of cores of the two clusters,
the parallel efficiency decreases on 8 cores and after that it increases to 100%.
Moreover, a super-linear speed-up is observed in multiple cases. The main reasons

http://www.scc.acad.bg/


Performance Analysis of Parallel Alternating Directions Algorithm 179

Table 4. Speed-up on Galera

nx ny c
2 4 8 16 32 64

800 800 2.00 3.75 5.58 15.49 51.64 71.86
800 1600 1.90 3.14 4.56 11.42 31.49 90.07

1600 1600 1.90 2.93 4.17 9.45 23.08 58.40
1600 3200 2.07 3.17 4.48 9.40 20.78 49.95
3200 3200 2.10 3.64 5.18 10.55 21.73 47.66
3200 6400 2.05 3.72 5.56 12.12 25.09 51.44
6400 6400 1.90 3.84 5.88 15.82 35.61 71.06
6400 12800 1.60 2.49 3.76 9.63 25.55 55.74

12800 12800 2.12 2.90 3.98 10.08 25.55 67.39

Table 5. Parallel efficiency on Galera

nx ny c
2 4 8 16 32 64

800 800 1.000 0.938 0.697 0.968 1.614 1.123
800 1600 0.950 0.785 0.570 0.714 0.984 1.407

1600 1600 0.951 0.733 0.521 0.590 0.721 0.913
1600 3200 1.036 0.794 0.560 0.588 0.649 0.780
3200 3200 1.051 0.909 0.648 0.659 0.679 0.745
3200 6400 1.027 0.930 0.695 0.758 0.784 0.804
6400 6400 0.949 0.959 0.735 0.989 1.113 1.110
6400 12800 0.800 0.622 0.470 0.602 0.798 0.871

12800 12800 1.060 0.726 0.498 0.630 0.798 1.053

for this fact can be related to splitting the entire problem into subproblems which
helps the memory management. In particular, it allows for better usage of cache
memories of individual parallel processors. As expected, the parallel efficiency
on the IBM Blue Gene/P improves with the size of the discrete problems. The
efficiency on 1024 cores increases from 57% for the smallest problems to 94% for
the largest problems.

Execution time on the Blue Gene/P is substantially larger than that on the
Sooner and the Galera, but in some cases the parallel efficiency obtained on
the supercomputer is better. For example, the execution time on single core on
Sooner is seven times faster than on the Blue Gene/P, in comparison with four
times faster performance on 256 cores.

The decomposition of the computational domain in sub-domains is important
for the parallel performance of the studied algorithm. Table 10 shows the exe-
cution time for the problem with nx = ny = 3200 on 128 cores using different
number of sub-domains in each space direction.

Finally, computing time on both parallel systems is shown in Fig. 1 and the
obtained speed-up is shown in Fig. 2.



180 I. Lirkov, M. Paprzycki, and M. Ganzha

Table 6. Speed-up on Sooner

nx ny c
2 4 8 16 32 64 128 256 512

800 800 2.07 4.39 6.61 17.79 39.57 81.17 110.21 188.19 134.30
800 1600 1.97 3.71 5.23 13.34 34.93 76.64 142.35 228.36 237.10

1600 1600 1.97 3.43 4.66 10.81 27.00 68.89 134.56 254.61 328.64
1600 3200 2.00 3.47 4.69 9.79 22.04 54.74 129.16 272.71 375.11
3200 3200 2.20 3.97 5.42 10.92 21.95 50.79 117.21 289.73 500.82
3200 6400 2.15 4.35 6.00 12.45 24.80 51.31 111.49 273.13 530.73
6400 6400 1.98 4.01 5.35 14.38 29.55 58.93 115.96 261.83 505.35
6400 12800 1.88 3.21 4.30 11.71 31.03 63.84 124.07 258.34 514.72

Table 7. Parallel efficiency on Sooner

nx ny c
2 4 8 16 32 64 128 256 512

800 800 1.037 1.098 0.826 1.112 1.237 1.268 0.861 0.735 0.262
800 1600 0.983 0.928 0.653 0.834 1.091 1.198 1.112 0.892 0.463

1600 1600 0.984 0.858 0.583 0.676 0.844 1.076 1.051 0.995 0.642
1600 3200 1.001 0.868 0.586 0.612 0.689 0.855 1.009 1.065 0.733
3200 3200 1.101 0.993 0.678 0.682 0.686 0.794 0.916 1.132 0.978
3200 6400 1.077 1.088 0.750 0.778 0.775 0.802 0.871 1.067 1.037
6400 6400 0.988 1.003 0.669 0.899 0.924 0.921 0.906 1.023 0.987
6400 12800 0.938 0.802 0.537 0.732 0.970 0.998 0.969 1.009 1.005

Table 8. Speed-up on IBM Blue Gene/P

nx ny c
2 4 8 16 32 64 128 256 512 1024 2048 4096

800 800 2.01 3.99 8.20 15.80 32.59 63.08 114.74 216.58 330.83 585.7 631.5 782.5
800 1600 2.00 3.99 7.98 16.13 31.95 61.81 124.52 226.79 401.70 655.0 944.8 1177.6

1600 1600 2.00 3.92 7.89 15.50 32.13 63.68 128.66 246.03 424.30 745.3 1002.3 1541.7
1600 3200 2.00 3.93 7.87 15.55 31.34 65.02 127.38 244.20 474.86 812.0 1290.0 1902.5
3200 3200 2.06 4.03 8.08 15.74 31.90 64.17 131.95 261.66 508.46 937.1 1411.7 2274.2

Table 9. Parallel efficiency on IBM Blue Gene/P

nx ny c
2 4 8 16 32 64 128 256 512 1024 2048 4096

800 800 1.005 0.999 1.025 0.987 1.018 0.986 0.896 0.846 0.646 0.572 0.308 0.191
800 1600 1.002 0.997 0.998 1.008 0.998 0.966 0.973 0.886 0.785 0.640 0.461 0.287

1600 1600 1.002 0.980 0.986 0.969 1.004 0.995 1.005 0.961 0.829 0.728 0.489 0.376
1600 3200 1.000 0.982 0.983 0.972 0.979 1.016 0.995 0.954 0.927 0.793 0.630 0.464
3200 3200 1.029 1.008 1.011 0.984 0.997 1.003 1.031 1.022 0.993 0.915 0.689 0.555



Performance Analysis of Parallel Alternating Directions Algorithm 181

Table 10. Execution time on 128 cores

machine sub-domains
8× 16 4× 32 2× 64 1× 128

Sooner 10.30 13.14 16.80 84.90
IBM Blue Gene/P 56.20 60.17 74.12 170.46

Fig. 1. Execution time for nx = ny = 800, 6400

Fig. 2. Speed-up for nx = ny = 800, 3200, 6400

5 Conclusions and Future Work

We have studied the parallel performance of the recently developed parallel
algorithm based on a new direction splitting approach for solving of the time
dependent Stokes equation on a finite time interval and on a uniform



182 I. Lirkov, M. Paprzycki, and M. Ganzha

rectangular mesh. The performance was evaluated on three different parallel
architectures. Satisfactory parallel efficiency is obtained on all three parallel sys-
tems, on up to 1024 processors. The faster CPUs on Sooner lead to shorter
runtime, on the same number of processors.

In order to get better parallel performance using four cores per processor on
the IBM Blue Gene/P (and future multi-core computers) we plan to develop
mixed MPI/OpenMP code.

Acknowledgments. Computer time grants from the Oklahoma Supercomput-
ing Center (OSCER) and the Bulgarian Supercomputing Center (BGSC) are
kindly acknowledged. This research was partially supported by grants DCVP
02/1 and DO02-147 from the Bulgarian NSF. Work presented here is a part
of the Poland-Bulgaria collaborative grant “Parallel and distributed computing
practices”.

References

1. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz,
J.D., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK
Users’ Guide, 3rd edn. SIAM, Philadelphia (1999)

2. Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comp. 22,
745–762 (1968)

3. Guermond, J.L., Minev, P.: A new class of fractional step techniques for the in-
compressible Navier-Stokes equations using direction splitting. Comptes Rendus
Mathematique 348(9-10), 581–585 (2010)

4. Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for in-
compressible flows. Comput. Methods Appl. Mech. Engrg. 195, 6011–6054 (2006)

5. Guermond, J.L., Salgado, A.: A fractional step method based on a pressure poisson
equation for incompressible flows with variable density. Comptes Rendus Mathe-
matique 346(15-16), 913–918 (2008)

6. Guermond, J.L., Salgado, A.: A splitting method for incompressible flows with
variable density based on a pressure Poisson equation. Journal of Computational
Physics 228(8), 2834–2846 (2009)

7. Lirkov, I., Vutov, Y., Paprzycki, M., Ganzha, M.: Parallel Performance Evaluation
of MIC(0) Preconditioning Algorithm for Voxel µFE Simulation. In: Wyrzykowski,
R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2009, Part II. LNCS,
vol. 6068, pp. 135–144. Springer, Heidelberg (2010)

8. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The Com-
plete Reference. Scientific and engineering computation series. The MIT Press,
Cambridge (1997); second printing

9. Temam, R.: Sur l’approximation de la solution des équations de Navier-Stokes par
la méthode des pas fractionnaires. Arch. Rat. Mech. Anal. 33, 377–385 (1969)

10. Walker, D., Dongarra, J.: MPI: a standard Message Passing Interface. Supercom-
puter 63, 56–68 (1996)


	Performance Analysis of Parallel Alternating Directions Algorithm for Time Dependent Problems
	Introduction
	Stokes Equation
	Parallel Alternating Directions Algorithm
	Formulation of the Scheme
	Parallel Algorithm

	Experimental Results
	Conclusions and Future Work


