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Abstract

The numerical solution of 3D linear elasticity equations is considered. The problem is described by a coupled
system of second-order elliptic partial differential equations. This system is discretized by trilinear parallelepipedal
finite elements.

The preconditioned conjugate gradient iterative method is used for solving of the large-scale linear algebraic
systems arising after the finite element method (FEM) discretization of the problem. Displacement decomposition
technique is applied at the first step to construct a preconditioner using the decoupled block-diagonal part of the
original matrix. Then circulant block-factorization is used for preconditioning of the obtained block-diagonal matrix.
Both techniques, displacement decomposition and circulant block-factorization, are highly parallelizable.

A parallel algorithm is invented for the proposed preconditioner. The theoretical analysis of the execution time
shows that the algorithm is highly efficient for coarse-grain parallel computer systems.

A portable MPI parallel FEM code is developed. Numerical tests for real-life engineering problems of the
geomechanics in geosciences on a number of modern parallel computers are presented. The reported speed-up and
parallel efficiency well illustrate the parallel features of the proposed method and its implementation.
© 2002 IMACS. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

This work concerns new efficient parallel algorithms and the related program software for solving
the elasticity problem of the geomechanics in geosciences. Typical application problems include the
simulations of the foundation of engineering constructions (which transfer and distribute the total loading
into the bed soil) and the multi-layer media with strongly varying material characteristics. Here, the
spatial framework of the construction produces a composed stressed–strained state in active interaction
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zones. A modern design of cost-efficient construction with a sufficient guaranteed reliability requires to
determine the parameters of this stressed–strained state.

These application problems are modeled mathematically as 3D nonlinear elasticity problem described
by a system of nonlinear partial differential equations. A finite element (or finite difference) discretization
reduces the partial differential equation problem to a system of linear/nonlinear equations. To make a
reliable prediction of the construction safety, which is sensitive to soil deformations, a very accurate
model and a large system of sparse linear equations is required. In the real-life applications, the system
can be very large containing up to several millions of unknowns. Hence, these problems have to be solved
by robust and efficient parallel iterative methods (see[1]) on a powerful multiprocessor machine.

Note that the numerical solution of linear systems is fundamental in the elasticity problem. In fact,
nonlinear equations generated from the discretization of the nonlinear elasticity problem have to be solved
by an iterative procedure, in which a system of linear equations has to be solved in every step of iteration.
Solving these linear systems is usually very time-consuming (costing up to 90% of the total solution
time). Hence, developing fast algorithms for solving linear equations becomes the most important and
fundamental issue. A highly efficient iterative method for solving linear systems significantly speed up
the simulation processes of real application problems. An efficient iterative solver should not only have
a fast convergence rate but also a high parallel efficiency. Moreover, the resulting program should be
efficiently implemented on modern shared-memory, distributed memory, and shared–distributed memory
parallel computers.

2. Elasticity problems

The foundations of engineering constructions transfer and distribute the total loading into the bed
soil. For simplicity, we mainly study the 3D linear elasticity problem based on the followingtwo basic
assumptions: (1) the displacements are small, and (2) the material properties are isotropic.

The mathematical formulation of the 3D elasticity problem is described as follows. Letu
¯

= (u1, u2, u3)
T

be the displacement vector andp
¯

the volume force vector. Here T denotes the transpose of a vector or a
matrix. Let us denote the matricesD,G andH by
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H =




(1 − ν) ν ν 0 0 0

ν (1 − ν) ν 0 0 0
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.

Then the strain vectorε
¯

= (ε11, ε22, ε33, ε12, ε23, ε31)
T and the stress vectorσ

¯
= (σ11, σ22, σ33, σ12,

σ23, σ31)
T are determined by

ε
¯

= Gu
¯

and σ
¯

= E∗Hε
¯
, (1)

whereE∗ = E/(1 + ν)(1 − 2ν). Here,ν = ν(ε
¯
) andE = E(ε

¯
) are, respectively the Poisson ratio and

the deformation module.
With the earlier notation, the 3D elasticity problem in the stressed–strained state, on a computational

domainΩ, can be described by a coupled system of 3D equations, which can be written in the form

Dσ

¯
= −p

¯
inΩ

u
¯

= u
¯D onΓD∑3

i=1 σijni = σNj onΓN, j = 1,2,3,

(2)

whereΓD andΓN are the parts of the boundary ofΩ with respectively Dirichlet and Neumann boundary
conditions; andu

¯D andσ
¯N are respectively the given displacement and stress vectors on the boundaries

ΓD andΓN. Here we setσji = σij for i < j .
If the Poisson ratio and the deformation module are nonlinear functions, the relations(1) represent the

nonlinear nature of the generalized Hooke’s law. Here the generalized Hooke’s law is specified by the
following additional assumption: the Poisson ratioν ∈ (0,1/2) is a constant for a given material (soil
layer or constructive element). Obviously, this means that the coefficients in the boundary value problem
(2) are piece-wise continuous with jumps through the inner boundaries between the different soil layers
as well as between the soil and the construction elements.

With a linearization, the nonlinear equations given in(2) can be simplified to a system of three linear
differential equations, which is often referred to as the Lamé equations.

Denote Sobolev spaces [H 1
E(Ω)]

3 = {v ∈ [H 1(Ω)]3 : v|̄ΓD = u
¯D} and [H 1

0 (Ω)]
3 = {v ∈ [H 1(Ω)]3 :

v|̄ΓD = 0}. The variational formulation of the Lamé equations is given as follows:

find u
¯
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3 such that ∀v
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whereλ andµ are the Lamé positive constants. Here divu
¯

is the divergence of the vectoru
¯
. The relations

between the elasticity modulusE, ν and the material parametersλ, µ are

λ = νE

(1 + ν)(1 − 2ν)
and µ = E

2(1 + ν)
.
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Fig. 1. Benchmark problems: (a) Problem 1: Cross-section of the computational domainΩ. Esoil = 10 MPa,νsoil = 0.3,
Epile = 31500 MPa,νpile = 0.2; (b) Problem 2: Cross-section of the computational domainΩ. EL1 = 5.2 MPa,νL1 = 0.4,
EL2 = 9.4 MPa,νL2 = 0.35,EL3 = 14.0 MPa,νL3 = 0.25,EL4 = 21.4 MPa,νL4 = 0.2.

We restrict our considerations to the caseΩ = [0, xmax
1 ] × [0, xmax

2 ] × [0, xmax
3 ], where the boundary

conditions on each of the sides ofΩ are of a fixed type. The benchmark problems from[4] are used in the
reported numerical tests. These benchmarks represent the model of a single pile in a homogeneous sandy
clay soil layer (seeFig. 1(a)) and two piles in an inhomogeneous sandy clay soil (Fig. 1(b)). A uniform
grid is used withn1, n2 andn3 grid points along the coordinate directions. Then the stiffness matrixK

can be written in a 3× 3 block form where the blocksKij are sparse block-tridiagonal matrices of a size
n1n2n3.

3. DD CBF preconditioning

First, let us recall that am×m circulant matrixC has the form(Ck,j ) = (c(j−k)modm). Each circulant
matrix can be factorized asC = FΛF ∗, whereΛ is a diagonal matrix of the eigenvalues ofC, andF is
the Fourier matrixF = (1/

√
m){e2π(jk/m)i}0≤j,k≤m−1. Here i stands for the imaginary unit.

3.1. A displacement decomposition-based preconditioner

There are a lot of works dealing with preconditioning of iterative solution methods for the FEM
elasticity systems. In[2] Axelsson and Gustafsson construct their preconditioners based on the point-ILU
factorization of the displacement decoupled block-diagonal part of the original matrix. This approach is
known asdisplacement decomposition (see, e.g.[3]).

To define the displacement decomposition preconditionerMDD of the matrixK, we introduce the
auxiliary Laplace equation−ux1x1 − ux2x2 − ux3x3 = f , with boundary conditions corresponding to
the considered coupled elasticity problem. Let us primary assume, that this Laplace equation is dis-
cretized by the same brick finite elements as the original problem, and letK0 be the obtained stiffness
matrix.
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The following estimate based on Korn’s inequality gives the theoretical background of the displacement
decomposition methods[2]:

κ(M−1
DDK) = O

(
1

1 − 2νmax

)
, (3)

whereνmax = maxΩν and

MDD = diag(K0,K0,K0). (4)

The next step in our construction is to substitute in(4), K0 by A0, whereA0 stands for the Laplace
stiffness matrix corresponding to linear finite elements or, which is equivalent in the case under consider-
ation, to a seven-point finite difference stencil. This step is motivated by the more simple/sparse structure
of A0 as well as by the spectral equivalence

κ(A−1
0 K0) = O(1). (5)

3.2. Circulant block factorization

The CBF preconditioning technique (see[5]) incorporates the circulant approximation into the frame-
work of the LU block factorization. It was recently analyzed for the model Dirichlet boundary value
problem

−(a(x1, x2, x3)ux1)x1 − (b(x1, x2, x3)ux2)x2 − (c(x1, x2, x3)ux3)x3 = f (x1, x2, x3)

in Ω = [0, xmax
1 ] × [0, xmax

2 ] × [0, xmax
3 ]. Let us assume (as inSection 2) thatΩ is discretized by a

uniform grid withn1, n2 andn3 grid points along the coordinate directions, and that a standard (for such
a problem) seven-point finite difference (FEM) approximation is used. The related stiffness matrixA(d)

can be written in the block-formA(d) = tridiag(−A(d)
i,i−1, A

(d)
i,i ,−A(d)

i,i+1), i = 1,2, . . . , n1, whereA(d)
i,i is

a block-tridiagonal matrix corresponding to theith x1-plane, and the off-diagonal blocks are diagonal
matrices. Now, CBF preconditionerMCBF is defined as follows:

MCBF = tridiag(−Ci,i−1, Ci,i,−Ci,i+1), i = 1,2, . . . , n1. (6)

HereCi,j = BC(A(d)
i,j ) is a block-circulant approximation of the corresponding blockA

(d)
i,j . The relative

condition number of the CBF preconditioner for the model 3D problem is analyzed using the technique
from [6] and the following estimate is derived:

κ(M−1
CBFA0) ≤ 2 max(n2, n3)+ 2

√
2. (7)

Now, let us denote byM0 the CBF preconditioner forA0, the matrix introduced in the previous subsection.
At the last step of our construction we substitute in(4), K0 byM0, and get the DD CBF preconditioner
defined by:

MDD CBF = diag(M0,M0,M0).

The estimate of the condition number of the preconditioned matrix

κ(M−1
DD CBFK) = O

(
nmax

1 − 2νmax

)
, wherenmax = max(n1, n2, n3) (8)

follows straightforwardly from(3), (5) and (7).



514 I. Lirkov / Mathematics and Computers in Simulation 61 (2003) 509–516

Remark 1. We have observed in the performed numerical tests that a diagonal scaling ofK improves
the convergence rate of the iterative method in the case of problems with jumping coefficients.

4. Parallel tests of the DD CBF preconditioning FEM code

In this section, we report the results of the experiments executed on four parallel systems. We report here
the elapsed timeTp onp processors, the speed-upSp = T1/Tp, and the parallel efficiencyEp = Sp/p. The
benchmark problems were already described inSection 2. We used discretizations withn1 = n2 = n3 = n

wheren = 32,64. The sizes of the discrete problems are 3.323 and 3.643.
The developed parallel code has been implemented inC and the parallelization has been facilitated

using the MPI[7,8] library. In all cases, the manufacturer provided MPI kernels have been used. No
machine-dependent optimization has been applied to the code itself. Instead, in all cases, the most ag-
gressive optimization options of the compiler have been turned on. Times have been collected using the
MPI provided timer. In all cases, we report the best results from multiple runs in interactive and batch
modes (for varying workloads).

In Table 1, we present results of experiments executed on two shared memory machines: SUN Ultra-
Enterprise Symmetric Multiprocessor with eight Ultra-SPARC 168 MHz processors and 1GB main

Table 1
Parallel time (in seconds), speed-up and parallel efficiency on shared memory machines

n p SUN Ultra-Enterprise 3000 Origin 2000

Tp Sp Ep Tp Sp Ep

Problem 1
32 1 383.35 74.45

2 186.77 2.05 1.026 47.19 1.58 0.789
4 95.11 4.03 1.008 28.34 2.63 0.657
8 50.12 7.65 0.956 13.89 5.36 0.670

16 8.31 8.96 0.560

64 1 3753.39 1453.42
2 1824.00 2.06 1.029 700.95 2.07 1.037
4 918.31 4.09 1.022 381.35 3.81 0.953
8 472.62 7.94 0.993 207.05 7.02 0.877

16 133.36 10.90 0.681

Problem 2
32 1 1680.15 335.02

2 809.64 2.08 1.038 201.65 1.66 0.831
4 400.39 4.20 1.049 110.73 3.03 0.756
8 204.28 8.22 1.028 53.80 6.23 0.778

16 27.53 12.17 0.761

64 1 20900.10 7932.28
2 10401.40 2.01 1.005 3643.01 2.18 1.089
4 5197.65 4.02 1.005 2164.27 3.67 0.916
8 2623.48 7.97 0.996 1069.57 7.42 0.927

16 585.54 13.56 0.847
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memory; and SGI Origin 2000 with 64 R10000 300 MHz processors and 64GB main memory. As ex-
pected, the parallel efficiency increases with the size of the discrete problems. The parallel efficiency is
>50% which confirms our general expectations. There exist at least two reasons for the reported high
efficiency: (a) the network parametersstart-up time andtime for transferring of single word are relatively
small for the multiprocessor machines; (b) there is also some overlapping between the computations
and the communications in the algorithm. Moreover, the super-linear speed-up can be seen in some of
the runs. This effect has a relatively simple explanation. When the number of processors increases, the
size of data per processor decreases. Thus the strongermemory locality increases the role of the cache
memories.

Table 2shows results obtained on a clusters consisting of: four dual processor PowerPC with G4
450 MHz processors and 512MB memory per node (Black Lab); and 10 dual processor DS20 Al-
phaServers with Compaq Alpha EV6 500 MHz processors and 768MB memory per node. The memory
on one PowerPC is sufficient only for the discretization with 32× 32 × 32 grid points. For the larger
problem, we report the parallel efficiency related to the results on two processors. The Alpha processors
are the fastest from the reported machines. We suppose that the network on this cluster is not fast enough
and this affects the performance of the parallel algorithm. Nevertheless, we point your attention that the
presented results are very promising forn = 64 andp = 2,4.

Table 2
Parallel time (in seconds), speed-up and parallel efficiency on clusters

n p Black Lab cluster Alpha cluster

Tp Sp Ep Tp Sp Ep

Problem 1
32 1 125.99 57.03

2 67.39 1.87 0.935 46.69 1.22 0.611
4 39.58 3.18 0.795 36.29 1.57 0.393
8 23.92 5.27 0.658 18.17 3.14 0.392

16 15.85 3.60 0.225

64 1 5528.39 1201.64
2 1190.63 817.75 1.47 0.735
4 651.55 0.914 549.14 2.19 0.547
8 362.58 0.821 534.86 2.25 0.281

16 227.41 5.28 0.330

Problem 2
32 1 541.30 245.09

2 295.71 1.82 0.912 200.97 1.22 0.610
4 170.60 3.52 0.880 157.45 1.56 0.389
8 101.50 4.79 0.598 77.71 3.15 0.394

16 71.59 3.42 0.214

64 1 27090.40 6109.09
2 6141.29 4192.16 1.46 0.729
4 3318.85 0.925 2847.01 2.15 0.536
8 1861.66 0.825 2778.42 2.20 0.275

16 1189.52 5.14 0.321
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Fig. 2. Speed-up for one iteration.

Finally, Fig. 2shows parallel speed-up for execution of one iteration on different parallel systems.
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