How does clinical data fit into two leukopoiesis models?

Gergana Bencheva

Institute for Parallel Processing
Bulgarian Academy of Sciences

gery@parallel.bas.bg
Contents

- Motivation
- Two leukopoiesis models
- Solution method
- Clinical data
- Numerical tests
- Concluding remarks
Motivation
Blood cells production and regulation

Haematopoietic pluripotent stem cells (HSCs) in bone marrow give birth to the three blood cell types.

Growth factors or **Colony Stimulating Factors** (CSF) – specific proteins that stimulate the production and maturation of each blood cell type.

Blast cells – blood cells that have not yet matured.

<table>
<thead>
<tr>
<th>Blood cell type</th>
<th>Function</th>
<th>Growth factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythrocyte</td>
<td>Transport oxygen to tissues</td>
<td>Erythropoietin</td>
</tr>
<tr>
<td>Leukocyte</td>
<td>Fight infections</td>
<td>G-CSF, M-CSF, GM-CSF, Interleukins</td>
</tr>
<tr>
<td>Thrombocyte</td>
<td>Control bleeding</td>
<td>Thrombopoietin</td>
</tr>
</tbody>
</table>

Leukopoiesis – process of production and regulation of white blood cells (T- and B-lymphocytes, NK cells, monocytes, granulocytes, eosinophils, and basophils)
Differentiation stages in haematopoiesis

http://www.bendermedsystems.com/
Blood pathologies

Various **hematological diseases** (including leukemia) are characterized by **abnormal production** of particular blood cells (matured or blast).

Main stages in their therapy:

TBI: Total body irradiation (TBI) and chemotherapy – kill the "tumour" cells, but also the healthy ones.

BMT: Bone marrow transplantation (BMT) – stem cells of a donor (collected under special conditions) are put in the peripheral blood, from where they have to:
 1) find their way to the stem cell niche in the bone marrow; and afterwards
 2) self-renew and differentiate to regenerate the patient’s blood system.
Need for computer simulation

The approach "trial-error" is not recommended for dealing with questions related to understanding and predicting of human physiological processes in health and disease.

Development of software tools for real-time data-driven simulation of haematopoiesis will give possibility to

- understand better the blood cells production and regulation processes;
- design nature experiments for validation of hypotheses;
- predict the effect of various treatment options for patients with specific hematological diseases;

Current stage:
Two leukopoiesis models
Involved data

Growth factors model (GFM)

Leukopoiesis model (LM)

GFM system of DDEs

\[
\begin{align*}
\frac{dQ}{dt} &= -\delta Q(t) - g(Q(t)) - \beta(Q(t), E(t)) Q(t) \\
&\quad + 2e^{-\gamma \tau} \beta(Q(t-\tau), E(t-\tau)) Q(t-\tau) \\
\frac{dM}{dt} &= -\mu M(t) + g(Q(t)) \\
\frac{dE}{dt} &= -k E(t) + f(M(t))
\end{align*}
\]

\[Q(t) = Q_0(t), \quad M(t) = M_0(t), \quad E(t) = E_0(t), \quad t \in [-\tau, 0]\]

Delay \(\tau\) corresponds to the cell cycle duration.

\(Q(t) \geq 0, M(t) \geq 0, E(t) \geq 0, k > 0, \mu > 0\)

Existence of nontrivial positive steady-state is ensured by:

\[0 < \delta + g'(0) < \beta \left(0, \frac{f(0)}{k}\right)\] and

\[0 \leq \tau < \tau_{max} := \frac{1}{\gamma} \ln \left(\frac{2\beta \left(0, \frac{f(0)}{k}\right)}{\delta + g'(0) + \beta \left(0, \frac{f(0)}{k}\right)}\right)\]
LM system of DDEs

\[
\begin{align*}
\frac{dQ}{dt} &= -[K + k(W(t)) + \beta(Q(t))]Q(t) \\
&\quad + 2e^{-\gamma_1 \tau_1} \beta(Q(t - \tau_1))Q(t - \tau_1) \\
\frac{dW}{dt} &= -\gamma_2 W(t) + Ak(W(t - \tau_2))Q(t - \tau_2)
\end{align*}
\]

\[Q(t) = Q_0(t), \ W(t) = W_0(t), \ t \in [-\tau^*, 0], \ \tau^* = max\{\tau_1, \tau_2\}\]

Delay \(\tau_1 \geq 0\) corresponds to the cell cycle duration.
Delay \(\tau_2 \geq 0\) corresponds to the amplification phase duration.
\(Q(t) \geq 0, \ W(t) \geq 0\)

Existence of nontrivial positive steady-state is ensured by:
\((2^{-\gamma_1 \tau_1} - 1)\beta(0) > k(0) + K\) and
the function \(Q \mapsto Q\beta(Q)\) is decreasing in \((Q_0, Q_1)\), where
\[Q_0 = \beta^{-1} \left(\frac{k(0) + K}{2^{-\gamma_1 \tau_1} - 1}\right)\]
and \[Q_1 = \beta^{-1} \left(\frac{K}{2^{-\gamma_1 \tau_1} - 1}\right)\]
Solution methods
Solution methods

XPPAUT is "A tool for simulating, animating and analyzing dynamical systems." (G. B. Ermentrout)

B. Ermentrout, *Simulating, analyzing and animating dynamical systems: a guide to XPPAUT for researchers and students*, SIAM, 2002
http://www.math.pitt.edu/~bard/xpp/xpp.html

XPPAUT implementation of the methods:

<table>
<thead>
<tr>
<th>Expl.</th>
<th>Impl.</th>
<th>FS</th>
<th>AS</th>
<th>Stiff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runge Kutta (RK)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dormand-Prince 5 (DP5)</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Rosenbrock (RB2)</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

Rosenbrock is based on Matlab version of the two step Rosenbrock algorithms.

Delay equations are solved by storing previous data and using cubic polynomial interpolation to obtain the delayed value.

Clinical data
Numerical tests
Model parameters
Concluding remarks
Concluding remarks

- What is done by now
- Open issues
- Further steps

Acknowledgements:
Thanks to L. Gartcheva, M. Guenova
This work is supported in part by the Bulgarian NSF grants DO 02-214 and DO 02-147

Thank you for your attention!