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1. Introduction

The nonconforming finite elements and the parallel algorithms are two
advanced computational mathematics topics which have provoked a lot of pub-
lications during the last decades. How to incorporate the recent achievements
in both areas to obtain efficient numerical solution methods of the nowadays
real life mathematical models? This is the leading question, motivating the
present study. A lot of important engineering and environmental problems, e.g.
petroleum recovery, ground-water contamination, seismic exploration etc., are
modeled by boundary value problems in the presence of strong heterogeneities,
anisotropy and large coefficient jumps. The mixed finite element method (FEM)
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is known to be the best generally applicable discretization approach for such
problems. However, this technique leads to enlarged system of algebraic equa-
tions which is additionally more expensive to solve, because the problem is
saddle-point. Arnold and Brezzi (see [1]) have shown that the lowest order
Raviart-Thomas mixed FEM approximation is equivalent to the usual Crouzeix-
Raviart nonconforming FEM approximation. Further such relationship has been
established and studied for a large variety of mixed finite element spaces and
the related nonconforming spaces.

This work is focused on the implementation of rotated bilinear quadri-
lateral elements, first proposed in [6] as a cheapest stable FEM approximation
of the Stokes problem. Here, the goal is to analyze theoretically and experimen-
tally the properties of the recently introduced (see [8]) parallel preconditioned
conjugate gradient (PCG) solver for related elliptic FEM system. Our study
can be viewed as a generalization of the results published by Gustafsson and
Lindskog in [4, 5], where a parallel MIC(0) factorization is constructed for the
conforming linear FEM system, corresponding to a triangulation on a skewed
mesh. A two-level parallel algorithm of this class, but for Crouzeix-Raviart
nonconforming FEM systems, is developed and theoretically studied in [9].

The outline of the paper is as follows. In Section we give the needed
background of the bilinear nonconforming FEM discretization. We briefly in-
troduce the algorithms under consideration, where mid-point (MP) and integral
mid-value (MV) interpolation operators are used in the computation of the
nodal basis functions. In Section , the element-by-element construction of the
preconditioner is presented. How the resulting PCG algorithm is implemented
in parallel is described in Section . Some advantages and disadvantages of the
solver, based on the derived estimates of the parallel times, are observed at the
end of this section. Last part of the paper is devoted to the analysis of the
numerical results obtained on two Beowulf type Linux clusters. Their architec-
tures give an idea how the drawbacks influence the speed-up, but also show the
potential of the developed parallel solver for implementations on shared memory
machines.

2. Nonconforming finite element discretization

We consider the isotropic two-dimensional elliptic problem associated
with the bilinear form

ah(uh, vh) =
∑

e∈ωh

∫

e

a(e)
2∑

i=1

∂uh

∂xi

∂vh

∂xi
dx .(1)

Here ωh is a decomposition of the computational domain into convex quadrilat-
erals denoted by e. The coefficient a(e) is a constant on each e ∈ ωh defined as
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an averaged value of the coefficients of the original boundary value problem.

The finite element space Vh corresponding to ωh is obtained using the
rotated bilinear nonconforming finite elements, as proposed in [6]. The reference
element E is the unit square with sides Γj , j = 1, . . . , 4, parallel to coordinate
axes, and nodes j = 1, . . . , 4 which are the mid-points of the sides. Mid-point
and integral mid-value interpolation operators are implemented in construction
of the nodal basis functions ϕi ∈ Sp, Sp = span{1, x1, x2, x

2
1−x2

2}. This leads to
two alternative constructions of Vh, referred as Algorithm MP and Algorithm
MV respectively. The standard interpolation conditions ϕi(j) = δij , i, j =
1, . . . , 4 are used in Algorithm MP, where δij is the Kronecker symbol. The
conditions for Algorithm MV are

1

|Γj |

∫

Γj

ϕidx = δij , i, j = 1, . . . , 4 ,

where Γj is the side of E containing the node j. The expressions of ϕi for these
two cases are as follows:

Algorithm MP Algorithm MV

ϕ1(x1, x2)=
1
4(1 − 2x1 + (x2

1 − x2
2)) ϕ1(x1, x2)=

1
8(2 − 4x1 + 3(x2

1 − x2
2))

ϕ2(x1, x2)=
1
4(1 + 2x1 + (x2

1 − x2
2)) ϕ2(x1, x2)=

1
8(2 + 4x1 + 3(x2

1 − x2
2))

ϕ3(x1, x2)=
1
4(1 − 2x2 − (x2

1 − x2
2)) ϕ3(x1, x2)=

1
8(2 − 4x2 − 3(x2

1 − x2
2))

ϕ4(x1, x2)=
1
4(1 + 2x2 − (x2

1 − x2
2)) ϕ4(x1, x2)=

1
8(2 + 4x2 − 3(x2

1 − x2
2)).

The standard finite element procedure (see, e.g., [10]) continues with compu-
tation of the element stiffness matrices Ae = {αij}

4
i,j , e ∈ ωh. It follows the

isoparametric technique using the reference element E basis functions. The
assembling of Ae, e ∈ ωh leads to the linear system of equations

Ax = b .(2)

The stiffness matrix A = {aij}
N
i,j=1 is sparse, symmetric and positive definite,

with at most seven nonzero elements per row. Its structure is one and the
same for MP and MV but it is different from the usual block banded case for
conforming finite elements. The preconditioning strategy depends only on the
structure of the matrix, but not on the type of the nodal basis functions. So we
use again MP and MV notations only in the tables with numerical results.
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3. Preconditioning strategy

The preconditioned conjugate gradient (PCG) method is known to be
the best solution method of (2) for the case of large scale problems. We use
PCG with preconditioner based on Modified Incomplete Cholesky (MIC(0))
factorization of sparse matrices. The essence of MIC(0) is given below. Some
more details may be found in [2, 3].

Let us rewrite the real symmetric matrix A as a sum of its diagonal (D),
strictly lower (−L̃) and upper (−L̃)t triangular parts

A = D − L̃ − L̃t .(3)

We say that the following approximate factorization of A

CMIC(0)(A) = (X − L̃)X−1(X − L̃)t , X = diag(x1, . . . , xN )(4)

is a stable MIC(0) factorization if X > 0 and thus CMIC(0)(A) is positive definite.
Concerning construction and stability of MIC(0) factorization, the following
theorem holds.

Theorem 1. Let A = {aij} be a symmetric real N × N matrix and let

A = D − L̃ − L̃t be the splitting (3) of A. Let us assume that

L̃ ≥ 0

Ae ≥ 0

Ae + L̃te > 0 , e = (1, · · · , 1)t ∈ RN ,

i.e. that A is a weakly diagonally dominant matrix with non-positive off-diagonal
entries and that A+L̃t = D−L̃ is strictly diagonally dominant. Then the relation

xi = aii −
i−1∑

k=1

aik

xk

N∑

j=k+1

akj

gives only positive values and the diagonal matrix X = diag(x1, · · · , xN ) defines
a stable MIC(0) factorization of A.

To solve the system with preconditioner CMIC(0)(A) we have to solve one
system with lower triangular matrix, one - with upper triangular and one - with
diagonal matrix. Two of these steps are based on recursive computations and
therefore the resulting PCG algorithm is inherently sequential. To overcome this
disadvantage (in the sense of a parallel implementation), we introduce a locally
constructed approximation B of the original stiffness matrix A. To illustrate
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the basic ideas of the algorithm, we will consider a problem in a square domain
Ω. Let us assume that the mesh is rectangular, and the numbering of the
unknowns follows the columns of the nodes. The structure of the matrix A
corresponding to such a model problem is shown in Fig. 1(a). We see that there
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Figure 1: Structure of (a) matrix A and (b) introduced matrix B.

are not more than seven nonzero elements per row and only five of them are with
steady indices in terms of co-diagonals. The rest are alternatively changing their
position, forming either diagonal blocks on the main diagonal and five nonzero
blocks per block row, or tridiagonal blocks on the main diagonal and three
nonzero blocks per block row. The connectivity pattern corresponding to the
stiffness matrix Ae for a given rotated bilinear nonconforming finite element is
presented in Fig. 2(a). The diagonals of the dashed quadrilaterals are mapped

(a)

e
1

2

3

4

(b)

e
1

2

3

4

Figure 2: Connectivity pattern of (a) matrix Ae and (b) matrix Be.

into the nonzero elements with ”changing position”. So if we ”cut” these links



324 G. Bencheva, S. Margenov

in Ae, the corresponding elements in the global stiffness matrix will be vanished.
Following this idea, we introduce the locally modified element stiffness matrix
Be with connectivity pattern shown in Fig. 2(b). The components of Be are
defined as follows:

Ae =




α11 α12 α13 α14

α21 α22 α23 α24

α31 α32 α33 α34

α41 α42 α43 α44




, Be =




β11 0 α13 α14

0 β22 α23 α24

α31 α32 β33 0

α41 α42 0 β44




,

where

β11 = α11 + α12 , β22 = α22 + α21 , β33 = α33 + α34 , β44 = α44 + α43 .

i.e. Ae and Be have equal rowsums. Assembling the element-by-element defined
matrices Be we get a global matrix B with a regular block structure illustrated
by Fig. 1(b). We solve the system (2) using PCG algorithm with preconditioner
C for A defined by

C = CMIC(0)(B) .

A condition number model analysis of B−1A can be found in [8]. It is shown
there that: a) the matrices A and B are spectrally equivalent; b) the conditions
for a stable MIC(0) factorization hold for B; and c) the PCG convergence rates
of the preconditioners CMIC(0)(B) and CMIC(0)(A) are very similar preserving the
robustness of the pointwise incomplete factorization. The diagonal blocks of the
matrix B allow for a parallel implementation of the resulting PCG algorithm.
The related parallel algorithm is presented and analyzed in the next part of the
paper.

4. Parallel implementation

How are the data and the computations distributed among the proces-
sors? What kind of communications are required? How good is the developed
parallel solver? Such kind of questions are treated in this section.

Let us have NP processors denoted by P0, P1, . . . , PNP−1. We also
assume that the model square domain shown in Fig. 3 is decomposed into n1×n2

nonconforming quadrilateral elements. Each vertical line of nodes (column-wise
numbering is used) corresponds to one of the diagonal blocks of the matrices A
and B (see also Fig. 1). Note that the first line has n2 nodes, the second - n2+1
nodes, the third one has again n2 nodes and so on. This leads to alternatively
changing size of the diagonal blocks of A (and B), namely odd blocks are of
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Figure 3: Data distribution - NP = 3, N = n1(2n2 + 1) + n2, n1 = 9, n2 = 9.

order n2 while for even blocks it is n2 +1. The total number of blocks is 2n1 +1
and for the size N of the discrete problem we have N = n1(2n2 + 1) + n2.

We partition the domain into NP horizontal strips with approximately
equal number of elements. Let n2 = q.NP + r, q, r ∈ N, r < NP . Then the
first r strips have q + 1 lines of elements, the rest consist of q lines, and each
line has n1 elements. Each two strips with a common boundary are associated
with processors with successive indices. The nodes on the boundaries of these
strips belong by assumption to the processor with a larger number (see Fig. 3).
This leads to a division of each of the block rows of the matrices A and B into
strips with almost equal number of equations. All the vectors are distributed
in the same manner. Some additional storage is allocated for communications.
We have to point out that each processor contains a strip from each of the block
equations, not one strip from the whole system.

How are computations partitioned and what kind of communications are
required? Let us first recall that each PCG iteration includes the solution of
one system with the preconditioner C, one matrix-vector multiplication with the
original matrix A, two inner products, and three linked vector triads of the form
v := αv + u.

Each processor calculates its part of the vector v and no communications
are required for the triads. After computing the inner products corresponding
to their parts of vectors, the processors have to perform one global reduction
operation for one number to sum up the final result.

To obtain the components of Av for which a given processor, say the
processor Pi, is responsible, it first has to communicate with processors Pi−1

and Pi+1. Pi has to receive some components of the vector v and also to send
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to Pi−1 and Pi+1 the related data. After the transfer is completed, Pi is able to
perform a matrix-vector multiplication with its part of A.

Fig. 4 illustrates the communications related to Pi not only for Av but

P

P

P
i+1

i

i−1

(Av)

P

P

P
i+1

i

i−1

−1(L  v)

P

P

P
i+1

i

i−1

−t(L  v)

Figure 4: Communication scheme for matrix-vector multiplication (Av) and for
solution of systems with lower triangular (L−1v) and upper triangular (L−tv)
matrices.

also for the solution of systems with preconditioner C. Each of its components
(Av), (L−1v) and (L−tv) represents the strip of the domain associated with the
processor Pi and the near-by parts of the data in Pi−1 and Pi+1. Dashed lines
mean that data from these parts of the domain are not located in the processor,
but additional storage is provided to ensure the communications. With ◦ are
denoted the components which Pi sends to Pi+1, and with 2 - those to Pi−1.
The sign × indicates the place where the transferred components are stored.
Although it is not mapped in the figure, the processor Pi also have to receive
the corresponding components from processors Pi−1 and Pi+1.

Let us go back to the matrix-vector multiplication. Processor Pi has to
send 2n1 + 1 elements of v (all ◦-s) to Pi+1 and to receive from it n1 (all 2-es
of Pi+1) numbers. All these data are computed at the previous iteration step.
They could be transfered in two portions - one to be sent from Pi, and one to
be received by it. Next, Pi has to communicate with Pi−1 in a similar way. Now
it sends one portion of length n1 and receives a vector of length 2n1 + 1. Note
that if we have 2 processors only, one of the neighbours Pi+1 and Pi−1 will not
exist. Hence a half of the above data are to be transferred.

To handle the system with the preconditioner (see (3), (4))

CMIC(0)(B)w ≡ (X − L̃)X−1(X − L̃)tw = v
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one has to perform the following three steps: 1) find y from Ly = v, where
L = X − L̃; 2) compute y := Xy; and 3) find w from Ltw = y. The matrix X
is diagonal, distributed among the processors in the above described manner.
The important advantage of the matrix B is that all of its diagonal blocks are
diagonal. In this case, L̃ has zero blocks L̃ii, i = 1, . . . , 2n1 + 1. The system
Ly = v is solved using a standard forward recurrence. The block L11 is diagonal,
divided into NP strips - one per each processor. So L11y1 = v1 is solved
in parallel without any communications and with equally balanced amount of
arithmetic operations. Then we have to determine y2 from L21y1 +L22y2 = v2.
The component y1 is computed at the previous step but each processor has a
strip of y1. The block L21 is two-diagonal and hence the processor Pi has to
send one component to Pi+1 and to receive another one from Pi−1 (see Fig.
4(L−1v)). Then L22y2 = v2 −L21y1 is handled concurrently without any other
communications. After that L32y2 + L33y3 = v3 has to be solved. Again, one
component of y2 is to be transferred but now to processor Pi−1. The procedure
continues till the last block of y is computed. The second step y := Xy is
communications-free and fully parallel. The last third step is handled in similar
way as step 1) using a standard backward recurrence. The communications are
illustrated in Fig. 4(L−tv). When we have only two processors, the transferred
data at steps 1) and 3) are again two times less. It is important to note that
here we are not able to combine components to be sent several at a time. In
this sense there is still recursion, but it is for blocks, and each block is handled
in parallel.

Now we are ready to derive estimates for the parallel times. Real time
TNP for solution of the system (2) with NP processors depends on computa-
tional complexity, type and amount of communications and characteristics of
the specific parallel machine. We assume, like in [7], that the computations and
communications are not overlapped, and therefore, TNP is the sum of the com-
putation and communication times. We also suppose that: a) the execution of
M arithmetic operations (a. o.) on one processor takes time Ta = M.ta, where
ta is the average unit time to perform one arithmetic operation on one processor
(no vectorization); and b) the communication time to transfer M data elements
from one processor to another is approximated by Tcom = l(ts +M.tw), where ts
is the start-up time, tw is the incremental time necessary for each of the M words
to be sent, and l is the graph distance between the processors. Since the parallel
properties do not depend on the number of iterations, it is enough to evaluate
the time TNP per iteration and to use this time in the speed-up and efficiency
analysis. The computational complexity per processor is N it,NP

PCG ≈ 34N/NP be-
cause: one solution of system with CN×N requires ≈ 11N/NP a. o.; one matrix
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vector multiplication with AN×N is done by ≈ 13N/NP a. o.; two inner prod-
ucts are performed for 4N/NP a. o.; and three linked vector triads v := αv+u

take 6N/NP a. o. Hence, the computation time is

T it
a = 34

N

NP
.ta .(5)

The communication time is a sum of corresponding times for inner products,
matrix-vector multiplication, and solution of a system with the preconditioner.
The global reduction operation is presented as sum of one broadcast of one word
and one gather again for one word: Tcom(in.pr.) = T (bcast, 1) + T (gather, 1).
These times depend on the architecture (ring, 2D-mesh, H-cube) and the number
of processors. Here we assume that they do not contribute to the leading terms
of the total parallel times when n1 À NP . In our case, the communications
for Av and C−1v are between processors with successive indices. They will
be local if these processors are physically neighbours, i.e. l = 1. Hence, the
communication time for Av is estimated by Tcom(Av) = 2ts +(3n1 +1)tw, when
NP = 2 and Tcom(Av) = 4ts + 2(3n1 + 1)tw, when NP > 2. For solution of a
system with the preconditioner we have Tcom(C−1v) = 4n1(ts + tw) for the case
NP = 2 and Tcom(C−1v) = 8n1(ts + tw) for the case NP > 2 (Tcom(C−1v) =
Tcom(L−1v) + Tcom(L−tv)).

Hence, the total communication time per iteration (when n1 À NP ) is
approximated by

T it
com ≈

{
4n1.ts + 7n1.tw , for NP = 2 ,

8n1.ts + 14n1.tw , for NP > 2 .
(6)

Therefore, if NP > 2, the time for one PCG iteration is

T it
NP = T it

a + T it
com ≈ 34

n1(2n2 + 1) + n2

NP
.ta + 8n1.ts + 14n1.tw .(7)

What can we predict for the real performance time? The behaviour of the
communication time should not depend on the number of processors. The only
exception is the case NP = 2, when it should be two times less. The smaller
computer system parameters ts and tw decrease the communication time and
lead in general to a better speed-up and efficiency. In particular, if we have a
shared memory computer, no communications are really performed. This means
that the speed-up SNP = T1/TNP for this case will be close to its theoretical
upper bound SNP ≤ NP . This is a basic advantage of the proposed algorithm.
But the drawback is the coefficient n1 in front of the start-up time ts. Big ratios
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ts/tw and ts/ta could bear a performance penalty of more than 50% for large
scale discrete problems.

5. Numerical tests and comments

The computer code implementing the presented parallel algorithm is de-
veloped using C language and MPI standard. The achieved performance on
two Beowulf type Linux clusters referred as Parmac and Thea is analyzed. The
Parmac cluster is located at Central Laboratory for Parallel Processing, Bul-
garian Academy of Sciences. It consists of four dual processor Power Macintosh
computers. Each node has 512 MB RAM and two processors Power PC G4
at 450 MHz clock frequency. The Thea cluster is located at Institute of Geon-
ics, Academy of Sciences of Czech Republic, and consists of eight nodes. Each
of them has 768 MB RAM and a single AMD Athlon processor at 1.4 GHz
frequency. All the numerical results presented in this section are obtained us-
ing the C compiler from GNU Compiler Collection (GCC) and by LAM MPI
version of the MPI standard. We have to note here that LAM MPI on Par-
mac has been compiled with a support for System V shared memory. It allows
for a significant improvement in the local communication between the pair of
processors at each of the nodes if shared memory is used instead of TCP/IP.
Two ways of execution of an MPI program are possible on Parmac because of
the dual processor nodes. First one is without a requirement ”each process to
be executed on separate node when possible” and the second one is with this
requirement. They are ensured by the option N of ”mpirun”. For example, if
we use ”mpirun N -np 4 exec.out” the program exec.out will be executed on 4
processors allocated on 4 nodes - 1 processor per each node. This case will be
denoted below by Parmac(N). If we use ”mpirun -np 4 exec.out”, i.e. ”mpirun”
without the option N (referred as Parmac), all working processors will be at two
of the nodes. In such a way, shared memory will be used for communication
between the processors from one node. To illustrate the properties of the par-
allel algorithm and the related code we consider the model Poisson equation in
a unit square with homogeneous Dirichlet boundary conditions assumed at the
bottom side. The partitioning of the domain is uniform where n1 = n2 = n.
The size of the discrete problem is N = n1(2n2 +1)+n2 = 2n(n+1). A relative
stopping criterion (C−1rnit , rnit)/(C−1r0, r0) < ε is used in the PCG algorithm,
where ri stands for the residual at the i-th iteration step, ( · , · ) is the stan-
dard Euclidean inner product, and ε = 10−6. Two variants of the nodal basis
functions were introduced in Section depending on the type of interpolation
operator - mid-point or integral mid-value. Speed-up and efficiency coefficients
for related parallel algorithms MP and MV are collected in Table 1 and Table
2 respectively. Both tables have a similar structure. There are two numbers in
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Table 1: Parallel PCG/MIC(0), Algorithm MP

Parmac Parmac(N) Thea

n, it NP TNP SNP ENP TNP SNP ENP TNP SNP ENP

1 16.74 16.82 9.26
256 2 10.73 1.56 0.78 14.83 1.13 0.57 9.48 0.98 0.49
71 4 11.71 1.43 0.36 17.16 0.98 0.25 11.83 0.78 0.20

8 10.92 1.53 0.19 20.07 0.84 0.11 11.08 0.84 0.11

1 99.42 99.81 54.02
512 2 63.69 1.56 0.78 68.71 1.45 0.73 41.11 1.31 0.66
104 4 50.22 1.98 0.50 65.44 1.53 0.38 41.14 1.31 0.33

8 37.74 2.63 0.33 64.24 1.55 0.19 35.34 1.53 0.19

1 577.00 567.11 288.27
1024 2 373.19 1.55 0.78 340.12 1.67 0.84 198.70 1.45 0.73
148 4 233.55 2.47 0.62 274.27 2.07 0.52 153.35 1.88 0.47

8 171.28 3.37 0.42 217.27 2.61 0.33 124.45 2.32 0.29

each box of the first column - the number n of the elements on each direction
and the related number of iterations for that size of the discrete problem. The
number of processors NP is given in the second column. The rest of the columns
are grouped by three - one group per each way of the code’s execution. Each of
these groups has three fields - in the first one the measured cpu-time in seconds
is given, and the rest two of them present the speed-up SNP = T1/TNP and
the efficiency ENP = SNP /NP . The cpu-times TNP are the best obtained from
three measurements.

Our observations on these tables are the following:

• For a given ”machine”: cpu-times for MV are larger than those for MP
because of the larger number of iterations; the speed-up and efficiency
coefficients are approximately the same for MP and MV, which confirms
that the properties of the parallel algorithm do not depend on the type of
the basis functions.

• For a given number of processors: cpu-times for NP = 1 on Thea are ap-
proximately two times smaller than on Parmac for both ways of execution;
the speed-up and respectively efficiency coefficients grow up for larger size
of the problem, with only exception - the case NP = 2 for Parmac.

• For a given size of the problem: the general conclusion is, that on Parmac
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Table 2: Parallel PCG/MIC(0), Algorithm MV

Parmac Parmac(N) Thea

n, it NP TNP SNP ENP TNP SNP ENP TNP SNP ENP

1 19.09 19.16 10.55
256 2 12.24 1.56 0.78 16.93 1.13 0.57 10.79 0.98 0.49
81 4 13.32 1.43 0.36 19.49 0.98 0.25 13.43 0.79 0.20

8 12.93 1.48 0.19 22.85 0.84 0.11 13.04 0.81 0.10

1 113.45 114.09 63.17
512 2 73.00 1.55 0.78 78.49 1.45 0.73 49.91 1.35 0.68
119 4 57.66 1.97 0.49 77.14 1.48 0.37 47.04 1.34 0.34

8 42.51 2.67 0.33 82.25 1.39 0.17 41.87 1.51 0.19

1 635.63 639.18 326.63
1024 2 409.39 1.55 0.78 383.58 1.67 0.84 223.35 1.46 0.73
167 4 264.88 2.40 0.60 309.19 2.07 0.52 173.26 1.89 0.47

8 175.63 3.62 0.45 245.17 2.61 0.33 140.73 2.32 0.29

when a shared memory is used, the speed-ups are the best (except the
case NP = 2, n = 1024), and on the Thea they are the worst; for all the
machines, the speed-up and the efficiency are far away from the upper
bounds SNP ≤ NP, ENP ≤ 1.

Some of the reasons for this behavior are hidden in the structures of the
clusters.

• The processors of Thea are faster and therefore the times are smaller than
those on Parmac.

• It was mentioned above that on Parmac, when a shared memory is possible
to be used, the time for communication will be smaller, and respectively,
the total cpu-times will be smaller than for the case when the option N is
used in ”mpirun”.

• For relatively small sized problems, the total time on Parmac is influ-
enced only by the communication time. But, when the size is larger, the
two processes on one node compete for the memory access, and even the
communications take smaller times than when the code is executed on
two nodes, total time is larger. This is the reason for approximately the
same speed-ups on Parmac for NP = 2, and for the better speed-up on
Parmac(N) than on Parmac for NP = 2 and n = 1024.
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We can not answer the question ”Why are the speed-up and the efficiency rel-
atively far away from their theoretical upper bounds?” if we look at the total
cpu-times only. We can not see from these tables what is the particular behav-
ior of the communication and computation times. We also can not say if the
theoretical estimates from previous Section well represent the basic properties
of the parallel algorithm. The distribution of the measured time for computa-
tions and communications for Algorithm MV for n = 512 and n = 1024 are
presented in Table 3 and Table 4 respectively. First three columns give informa-

Table 3: Time distribution, Algorithm MV, n = 512, Nit = 119

machine NP ENP TNP Ta Tc T u∗v
c TM∗v

c T prec
c

1 109.85 109.85
Parmac 2 0.77 71.63 70.35 1.28 0.02 0.08 1.18

4 0.48 57.44 35.60 21.84 0.43 0.04 21.37
8 0.32 43.25 18.17 25.08 1.26 0.06 23.76

1 113.12 113.12
Parmac(N) 2 0.73 77.48 55.82 21.66 0.04 0.29 21.33

4 0.37 75.88 27.72 48.16 1.07 0.26 46.83
8 0.19 73.77 16.78 56.99 1.32 0.31 55.36

1 60.29 60.29
Thea 2 0.66 45.89 30.55 15.34 0.14 0.23 14.97

4 0.32 46.74 16.10 30.64 0.23 0.21 30.20
8 0.18 42.76 8.74 34.02 0.30 0.20 33.52

tion about the machine, number of processors and related efficiency coefficients.
The measured times are presented in the rest of the columns. Here TNP stands
for the total cpu-time for solution of the problem on NP processors, Ta and Tc

are the times for computations and communications respectively. Following the
theoretical estimates, the communications are split by type - for inner products
T u∗v

c , for matrix-vector multiplication T M∗v
c , and for solution of the system with

the preconditioner T prec
c . We have used blocking send and receive operations of

MPI, i.e. the computations and communications are not overlapped. Hence the
following relations hold:

TNP = Ta + Tc, Tc = T u∗v
c + TM∗v

c + T prec
c .

We see that the computation time for all the machines decrease almost two times
when the number of processors is increased by two. The exceptions for Parmac



Performance Analysis of a Parallel MIC(0) . . . 333

Table 4: Time distribution, Algorithm MV,n = 1024, Nit = 167

machine NP ENP TNP Ta Tc T u∗v
c TM∗v

c T prec
c

1 637.30 637.30
Parmac 2 0.77 412.62 407.71 4.91 0.10 0.23 4.58

4 0.60 264.21 201.20 63.01 0.37 0.16 62.48
8 0.47 170.18 100.64 69.54 5.07 0.22 64.25

1 638.94 638.94
Parmac(N) 2 0.84 381.55 319.48 62.07 0.14 0.73 61.20

4 0.52 308.14 157.79 150.35 4.63 0.67 145.05
8 0.32 247.03 96.96 150.07 5.19 0.83 144.05

1 324.81 324.81
Thea 2 0.73 223.95 171.27 52.68 0.93 3.02 48.73

4 0.47 172.92 84.54 88.38 0.84 0.81 86.73
8 0.29 140.87 44.51 96.36 0.81 0.58 94.97

are explained by the memory access competition for large problems. So all the
drawbacks come from the communications as it was expected. Our prediction
that the times for communication for inner products and for matrix-vector mul-
tiplications will be negligible with respect to the communications for solving
the preconditioned system are also confirmed. Because of faster processors, the
time for computations on Thea are two times smaller than those on Parmac,
but the ratio for communications is not the same. That is why the efficiency on
Thea is smaller in general. There is enormous difference between times Tc for
NP = 2 on Parmac and Parmac(N). Shared memory is used for communication
on Parmac versus TCP/IP for Parmac(N). This shows the potential of our par-
allel algorithm and the related code for shared memory implementations. The
expectation that the time for communications does not depend on the number
of processors is also confirmed - it is approximately the same for NP = 4 and
NP = 8 for all the machines. The case NP = 2 is analyzed separately and its
time Tc is predicted to be two times smaller than that for NP = 4 which holds
in practice for the distributed memory case.

What can we do to improve the performance? Approaches in two direc-
tions are possible depending on the architecture. For shared memory machines
we can use Open MP, or combination of MPI and Open MP for clusters of
shared memory computers. For distributed memory we can locally rearrange
the computations in solution of the system with preconditioner and to use non-
blocking send and receive operations to allow overlapping of the computations
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and communications.

6. Conclusions

A scalable parallel MIC(0) preconditioner has been presented in the pa-
per. We have analyzed theoretically some of its advantages and disadvantages.
The experimental results have shown promising features for both shared and
distributed memory architectures as well as for clusters of shared memory ma-
chines. Some approaches for improvement of the real performance using Open
MP and overlapping of computations and communications have been also de-
rived. Our plans for future work on the topic include modifications to improve
the performance and generalization of the considered algorithm to the 3-D case.
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