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PREFACE

The Bulgarian Section of SIAM (BGSIAM) was founded on January 18, 2007 and the
accepted Rules of Procedure were officially approved by the SIAM Board of Trustees
on July 15, 2007. The activities of BGSIAM follow the general objectives of SIAM,
as established in its Certificate of Incorporation.

Being aware of the importance of interdisciplinary collaboration and the role the
applied mathematics plays in advancing science and technology in industry, we ap-
preciate the support of SIAM as the major international organization for Industrial
and Applied Mathematics in order to promote the application of mathematics to
science, engineering and technology in the Republic of Bulgaria.

The 4th Annual Meeting of BGSIAM (BGSIAM’09) was hosted by the Institute of
Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia. It took part on
December 21 and 22, 2009. The conference support provided by SIAM is very highly
appreciated.

During BGSIAM’09 conference a wide range of problems concerning recent achieve-
ments in the field of industrial and applied mathematics were presented and discussed.
The meeting provided a forum for exchange of ideas between scientists, who develop
and study mathematical methods and algorithms, and researchers, who apply them
for solving real life problems.

More than 60 participants from five universities, four institutes of the Bulgarian
Academy of Sciences and also from outside the traditional academic departments
took part in BGSIAM’09. They represent most of the strongest Bulgarian research
groups in the field of industrial and applied mathematics. The involvement of younger
researchers was especially encouraged and we are glad to report that 7 from the
presented 25 talks were given by Ph.D. students.

LIST OF INVITED LECTURES:

• TODOR GRAMCHEV
University of Cagliaru, Italy
REGULARITY AND DECAY ISSUES FOR COMPACTLY SUPPORTED
SOLITARY WAVES

• CHRISTO CHRISTOV
University of Louisiana at Lafayette, Louisiana, USA
THE CONCEPT OF SPACE AS MECHANICAL CONTINUUM AND ITS
IMPLICATIONS IN MATHEMATICAL PHYSICS

• MAYA NEYTCHEVA
University of Uppsala, Sweden
CHALLLENGES FOR THE ITERATIVE SOLUTION OF PHASE-SEPARA-
TION FLOW PROBLEMS



• EUGENE NIKOLOV
National Laboratory on Computer Virology, Bulgarian Academy of Sciences
COMPUTER NANO VIRUSES

• PANAYOT VASSILEVSKI
Lawrence Livermore National Laboratory, USA
APPROXIMATION PROPERTIES OF COARSE FINITE ELEMENT
SPACES CONSTRUCTED BY ALGEBRAIC MULTIGRID

The present volume contains extended abstracts of the conference talks.

Svetozar Margenov
Chair of BGSIAM Section

Stefka Dimova
Vice-Chair of BGSIAM Section

Angela Slavova
Secretary of BGSIAM Section

Sofia, February 2010
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Acceleration of the Convergence for Interpolated
Nonconforming Finite Elements

Andrey Andreev, Milena Racheva

We introduce here nonstandard interpolated finite elements of nonconfor- ming trian-
gular type. These elements provide better accuracy for second-order elliptic boundary
value problems. Our aim is to establish a super- convergence result for planar FE
approximations by using an interpolated FEM approach (see also [5]). The applied
method is a variant of a post- processing procedure when the known finite element
solution is used. In our a posteriori error analysis we exploit the ideas known from
the FE superconvergence method. Namely, we use local Zienkiewicz-Zhu (ZZ) type
estimators [2, 6].
Let Ω be a bounded polygonal domain in R2 with boundary ∂Ω. Let also Hm(Ω) be
the usual m−th order Sobolev space on Ω with a norm ‖ · ‖m,Ω and seminorm | · |m,Ω.
Consider the following second-order model problem in weak form: for f ∈ L2(Ω), find
u ∈ H1

0 (Ω) such that:

a(u, v) = (f, v), ∀v ∈ V ≡ H1
0 (Ω), (1)

a(u, v) =

∫

Ω

(∇u · ∇v + a0uv) dx dy ∀u, v ∈ H1
0 (Ω)

and the notation (·, ·) is adopted for the L2(Ω)−inner product.
Let τh be family of regular finite element partitions of Ω which fulfil standard as-
sumptions. The partitions τh consist of triangles K and h is mesh parameter. We
can define the finite element space Vh by means of linear elements with integral type
degrees of freedom which will be introduced.

Figure 1:

The corresponding approximate variational problem of (1) is: find uh ∈ Vh such that

ah(uh, vh) = (f, vh), ∀ vh ∈ Vh, (2)
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ah(u, v) =
∑

K∈τh

∫

K

(∇u · ∇v + a0uv) dx dy ∀u, v ∈ Vh.

The linear form (f, ·) need not be approximated since the inclusion Vh ⊂ L2(Ω) holds.

Assume that the mapping ‖vh‖1,h =
{∑

K∈τh
|vh|21,K

}1/2 ∀vh ∈ Vh is a norm over
the space Vh. This space is constructed by means of integral degrees of freedom (fig.
1).
Let T = {(t1, t2) : t1, t2 ≥ 0, t1 + t2 ≤ 1} be the reference element. Then the shape
functions of introduced linear element on T are: ϕ1(x1, x2) = 1 − 2x1; ϕ2(x1, x2) =
1− 2x2; ϕ3(x1, x2) = −1 + 2x1 + 2x2.
We could prove the following result:

Theorem 1 Let u and uh be the solutions of (1) and (2), respectively. If the solution
u belongs to space H2(Ω), then

‖u− uh‖0,Ω ≤ Ch2|u|2,Ω. (3)

The proof of this theorem is based on the interpolation properties of the conforming
and nonconforming linear FE triangles. By comparison of the corresponding inter-
polants and using standard estimates for the linear case [4] we obtain the estimate
(3).
Let Rh : V → Vh be the elliptic projection operator defined by:

ah(u− Rhu, vh) = 0 ∀u ∈ V, ∀vh ∈ Vh.

It is well-known (see [4]) that the O(h)−convergence is optimal for the linear noncon-
forming case, i.e. if u ∈ H2 ∩ V , then

‖u− Rhu‖1,h ≤ Ch‖u‖2,Ω. (4)

Our aim is to improve the last estimate. For this purpose we construct a nonstandard
interpolation operator. So, two principal steps are performed: (i) It has to prove a
local supercloseness in energy norm by means of special interpolation operator ih; (ii)
We construct a higher order interpolation of the original FE solution for global su-
perconvergence to its interpolant I2hRhu, where I2h verifies certain ultraconvergence
properties.
We consider the regular pattern τh = ∪K. This partition consists of isosceles right-
angled triangles. The operator ih : C → Vh can be defined using ”edges” conditions
as degrees of freedom:

∀v ∈ C(Ω), ∀K ∈ τh,
∫

lj

ihv dl =

∫

lj

v dl, j = 1, 2, 3.

It is evident that ihv ∈ Vh, ∀v ∈ C(Ω), ihv = v, ∀v ∈ Vh.

Remark 1 The basic functions ϕ1, ϕ2 and ϕ3 could be used directly to the finite
element implementation and not only to the patch-recovery superconver- gence method.
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Figure 2:

Now, we can formulate a superclose property concerning ih.

Theorem 2 Let u ∈ H3(Ω). Then for any vh ∈ Vh the following inequality holds:

ah(ihu− u, vh) ≤ Ch2‖u‖3,Ω|vh|1,h.

The considered nonconforming element has the following property:

Lemma 1 If a0 = 0, then the interpolation operator ih related to the linear noncon-
formity triangular element coincides with the projector Rh of the second order elliptic
problem, i.e.

ah(ihu− u, vh) = 0, ∀u ∈ V, ∀vh ∈ Vh.

Consider an element patch on τh containing four adjacent congruent right-angled
isosceles triangles (see fig. 2).

So, the patch-recovery FE strategy is fulfilled by coupling every time four triangles
as it is designed in fig. 2. This FE partition is denoted by τ̃2h. Consequently, the
mesh τ̃2h of size 2h is obtained as a result of arranging in groups of adjacent elements
Ki ∈ τh, i = 1, 2, 3, 4. Thus, the nine degrees of freedom are the integral values of a
function v on the edges lj of Ki ∈ τh, i = 1, 2, 3, 4. Then, the interpolation operator
is characterized by the edge conditions determined by the degrees of freedom and the
basic functions.
Let Ṽ2h be finite element spaces associated with τ̃2h. Then Ṽ2h consists of piecewise
polynomials from P3.
I2h is constructed in such a way that:

I2h ◦ ih = I2h. (5)
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This operator is also bounded: I2h : Vh → Ṽ2h,

‖I2hvh‖r,h ≤ C‖vh‖r,h, ∀vh ∈ Vh, r = 0, 1. (6)

Finally, taking into account that the interpolation polynomial I2hv is of degree 3, for
any v ∈ H4(Ω) ∩ V it follows that

‖I2hv − v‖1,h ≤ Ch2‖v‖4,Ω. (7)

The next theorem contains the main estimation:

Theorem 3 Let the solution of (1) belong to H4(Ω)∩V . Then the following estimate
holds:

‖I2h ◦Rhu− u‖1,h ≤ Ch2‖u‖4,Ω. (8)

P r o o f. Applying (5), we decompose

I2h ◦ Rhu− u = I2h ◦ (Rhu− ihu) + (I2hu− u).

From (6) it follows

‖I2h ◦ Rhu− u‖1,h ≤ ‖I2h‖‖Rhu− ihu‖1,h + ‖I2hu− u‖1,h).

It is easy to see that the first term in the right-hand side in the last inequality vanishes
in case a0 = 0, and is of order O(h2) otherwise, which completes the proof.
We could apply directly these results to second order elliptic eigenvalue problems.
The eigenvalue problem, corresponding to (1) is: find λ ∈ R and u ∈ V, u 6= 0 such
that

a(u, v) = λ(u, v), ∀v ∈ V. (9)

Let us approximate the nonconforming finite element approximation of (9): find λh ∈
R and uh ∈ Vh, uh 6= 0 such that

ah(uh, vh) = λh(uh, vh), ∀vh ∈ Vh. (10)

Our assumption here is that FE space Vh uses polynomials of degree one. Such being
the case, it is well known (see [3]) that the rate of convergence of FE approximation
to the eigenvalues and eigenfunctions is given by the following estimations:

|λ− λh| ≤ C(λ)h2‖u‖22,Ω, (11)

‖u− uh‖1,h ≤ C(λ)h‖u‖2,Ω. (12)

We can improve the estimate (12) concerning the difference uh − Rhu, namely (see
[1]):

Lemma 2 Let the eigenfunction u belong toH4(Ω)∩V and let uh be the corresponding
FE approximation obtained by (10). Then:

‖uh − Rhu‖1,h ≤ Ch2‖u‖4,Ω.
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In order to apply the patch-recovery superconvergent procedure to the eigenvalue
problem we need an another lemma [5, 1]:

Lemma 3 Let (λ, u) be any exact eigenpair obtained by (9). Then for every w ∈ V
and w 6= 0, the following inequality holds:

|a(w,w)

(w,w)
− λ| ≤ C

‖w − u‖21,h

(w,w)
.

The main result concerning patch-recovery technique applied to second order eigen-
value problem and improvement of the estimate (12) by two order (ultraconvergence)
is given in the following theorem:

Theorem 4 Let (λ, u) be an exact eigenpair and (λh, uh) be its FE appro- ximation
using triangular nonconforming linear elements. Assume also that the conditions of
Theorem 2 are fulfilled. Then

|I2huh − u|1,h ≤ Ch2‖u‖4,Ω, |
ah(I2huh, I2huh)

(I2huh, I2huh)
− λ| ≤ Ch4‖u‖24,Ω.

Acknowledgements. This work is supported by the Bulgarian National Science
Fund under grant DO 02-147/2008.
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Parallel Quasi-Monte Carlo Quadratures on the Grid

Emanouil Atanassov, Todor Gurov, Mariya Durchova,
Aneta Karaivanova, Sofiya Ivanovska

1 Quasi-Monte Carlo Quadratures

Consider a s dimensional integral I[f ] =

∫

Is

f(x)dx, in the unit cube Is = [0, 1]s, of

a Lebesgue integrable function f(x), and note that this integral can be expressed as
the expectation of the function f , I[f ] = E[f(x)], where x is a uniformly distributed
vector in the unit cube. Consider the following approximation of the integral:

IN [f ] =
1

N

N∑

n=1

f(xn). (1)

If {xn} is a sequence sampled from uniform distribution, equation (1) is called Monte
Carlo quadrature formula [12]. The integration error, defined as

ǫN [f ] = |I[f ]− IN [f ]|,

has a standard normal distribution, with expectation

E[ǫN [f ]] =
√
V ar(f)N−1/2.

An exact upper bound for (1) is given by Koksma-Hlawka inequality,

ǫN [f ] ≤ V [f ]D∗
N , (2)

in which V[f] is the variation of f in the Hardy-Krause sense and D∗
N is the star

discrepancy of the sequence {xn}, [4]. Equation (2) is valid for any function with
bounded variation and any choice of sequence, however the best results are obtained
with low discrepancy or quasirandom sequences for which

D∗
N ≤ c(logN)kN−1,

where c and k are constants depending only on the spatial parameter s. One major
advantage of Monte Carlo methods is that they are usually very easy to be par-
allelized. This is, in principal, also true of quasi-Monte Carlo methods. However,
the successful parallel implementation of a quasi-Monte Carlo application depends
crucially on various quality aspects of the parallel quasirandom sequences used [5]
and [6]. The purpose of using scrambled sequences in quasi-Monte Carlo methods
is twofold. Primarily, it provides a practical method to obtain error estimates for
QMC based on treating each scrambled sequence as a different and independent ran-
dom sample from a family of randomly scrambled quasirandom numbers [1, 9]. Thus,
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randomized QMC overcomes the main disadvantage of QMC while maintaining the
favorable convergence rate of QMC. Secondarily, scrambling gives us a simple and uni-
fied way to generate quasirandom numbers for parallel, distributed, and Grid-based
computational environments [5, 6, 7].

2 Parallel Implementation on the Grid and Results

2.1 Grid Service for Administration of user reservations

In order to implement efficiently our algorithms on the grid we have developed a new
Grid service, called Job Track Service (JTS) for administration of user reservations
which allows automatic request and processing. The JTS is a grid middleware com-
ponent, which facilitates the provision of Quality of Service in grid infrastructures.
From the users’ point of view the benefit from running a parallel job over a Grid using
more CPUs is lost because of the high waiting time, as it was discussed in [10]. On
the other side, maintaining and supporting of a medium sized clusters, as ours, meet
the challenge to attain more stable load-balancing over all the nodes. This terms, the
placement of hard-integrated reservations for the most frequently reserved resources
or users is not a proper way for blocking the nodes entirely and only for them. The
implemented in most reliable Bulgarian sites JTS does not need a great number of
additional requirements than the other already established grid middleware compo-
nents. It has the advantage to make a reservation for the grid resources in accordance
with the users’ needs. They are prompted to enter the site name, number of CPUs
and reservation period and during this period the service check if the requested re-
sources are free and ready for accepting the job. If the request is granted following
the special policy a replay is send to the user. This way, decreasing the reservation
period leads to spending the waste of time for waiting the job on the queue. This
technique has significant advantages especially when the MPI job consists of a huge
number of short duration processes, because in fact the waiting time is equal to zero.
More over, we prevent the cluster from the hard-integrated reservations, achieving
more balanced and time-spending process.

2.2 Parallel quasirandom Generation

There are known several ways of parallelization of a quasirandom sequence but most
used of them are leap-frog, splitting or blocking, independent generation and scram-
bling. The first two schemes produce a single quasirandom sequence until the third
scheme needs a family of sequences, which could be produced using scrambling tech-
niques, achieving a stochastic family from only one quasirandom sequence. Much
of the recent work on parallelizing quasi-Monte Carlo methods has been aimed at
splitting a quasirandom sequence into many subsequences which are then used in-
dependently on various parallel processes. In this paper we use scrambled Sobol
sequence (see [1] for details).
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2.3 Numerical Tests

The numerical tests are performed on two Clusters using MPI. The BG03-NGCC
grid cluster has 25 worker nodes, 2 x Intel Xeon E5430 2.66 GHz Quad Core CPU
(total 200 Cores, > 400 kSI2000) with 16GB RAM per node. The BG04-ACAD has
40 worker nodes with 2 CPU Opteron 2,4 GHz (total 80 cores > 120 KSI2000), 4GB
RAM per node, and low-latency Myrinet interconnection for MPI jobs as in [15]. Both
clusters use the torque batch system.
Here we present numerical results when computing 100-dimensional integral with the
following test function

F =

s=100∏

i=1

(
xi

3 +
3

4

)
.

This test function is often used as a benchmarking of quadrature algorithms, [11].
First, we present timing results for the two parallel generators - a parallel generator
from SPRNG library [16] and ourgenerator of scrambled Sobol sequence [2].

Table 1: Time for test function F with 108 points.

1 CPU BG03-NGCC 1 CPU BG04-ACAD

SPRNG 785.64 533.90
Sobol 65.79 95.65

Obviously, timing results for Sobol sequence are much better (more than 10 times
faster generation).
On the next Table 1 we present timing results for parallel solving of 100-dimensional
integral - such dimension is typical for financial applications. We use simultaneously

Table 2: Parallel efficiency measurements for N = 109 points - Topt is the theoretically
optimal time and Tm is the measured time.

Topt Tm Efficiency

SPRNG 117.10 129.87 90.17%
Sobol 14.38 15.34 93.74%

20 CPU core on BG04-ACAD and 32 CPU core on BG03-NGCC.
On Table 2 we show the theoretically estimated time for running MPI jobs on 52 CPU
cores of the grid sites BG03-NGCC and BG04-ACAD in parallel and the measured
execution time. Here Topt is theoretically optimal time, Tm is measured time and the
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efficiency is the ratio
Topt

Tm
. We define theoretically optimal time as

Topt =
1

c1
t1

+
c2
t2

,

where t1 is the measured time for 1 CPU on BG03-NGCC, t2 is the measured time
for 1 CPU on BG04-ACAD, c1 is the number of CPU cores on BG03-NGCC, and c2
is the number of CPU cores on BG04-ACAD.

We used the MPICH-G2 implementation of MPI, which is the most general approach
for running parallel jobs on computational grids. The necessary reservation was made
using JTS in order to ensure simultaneous start-up of the MPI jobs. In this way we
successfully utilized machines with different endianness in the same computation.

3 Concluding Remarks

The computing of very high-dimensional integrals (s=100) poses technical challenges
on heterogeneous Grid. Using proper strategy for parallelization and JTS for reser-
vation, we succeeded to obtain excellent parallel efficiency. The results show that
quasi-Monte Garlo approach outperforms Monte Carlo for the considered problem.
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How Does Clinical Data Fit into Two Leukopoiesis Models?

Gergana Bencheva

Motivation. Blood cells (BCs) perform various vital functions like transporting oxy-
gen to tissues, fighting infections and controlling bleeding. Haematopoiesis is a com-
plex biological process, during which haematopoietic pluripotent stem cells (HSCs) in
bone marrow give birth to the three blood cell types. The process of production and
regulation of white BCs like T- and B-lymphocytes, NK cells and their subpopulations,
is known as leukopoiesis. Each type of BCs is a result of the action of specific pro-
teins, called growth factors or Colony Stimulating Factors (CSF), at specific moments
during haematopoiesis. The main growth factors in leukopoiesis are Granulocyte-CSF
(G-CSF), Macrophage-CSF (M-CSF), Granulocyte-Macrophage-CSF (GM-CSF) and
Interleukins (IL). Those BCs that have not yet matured are called blast cells.
Various haematological diseases (including leukemia) are characterized by abnormal
production of particular blood cells (matured or blast). For example, acute leukemia
occurs when the blast cells replicate themselves uncontrollably and interfere with the
production and activity of normal BCs. If undiscovered or left untreated, it can cause
death within few weeks or months.
There are two main stages in the therapy of pathological blood diseases. The first
one is total body irradiation (TBI) and chemotherapy, where the ”tumour” cells are
killed together with (as side effect) the healthy ones. The second stage is bone marrow
transplantation (BMT), where HSCs of a donor (collected under special conditions)
are put in the peripheral blood. From here HSCs have to: 1) find their way to the
stem cell niche in the bone marrow; and afterwards 2) selfrenew and differentiate to
regenerate the patient’s blood system. The faster the steps 1) and 2) are performed,
the shorter is the period in which the patient is missing their effective immune system.
The aim in the current work is to compare clinical data and computer simulations
with two leukopoiesis models.

Two models of leukopoiesis. The models of blood cells production and regulation,
proposed in [1, 2] are used in our investigations. Each of them is a system of ordinary
differential equations (ODEs) with delays. Their parameters depend on the particular
type of BCs. The first model (see [1]), referred here as GFM, takes into account the
CSF action and can be applied to any of the red BCs, white BCs, platelets, or their
subpopulations. In the second model (see [2]), designed especially for leukopoiesis
and denoted bellow by LM, the intermediate differentiation stages as well as the
influence of the CSF are included in the parameter for the so called amplification
phase. The data involved in GFM and LM is schematically presented in Figure 1 and
has the following meaning. In the bone marrow, HSCs are divided into two groups:
proliferating cells and nonproliferating (or quiescent) cells. Their populations at time
t for both GFM and LM cases are denoted by P (t) ≥ 0 and Q(t) ≥ 0 respectively. The
population of the circulating mature BCs is denoted by M(t) ≥ 0 (W (t) ≥ 0 for LM)
and the growth factor concentration is E(t) ≥ 0. The proliferating phase duration
is denoted by τ (in GFM) or τ1 (in LM) and it is assumed to be constant. The
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Figure 1: Involved data in GFM and LM models.

amplification phase is characterized by its duration τ2 (also assumed to be constant)
and by the parameterA = α2i, where α ∈ (0, 1) is the survival rate and i is the number
of needed generations (differentiation stages). The apoptosis rate for the proliferating
cells is denoted by γ (in GFM) or γ1 (in LM). The rates at which the quiescent HSCs,
the matured cells and the CSF can die are denoted by δ (for Q), µ (for M), γ2 (for
W ) and k (for E). The degradation rates µ, γ2 and k of the mature BCs and of
the CSF in the blood are assumed to be positive. Quiescent cells in GFM can either
be introduced in the proliferating phase with a rate β(Q(t), E(t)) or differentiate in
mature BCs with a rate g(Q(t)). The negative feedback control f(M(t)) of the bone
marrow production on the CSF production acts by the mean of circulating mature
BCs: the more circulating BCs are, the less growth factor is produced. In LM the
quiescent cells have three possibilities: to be introduced in proliferating phase with
rate β(Q), to differentiate in red BCs or platelets with rate K or to differentiate in
white BCs with rate k(W ). Their degradation rate is included in K.
The GFM is represented by a system of nonlinear ODEs with one constant delay τ :






dQ

dt
= −δQ(t)− g(Q(t))− β(Q(t), E(t))Q(t)

+2e−γτβ(Q(t− τ), E(t − τ))Q(t− τ)
dM

dt
= −µM(t) + g(Q(t))

dE

dt
= −kE(t) + f(M(t))

(1)

and initial conditions Q(t) = Q0(t), M(t) = M0(t), E(t) = E0(t) for t ∈ [−τ, 0].
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The LM is represented by a nonlinear ODE system with two constant delays τ1, τ2:





dQ

dt
= −[K + k(W (t)) + β(Q(t))]Q(t)

+2e−γ1τ1β(Q(t− τ1))Q(t− τ1)
dW

dt
= −γ2W (t) +Ak(W (t− τ2))Q(t− τ2)

(2)

and initial conditions Q(t) = Q0(t), W (t) = W0(t), t ∈ [−τ∗, 0], for τ∗ = max{τ1, τ2}.
The trivial steady-state of (1) and (2) is not a biologically interesting equilibrium since
it describes a pathological situation that can only lead to death without appropriate
treatment. The existence of nontrivial positive steady-state of (1) is ensured by

0 < δ + g′(0) < β

(
0,
f(0)

k

)
, 0 ≤ τ < τmax :=

1

γ
ln




2β
(
0, f(0)

k

)

δ + g′(0) + β
(
0, f(0)

k

)



 .

Nontrivial positive steady-state of (2) exists if (2−γ1τ1 − 1)β(0) > k(0) +K and the

function Q 7→ Qβ(Q) is decreasing in (Q0, Q1), where Q0 = β−1

(
k(0) +K

2−γ1τ1 − 1

)
and

Q1 = β−1

(
K

2−γ1τ1 − 1

)
.

Solution methods. Various numerical methods and software tools for solution of
ODE systems are developed for both stiff and nonstiff problems, as well as for the case
of retarded arguments (see e.g. [7, 3] and references therein). XPPAUT is ”a tool for
simulating, animating and analyzing dynamical systems”, created by G. B. Ermen-
trout and freely available through the webpage [6].
The behaviour of the XPPAUT implementations of six widely used ODE solvers
is compared in [4] with respect to both computing time and quality of the solu-
tion. Three of them are recommended as a toolbox for reliable computer simulations,
namely: a) classical Runge-Kutta (RK) – four stage explicit method with fixed step
that gives O(h4) accuracy; b) Dormand-Prince 5 (DP5) – explicit method based on
Runge-Kutta method of order 5 with adaptive step and automatic step size control;
c) Rosenbrock (RB2) – implicit method with adaptive step, based on Matlab version
of the two stage Rosenbrock algorithms. RB2 is the only one of them appropriate for
stiff problems. Retarded differential equations are solved by storing previous data and
using cubic polynomial interpolation to obtain the delayed value. More details about
the features and the usage of XPPAUT may be found in [5] and in the documentation
distributed together with the package.

The clinical data is provided by Dr. M. Guenova and Dr. L. Gartcheva from Lab-
oratory of Haematopathology and Immunology, National Hospital for Active Treat-
ment of Haematological Diseases (NHATHD), Bulgaria. It includes gathered amount
of HSCs (CD34+) and measured values for the number of T, B and NK cells and their
subpopulations. The data is collected before BMT and 1, 2, 3, 6, 9, 12, 18, 24 months

13



after BMT for a set of patients with Morbus Hodgkin (MH), Non-Hodgkin’s Lym-
phoma (NHL), Multiple Myeloma (MM), and Acute Myelogeneous Leukemia (AML).
To have an idea of the normal amount of cells in the monitored populations, their
counts are measured in a control group of 21 healthy individuals and the average, p5
and p95 values are computed from them. The normal amount of particular BCs in
a healthy human is considered to be in the range p5-p95. As an illustration of the
provided data, lymphocytes and T cells counts of two patients (P1 and P2) with AML
after BMT are presented in Figure 2 together with the related values for the healthy
controls.
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Figure 2: Cell counts for healthy controls and for two patients with AML after BMT.

Medicament like NEUPOGEN – Filgrastim or GRANOCYTE – Lenograstim, con-
taining G-CSF (the main growth factor for white BCs) is applied every day during
the first month after BMT. Gathered amount of HSC (CD34+) serves as initial value
for Q. Minimal required amount is 2 × 106 cells/kg of body weight and the optimal
one is considered to be 5×106 cells/kg of body weight. After BMT it is assumed that
there is no blood system, i.e. initial values for matured cells are almost equal to 0.

The numerical tests in the current work are performed with each of the methods
RK, DP5, RB2. The observed behaviour of the solution does not depend on the
solver. First set of experiments are performed with model data given in [1] and [2].
The following functions are used with parameter values, given in Table 1:

GFM LM

β(E) = β0
E

1 + E
, β0 > 0

g(Q) = GQ, G > 0

f(M) =
a

1 +KM r
, a,K > 0, r > 0

β(Q) =
β0

1 +Qn
, β0 > 0

k(W ) =
k0

1 +Wm
, k0 > 0

A = α2i, α ∈ (0, 1)

For the rest of the tests, some of the functions and parameter values are changed,
namely f(M), δ, γ, µ, k, γ1, γ2 and A, as well as the values of the delays. The initial
conditions are taken for the two patients P1 and P2 with AML. The considered
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Table 1: Model parameters.
GFM LM

Param Value Range (day−1) Param Value
δ 0.01 day−1 0 – 0.09 β0 1.77 day−1

G 0.04 day−1 0 – 0.09 k0 0.1 day−1

β0 0.5 day−1 0.08 – 2.24 n 3
γ 0.2 day−1 0 – 0.9 m 2
µ 0.02 day−1 0.001 – 0.1 γ1 0.1 day−1

k 2.8 day−1 — γ2 2.4 day−1

a 6570 — K 0.02 day−1

K 0.0382 — A 20
r 7 —

populations are lymphocytes (denoted with W ) and the subpopulation Tn of the so
called näıve T cells. Degradation rate of Tn is taken from [8], and the one for G-CSF
– from the specification of the applied medicaments.
For all the tests with GFM, the model either crashed, or after some pick of the cell
population at the beginning, it reached the trivial steady state. The results for the LM
model parameters with initial data for each of the patients P1 and P2 are presented
in Figure 3 a) and b) respectively. They show that no matter what is the initial
condition, i.e. what amount of HSCs is gathered, one and the same steady state is
reached. Similar situation is observed with the tests with different values of τ1 and
τ2. The influence of the amplification parameter A is illustrated with plots c) and
d) in Figure 3. For both values of γ2, i.e. for both lymphocytes and Tn cells, the
populations are stabilized at different day and to different cell count.

Concluding remarks. The presented results from numerical experiments pose ques-
tions like ”Why does the GFM model ”crash” with the clinical data?”, ”How to fix
this problem?” and ”Which parameters/functions should be changed and how in or-
der to have steady states of LM closer to the clinical data?”. Further steps towards
the answer of such questions include: more tests with the available clinical data for
various diseases and white BCs populations; detailed analysis of the obtained numeri-
cal results; sensitivity analysis and parameter estimation of both models with respect
to each of the white blood cells and their subpopulations.
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The Concept of Space as Mechanical Continuum and its
Implications in Mathematical Physics

Christo I. Christov

Introduction. Is there an Absolute Continuum? The notion that there if
there are waves, some material substrate must be ‘waving’ led 19th century scientists
to introduce the concept of the luminiferous continuum (see [1]). Cauchy postulated
around 1827 (see the account in [2]) that the luminiferous medium is an elastic contin-
uum, through which light propagates as an elastic shear wave. His model contradicted
the natural perception of a particle moving through the medium and did not receive
much attention, possibly because the notion of elastic liquids was not available at
that time. The fluid model for the luminiferous medium was initiated by Lord Kelvin
in the first half of the Nineteen Century (see [3]).

The contributions of Oersted, Ampere, and Faraday led to the formulation of the
model of electromagnetism. The crucial advance was achieved, however, when
Maxwell [4] added the term ∂E

∂t in Ampere’s law, which he termed the ‘displacement
current’. This new term was similar to the time-derivative term in Maxwell’s consti-
tutive relation for elastic gases [4]. One can say that Maxwell postulated an elastic
constitutive relation by adding the displacement current. Indeed, the new term added
by Maxwell transformed the system of equations, already established in electrostatics,
into a hyperbolic system with a characteristic speed of wave propagation.

The Lorentz Transformation (LT) hinted at some superficial symmetry between two
inertially moving frames making them equivalent and/or indistinguishable. This led
to the ‘Relativity principle’ according to which the inertial motion of a frame cannot
be detected by measurements in the same frame (see the account in [5]). For a system
of discrete material points in an empty geometric space, such an assertion may be true
(Galileo’s RP), but not for the case of continuous frames. Because light propagates in
the absolute continuum, while a frame is moving with respect to the latter, one should
be able to measure the Doppler effect of electromagnetic waves that are emitted from
a source that is at rest with respect to the absolute continuum. This is exactly what
was reported in the experiments on the so called Local Standard of Rest [6, 7] (LSR).
As elucidated by Brillouin [8], the relativity theory is fraught with internal logical
inconsistencies and riddled by paradoxes. The paradoxes underscore the fact that
while LT and Minkowski space are legitimate mathematical constructs, the relativity
principle is still not justified.

In the recent years, the present author proposed a new concept based on the me-
chanical properties of space (the absolute continuum ). We discuss here the material
invariance (frame indifference) as the true covariance in physics .
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Elastic Liquids and Maxwell’s Equations in vacuo In terms of the velocity
vector, the Cauchy balance has the form

ρ
Dv

Dt

def
= µ

∂v

∂t
+ µv · ∇v = divσ = −∇φ−E, (1)

where D/Dt stands for the material derivative (called ‘convective’ or ‘total’ derivative
in the current configuration), v = ut is the velocity, u is the displacement, and µ is
the density of the medium. Respectively we define E := −divσ, as the negative stress
vector (divergence of the stress tensor). Define also the vorticity of the continuum
as H := ∇ × v and B := µH . Taking the curl of Eq. (1), and using the above
definitions, we get (see [9, 10, 11]):

∇× [E − v ×B] = −∂B

∂t
, (2)

which is the Faraday law with an additional force known as the ‘Lorentz force’. In
other words, the material invariant Faraday’s law automatically accounts for a phys-
ical mechanism that can cause the Lorentz force. This is a very important result,
because it tells us that the latter is not an additional, empirically observed force that
has to be grafted on the Maxwell model in order to complete the electrodynamics,
but is connected to the material time derivative, namely to its convective part.

The linear constitutive relationship for an elastic body reads

σ = (λ+ η)(divu) +
η

2
(grad u + grad uT ), or E

def
= −∇ · σ = η∇×∇× u, (3)

where λ and η are the Lamé coefficients (see, e.g., [12, 13]). At this stage we consider
a completely incompressible continuum (λ → ∞ for which the unknown ’pressure’
φ in Eq. (1) is am implicit function defined by the requirement ∇ · u = const or
∇·v = 0. Taking the time derivative of Eq. (3)2, one obtains the second of Maxwell’s
equations (see [9, 10, 11]). The interpretation of the shear elastic modulus is that its
inverse defines the electric permittivity.

The cited derivations unequivocally demonstrate that the ‘field’ described by
Maxwell’s equations is equivalent to an elastic material space (the metacontinuum).
If this is an elastic solid, no stationary magnetic fields can exist, since no steady
velocities are possible for a solid continuum without discontinuities. In [11] the next
decisive step was made by considering elastic liquid in lieu of an elastic solid, (see
[11]):

dσ

dt
= 1

2η(∇v +∇vT ), ⇒ dE

dt
= η∇×∇× v or τEt = ζ∇×∇× v, (4)

where d/dt must be an objective time rate that is frame indifferent. Respectively, ζ
is called ‘elastic viscosity’ [14].

The concept of frame indifference (general covariance of the system) requires that
the partial derivative of the stress variable (in our case the stress vector t = −E) is
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replaced by the appropriate invariant rate. It is argued in [15, 10] that the pertinent
invariant rate is the so-called Oldroyd’s upper-convected derivative, namely

dE

dt

def
=

∂E

∂t
+ v · ∇E −E · ∇v + (∇ · v)E, (5)

Upon introducing Eq. (5) in the constitutive law, and after applying a well known
vector identity (see, e.g. [16, pg.180]), one gets

Et −∇× (v ×E)︸ ︷︷ ︸+sE = − ̂v(∇ ·E) + ̂c2∇×B︸ ︷︷ ︸. (6)

The terms with the underbraces in Eq. (6) are related to the Biot-Savart law, in
the sense that they can be obtained after the operation curl is applied to the latter.
The sign of the term on the left hand side has a sign opposite to the ubiquitous Biot-
Savart law. Similarly to the above outlined argument for the Lorentz force, the sign is
different because it refers to the electric field created at a point of the metacontinuum
by the presence of a magnetic field.

The important conclusion form the frame-indifferent formulation of the displacement
current is that similarly to Lorentz-force law, the convective/ convected terms are
related to phenomena that is embodied in Ampere’s and Biot–Savart’s laws, providing
thus their possible unification with Maxwell’s model. All three electromagnetic-force
laws are manifestations of the inertial forces in the metacontinuum.

Now, Eqs. (2),(6) form the system that is to replace the first two of Maxwell’s equa-
tions (the dynamic equations). Following, the tradition, one can add also the obvious
corollary of the fact that the magnetic field is the curl of another vector (velocity),
namely, ∇ · B = 0. The above derived system rigorously fulfills the requirements
for ‘General Covariance,’ because this system is frame-indifferent, i.e., it is invariant
when changing to another coordinate frame that can accelerate and can even deform.
A very limiting case of the frame indifference is the Galilean invariance. The above
described model accomplishes the goal of Cauchy who attempted to explain light
waves as shear waves of a material medium

The Mechanical Space in Higher Dimensions Recall that the Schrödinger
equation of wave mechanics

iψ∂t + ~∆ψ − χψ = 0, i ≡
√
−1, ψ ≡ ψ1 + iψ2, (7)

where ~ is the reduced Planck constant and χ is construed to be connected to the
potential of any external forces. This equation is not one of Maxwell’s equations.
As argued by Hinton [17], the thickness of the material world in the direction of the
4th dimension is so minute that it cannot be appreciated directly. Rather, it shows
up through additional forces and/or variables. The question that arises here is the
following: can one come up with a mechanical construct modeled by a fourth-order
(generally nonlinear) dispersive equation that can provide the mechanical interpreta-
tion for Schrödinger’s equation? The hint is in the original paper of Schrödinger [18]
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who observed that, in 2D, the equation for the real part of his wave function is the
governing equation of a momentum-supporting material surface (an elastic plate or
shell).

We begin the demonstration of this idea by rewritng the Schrödinger equation in
terms of the real (or imaginary) part of wave function to obtain

ψ1tt + ~
2∆∆ψ1 − 2χ~∆ψ1 + χ2ψ1 = 0. (8)

For χ = 0, Eq. (8) is nothing else but the Euler–Bernoulli equation for the flexural
deformations of thin plates (as mentioned in [18]). Hence, we conjecture that the
metacontinuum is a thin 3D material layer in 4D space.

Consider a very thin momentum supporting elastic structure of a 4D material. A
3D hypershell is the mathematical abstraction for this kind of momentum supporting
material structure. The displacement, ζ, along the 4th dimension is the wave function.
Contrary to the shell theory of technological applications, one has to consider the
limiting case when the deflections are small, the strains (gradients) are of unit-order,
and curvatures are large. Such an object is geometrically strongly nonlinear. The
hypershell of this work is radically different form the notion of a superstring because
the former can support momenta (the fourth order derivatives) while the latter cannot.

If h is the thickness of the shell, and L is the length scale of the localized deformation,
we assume than h ≪ L≪ 1. Then for the deflection, ζ, along the fourth dimension,
the following governing equation can be derived [19] when the flexural deformations
are not coupled to the deformations in the middle surface, namely

ζtt = β
[
−∆∆ζ − (∆ζ)

3
]

+ ∆ζ + F. (9)

The dimensionless form is obtained (note that cf 6= c and hats denote the original
variables) by using the scales:

ζ̂ = Lζ, x̂ = Lx, t̂ = Lc−1
f t, c2f = |σ|/µ, β = G/(|σ|L2), (10)

where G is the stiffness of the shell, σ is the membrane tension, and F is a 4D body
force. Note that the linear part of (9) has the form Eq. (8) if the membrane tension
is understood to be related to the heuristic potential.

Particles and Charges as Localized Patterns In order to understand the inter-
play between the absoluty of the metacontinuum and the relativity of the rectilinear
motion, as discussed by Einstein [20, Ch.7], we stipulate that the particles and charges
are localized phase patterns in the material space. Such localized waves are called
quasi-particles (or solitons under some additional conditions on integrability). The
charges are shear dislocations (see the details in [10, 11]), while the neutral particles
are the flexural deformation waves on the surface of hypershell.

Boussinesq [21] derived first an equation containing nonlinearity and dispersion sim-
ilar to Eq. (9), coming up with a fundamental idea: the dispersion balances the

20



nonlinearity making the shape of the wave permanent, He found the first solitary
wave. It was discovered numerically in [22] that the solitary wave interact very much
as particles and were called solitons and quasi-particles (QP).

This hints at the idea that the QPs of the master equation for the wave function are
actually the particles. In other words, a “point particle” is our perception of a localized
wave with a very short support and the center of a localized flexural deformation of the
shell is perceived as a point particle. We can call with proper justification this kind of
a localized wave the flexons [23, 24]. Respectively, the equations of electrodynamics
admit torsional solitons ‘twistons’ with topological charge (see [10, 11])

Detection of the Absolute Continuum The first attempt to detect the absolute
medium were based on interferometry (the famous experiment of Michelson and Mor-
ley [25, 26]) but it produced a nil result. Many were quick to interpret the nil result
of the Michelson and Morley experiment as evidence that the absolute continuum did
not exist. The problem with the above conclusion is that it presents a fallacy consist-
ing in using an argument that is supposed to prove one proposition but succeeds only
in proving a different one. The fallacy here is that the conclusion is overreaching.
Actually, the only rigorous conclusion from the nil result is that the absolute contin-
uum cannot be detected by this particular experiment. The hypothesis of Lorentz
[27] and FitzGerald (see, [28, p.749]) of length contraction in the direction of motion
explains the nil effect, and renders the dismissal of a material medium superfluous.
This means that all effort must be made to create an experimental set-up that can
demonstrate, unequivocally, the relative speed in a laboratory setting. In this con-
nection, the present author proposed a new look at the interferometry approach to
the detection of the absolute speed based on beat-frequency measurements [29]

Another celebrated experiment which is believed to have unequivocally supported
the theory of relativity was performed by Ives and Stilwell (ISE). It was assumed
that the change of frequency of moving atoms in a cathode tube is due solely to
time dilation. This is another overreaching conclusion, because there is not one-to-
one correspondence between a frequency change and a time dilation. The frequency
change can occur for various reasons, and one of them is discussed in a recent paper
[30],where it is shown that if the Lorentz contraction is acknowledged in the Bohr-
Rydberg formula for the frequency of the emitted light form a moving atom, then the
frequency of the propagating wave is ωmov = ωrest(1 − w2/c2)−1/2, where w is the
speed of the atom relative to the absolute continuum. Using this formula we have
shown in [30] that the absolute speed of Earth does not affect the interferometry in
the second order. Hence, the absolute continuum cannot be detected by ISE.

Conclusion In the sited works of the present author the case is argued for space
being an absolute material continuum (called metaconrtinuum) in which the electro-
magnetic vibrations propagate. The rheology of the mechanical space is of an elastic
liquid, which has Maxwell’s equations as corollaries. The logical fallacies of the ar-
guments that led to the so-called relativity principle are examined. Particles and
charges are interpreted as phase patterns (solitary waves of the metacontinuum. The
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deformations in the fourth dimension explain the wave mechanics. Thus a consistent
model of space as an elastic material continuum has been formulated and shown to
explain the observations from two of the crucial experiments. In a sense, the proposed
approach can be called the ‘Special Theory of Absoluty.’
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Decision Support System with Implementation in Natural
Hazards Field Tests

Nina Dobrinkova

1 Intorduction

Between 2000 and 2005 Europe suffered more than 100 floods, including 9 major
flood disasters. These major flood events caused 155 casualties and economic losses
of more than e35 billion. Furthermore the material flood damage of 2002 is esti-
mated to be higher than in any previous single year (Barredo, 2007). Indeed there is
an increase in the frequency of years with very high damage produced by major flood
disasters in Europe. Two years of the current decade, i.e. 2000 and 2002, are among
the worst concerning losses in the last 36-year period (Barredo, 2007). Despite the
relevance of the issue, there is a need for comprehensive, standardised and georefer-
enced information on floods. Relevant, accurate and up-to-date data is important for
political and economic decision-making. In Europe, historical data on flood disasters
are neither comprehensive nor standardised, thus making difficult long-term analyses
at continental level. A map of the major flood disasters of the last 56 years in the
European Union, has been created by the Emergency Events Database (EM-DAT1)
and NATHAN2 of Munich. (Figure 1)
One way to approach the problem is by using risk management to reduce the danger
to the people living in the potential flood areas. Risk management includes adminis-
trative decisions, organization, operational skills and abilities to implement policies,
strategies and coping capacities of the society and communities to lessen the impacts of
natural hazards and related environmental disasters. Hazard maps are an instrument
of hazard assessment and constitute a decisive element in modern risk management.
They assist the identification, evaluation and reduction of risks by using an optimal
combination of measures. Hazard maps may also support decisions concerning pre-
ventive measures againstnatural hazards and mitigation measures to manage disaster
events (Kienholz 2005). Thus hazard mapping is an important input for risk analysis.
Due to the interdependencies between human action and natural disasters in respect
to triggering such extreme events and determining the degree of vulnerability against
natural hazards, solving the problem will be possible only by using interdisciplinary
cooperation.

2 Main goal

Monitoring is a fundamental observation methodology in risk management, aimed at
the continuous surveillance of known hazards or at the detection of previously un-
known hazards. Monitoring systems consist of a complex combination of sensors and
data processing procedures and software. Monitoring produces information, which
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Figure 1: Major flood disasters in Europe: 1950-2005. Numbers from 1 to 23: flash
floods, 24 to 44: river floods, 45 to 47 storm surge floods. A triangle feature represents
very large regional events.

is valuable for depecting risk scenarios. Monitoring helps to assess hazard scenarios,
where, how and when a specific disaster process will take place. From a method-
ological point of view monitoring can be seen as a complement to simulation models.
From a practical point of view monitoring provides the information source of risk
management instruments like hazard zonation or early warning systems. As such it
serves as an important complement to active risk management measures like protec-
tive measures. In comparison to these benefits of monitoring include: the relative
cost efficiency, the fast technological development and its positive impact for capacity
building. These obvious advantages of monitoring have to be contrasted with some
pitfalls: Many new monitoring methods are primarily research oriented and cannot
yet offer the complete set of tools needed for practical application. Of these new
technologies the potential is often theoretically known but not yet tested in practise.
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In addition to that some techniques are often highly innovative but require a high
level of expert knowledge. The main goal of project MONITOR II (funded by SEE
program) is improvement of the methodology of risk evaluation and communication
by applying these innovative methods into a Continuous Situation Awareness system
(MONITOR II CSA). This project is the second stage of a project called MONITOR,
where a wide range of the methods have been implemented in various test-beds with
focus on different types of natural hazards. The suitability of methods was shown to
be adequate but related risk communication difficult (short time period of warning).
Risk communication procedures were developed as a participatory process in alarm
plan development. A regional hazard response has been generated to show the rela-
tion between hazard potential and actual land use activities, where risk combinations
between several hazards processes and exposition structures is displayed.

2.1 Monitoring methods used into the CSA system

A broad variety of heterogenous monitoring methods exist, that is why we organized
criteria which we have used to evaluate their applicability and practical use.

2.1.1 By data acquisition platform

• Remote sensing systems: Remote sensing systems do not require the operation
of active sensors directly in the area of interest. A further distinction can be
made concerning the operational location of the sensor between spaceborne,
aerial and terrestrial systems.

• In-situ sensing systems: In situ sensing systems require the operation of active
sensors directly in the area of interest. A further distinction can be made
between surface and sub-surface systems.

2.1.2 By data acquisition frequency

• Continuous monitoring: This applies to systems in which data acquisition is
automated and the frequency can be varied depending on the user needs, up to
a sampling frequency of a few minutes or seconds;

• Discontinuos monitoring: This applies to systems in which data acquisition is
not-automated and the frequency depends upon the availability of personnel
to carry out the measurements, or on systems in which data acquisition is au-
tomated but the frequency cannot be varied depending on the user needs and
sampling frequency is in the order of days or weeks.

2.1.3 By data availability timing

• Real-time monitoring: Real time monitoring means acquiring, transmitting and
processing data automatically, and reacting to results in an unsupervised man-
ner - e.g. by automatically raising an alarm. This timing is mainly used in
forecast, response and recovery phases.
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• Near-real-time monitonng: This implies acquiring, transmitting and processing
data automatically, and to react quickly to results in a supervised manner. E.g.
given by the way of experts who will decide if, for example, an alarm must
be raised and/or if decision makers and stakeholders must be informed. This
timing is mainly used in forecast, response and recovery phases.

• Non-real-time monitoring: This means acquiring, transmitting and processing
data automatically or manually, and to react to results at some point in time in
a supervised manner by way of experts who will decide if and when, for example,
decision makers and stakeholders must be informed. This timing is mainly used
in prevention and only rarely used in forecast, response and recovery.

2.1.4 By spatial extent of data

• locallsed monltormg: e.g. data is collected at specific point-like locations

• distributed monitoring: e.g. data is collected over a more or less large area

Each of the monitoring methods is applicable for one or two of the project partners,
but there is no method applicable for all of them. That is why the system architecture
is giving opportunity to the user to pick a model incorporating methods applicable
for the specific area depending on the hazard maps and hazard analysis provided as
an input data.

3 The system

The primary goal of the MONITOR II CSA (Continuous Situation Awareness) is to
improve situation awareness and knowledge about those situations, which are relevant
for disaster management. This goal has to be achieved for different stakeholders in
different phases of the disaster management cycle. This will integrate communication
between hazard experts, decision makers and civil protection services with improved
flow of information.

3.1 CSA technology

The MONITOR II CSA is a series of software components, which allows the easy
integration, presentation and use of disaster management information. The CSA sup-
ports the information needs of different phases of the Disaster Management Cycle.
The system architecture of the CSA takes into account the existence and well estab-
lished use of legacy systems. This means that the components of the CSA follow some
design rules: they are standards based, supporting OGC standard (like WMS, WFS
or Sensor Web) and INSPIRE where ever feasible; they define open service oriented
interfaces, allowing to integrate them with other components; their functionality is
encapsulated so that they function indepently of specific other components and/or
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Figure 2: The CSA – Continuous Situation Awareness System architecture

information sources; their modular design is defined on thematic and interoperable
units (figure 2).
The CSA is designed to store event data in a special CSA database. Object data -
like buildings or roads - are assumed to be stored in the local, regional or national
GIS. The CSA can use these object data directly if they conform to the themati-
cally corresponding INSPIRE implementation rules. Otherwise a transformation of
data is necessary. The CSA defines different levels of information integration: visual
integration by overlaying information sources into one common image (hazad map);
functional integration by using external functions (like simulation models) and inte-
grating only the results of this; full integration of data and data processing within
CSA.

3.1.1 Scenario modeler

A scenario modeller will be defined and will represent work-flows. It will use the fol-
lowing elements as ”process nodes”: natural processes; measures (and – depending on
the measures defined – the possible processes, which are influenced/changed by these
measures); damages. Endangered objects will be linked to processes (exposition).
The scenario modeller is intended to describe general models of natural (disaster)
processes and shows the resulting damages depending on the measures taken. It
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provides a means for communicating the results of hazard assessment (e.g. hazard
mapping) to a broad community of non-hazard-experts.
This architecture of the future CSA system is going to be developed for implemen-
tation in each partner country, after a series of field test planed in the MONITORII
project schedule, prove that this is the correct sequence of measures, which in case of
emergency has to be taken.

4 Conclusion

A unified system for early warning concentrated on flood events does not exist in the
European Union. Thus the project idea of MONITORII is very innovative and the
field test results together with successful development of working CSA system will be
the best formula for better Civil Protection measures in future.
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Adjoint Estimatoin of Ant Colony Optimization Starts
Methods

Stefka Fidanova, Pencho Marinov, Krassimir Atanassov

1 Introduction

Many combinatorial optimization problems are fundamentally hard. This is the most
typical scenario when it comes to realistic and relevant problems in industry and
science. Examples of optimization problems are Traveling Salesman Problem [6],
Vehicle Routing [7], Minimum Spanning Tree [5], Multiple Knapsack Problem [4], etc.
They are NP-hard problems and in order to obtain solution close to the optimality
in reasonable time, metaheuristic methods are used. One of them is Ant Colony
Optimization (ACO) [2].
ACO algorithms have been inspired by the real ants behavior. In nature, ants usu-
ally wander randomly, and upon finding food return to their nest while laying down
pheromone trails. If other ants find such a path, they are likely not to keep traveling
at random, but to instead follow the trail, returning and reinforcing it if they eventu-
ally find food. However, as time passes, the pheromone starts to evaporate. The more
time it takes for an ant to travel down the path and back again, the more time the
pheromone has to evaporate and the path to become less prominent. A shorter path,
in comparison will be visited by more ants and thus the pheromone dencity remains
high for a longer time.
ACO is implemented as a team of intelligent agents which simulate the ants behavior,
walking around the graph representing the problem to solve using mechanisms of
cooperation and adaptation. ACO algorithm requires to define the following [1, 3]:

• The problem needs to be represented appropriately, which would allow the ants
to incrementally update the solutions through the use of a probabilistic transi-
tion rules, based on the amount of pheromone in the trail and other problem
specific knowledge. It is also important to enforce a strategy to construct only
valid solutions corresponding to the problem definition.

• A problem-dependent heuristic function, that measures the quality of compo-
nents that can be added to the current partial solution.

• A rule set for pheromone updating, which specifies how to modify the pheromone
value.

• A probabilistic transition rule based on the value of the heuristic function and
the pheromone value, that is used to iteratively construct a solution.

The structure of the ACO algorithm is shown by the pseudocode below. The transition
probability pi,j , to choose the node j when the current node is i, is based on the

29



heuristic information ηi,j and the pheromone trail level τi,j of the move, where i, j =
1, . . . . , n.

pi,j =
τa
i,jη

b
i,j∑

k∈Unused τ
a
i,kη

b
i,k

,

where Unused is the set of unused nodes of the graph.
The higher the value of the pheromone and the heuristic information, the more prof-
itable it is to select this move and resume the search. In the beginning, the initial
pheromone level is set to a small positive constant value τ0; later, the ants update
this value after completing the construction stage. ACO algorithms adopt different
criteria to update the pheromone level.

Ant Colony Optimization
Initialize number of ants;
Initialize the ACO parameters;
while not end-condition do

for k=0 to number of ants
ant k choses start node;
while solution is not constructed do

ant k selects higher probability node;
end while

end for
Update-pheromone-trails;

end while

Figure 1: Pseudocode for ACO

The pheromone trail update rule is given by:

τi,j ← ρτi,j + ∆τi,j ,

where ρ models evaporation in the nature and ∆τi,j is new added pheromone which
is proportional to the quality of the solution.
Our novelty is to use estimations of start nodes with respect to the quality of the
solution and thus to better menage the search process. On the basis of the estimations
we offer several start strategies and their combinations.

2 Start Strategies

The known ACO algorithms create a solution starting from random node. But for
some problems, especially subset problems, it is important from which node the search
process starts. For example if an ant starts from node which does not belong to the
optimal solution, probability to construct it is zero. Therefore we offer several start
strategies.
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Let the graph of the problem has m nodes. We divide the set of nodes on N subsets.
There are different ways for dividing. Normally, the nodes of the graph are randomly
enumerated. An example for creating of the nodes subsets, without lost of generality,
is: the node number one is in the first subset, the node number two is in the second
subset, etc. the node number N is in the N − th subset, the node number N + 1
is in the first subset, etc. Thus the number of the nodes in the separate subsets are
almost equal. We introduce estimations Dj(i) and Ej(i) of the node subsets, where
i ≥ 2 is the number of the current iteration. Dj(i) shows how good is the jth subset
and Ej(i) shows how bad is the jth subset. Dj(i) and Ej(i) are weight coefficients of
j − th node subset (1 ≤ j ≤ N), which we calculate by the following formulas:

Dj(i) = φ.Dj(i− 1) + (1− φ).Fj(i),

Ej(i) = φ.Ej(i− 1) + (1− φ).Gj(i),

where i ≥ 1 is the current process iteration and for each j (1 ≤ j ≤ N):

Fj(i) =

{
fj,A

nj
if nj 6= 0

Fj(i− 1) otherwise
, (1)

Gj(i) =

{ gj,B

nj
if nj 6= 0

Gj(i− 1) otherwise
, (2)

and fj,A is the number of the solutions among the best A%, and gj,B is the number
of the solutions among the worst B%, where A+B ≤ 100, i ≥ 1 and

N∑

j=1

nj = n,

where nj (1 ≤ j ≤ N) is the number of solutions obtained by ants starting from nodes
subset j. Initial values of the weight coefficients are: Dj(1) = 1 and Ej(1) = 0. The
parameter φ, 0 ≤ φ ≤ 1, shows the weight of the information from previous iterations
and from current iteration. When φ = 0 only the information from current iteration
is taken in to account. If φ = 0.5 the influence of previous versus current iterations
is equal. When φ = 1 only the information from previous iterations is taken in to
account. When φ = 0.25 the weight of the information from previous iterations is
three times less than this one of the current iteration. When φ = 0.75 the weight of
the previous iterations is three times higher than this one of the current iteration.
The balance between the weights of the previous and current iterations is important.
At the beginning when the current best solution is far from the optimal one, some of
the node subsets can be estimated as good. Therefore, if the value of the parameter
φ is too high the estimation can be distorted. If the weight of the current iteration
is too high than in the estimation are ignored good and bad solutions from previous
iterations, which can distort estimation too.
We try to use the experience of the ants from previous iteration to choose the better
starting node. Other authors use this experience only by the pheromone, when the
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ants construct the solutions. Let us fix threshold E for Ej(i) and D for Dj(i), than
we construct several strategies to choose start node for every ant, the threshold E
increase every iteration with 1/i where i is the number of the current iteration:

1 If Ej(i)/Dj(i) > E then the subset j is forbidden for current iteration and we
choose the starting node randomly from {j |j is not forbidden};

2 If Ej(i)/Dj(i) > E then the subset j is forbidden for current simulation and we
choose the starting node randomly from {j |j is not forbidden};

3 If Ej(i)/Dj(i) > E then the subset j is forbidden for K1 consecutive iterations
and we choose the starting node randomly from {j |j is not forbidden};

4 Let r1 ∈ [0.5, 1) is a random number. Let r2 ∈ [0, 1] is a random number. If
r2 > r1 we randomly choose node from subset {j |Dj(i) > D}, otherwise we
randomly chose a node from the not forbidden subsets, r1 is chosen and fixed
at the beginning.

5 Let r1 ∈ [0.5, 1) is a random number. Let r2 ∈ [0, 1] is a random number.
If r2 > r1 we randomly choose node from subset {j |Dj(i) > D}, otherwise
we randomly chose a node from the not forbidden subsets, r1 is chosen at the
beginning and increase with r3 every iteration.

Where 0 ≤ K1 ≤”number of iterations” is a parameter. If K1 = 0, than strategy 3 is
equal to the random choose of the start node. If K1 = 1, than strategy 3 is equal to
the strategy 1. If K1 =”maximal number of iterations”, than strategy 3 is equal to
the strategy 2.
We can use more than one strategy for choosing the start node, but there are strate-
gies which can not be combined. We distribute the strategies into two sets: St1 =
{strategy1, strategy2, strategy3} and St2 = {strategy5, strategy6}. The strategies
from same set can not be used at once. Thus we can use strategy from one set or
combine it with strategies from other set. Exemplary combinations are (strategy1),
(strategy2; strategy5), (strategy3; strategy6).

3 Conclusion

In this paper we address the modelling of the process of ant colony optimization
method by using adjoint estimations, combining five start strategies. So, the start
node of each ant depends of the goodness of the respective region. In a future we
will focus on parameter settings which manage the starting procedure. We will inves-
tigate on influence of the parameters to algorithm performance. We will apply our
modification of ACO algorithm on various classes of problems. We will investigate
the influence of the estimations and start strategies on the achieved results.

Acknowledgments: This work has been partially supported by the Bulgarian Na-
tional Scientific Fund under the grants ID-”Modeling Processes with fixed develop-
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ment rules” and TK-”Effective Monte Carlo Methods for large-scale scientific prob-
lems”.
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Locally Optimized MIC(0) Preconditioning of Rotated
Bilinear FEM Systems

Ivan Georgiev, Svetozar Margenov

We consider the elliptic boundary value problem

Lu ≡ −∇ · (a(x)∇u(x)) = f(x) in Ω,
u = 0 on ∂Ω,

where Ω is a polygonal domain in R2, f(x) ∈ L2(Ω). The coefficient matrix a(x) is
symmetric positive definite and uniformly bounded in Ω. The weak formulation of
the above problem reads as follows: Given f ∈ L2(Ω) find u ∈ V ≡ H1

D(Ω) = {v ∈
H1(Ω) : v = 0 on ΓD}, satisfying

A(u, v) = (f, v) ∀v ∈ H1
D(Ω), where A(u, v) =

∫

Ω

a(x)∇u(x) · ∇v(x)dx.

The domain Ω is discretized by the partition Th which is aligned with the discontinu-
ities of the diffusion coefficients so that over each element e ∈ Th the coefficients of
a(x) are smooth functions. The variational problem is then approximated using the
finite element method, i.e., the continuous space V is replaced by a finite dimensional
subspace Vh. Then the finite element formulation is: Find uh ∈ Vh, satisfying

Ah(uh, vh) = (f, vh) ∀ vh ∈ Vh, where Ah(uh, vh) =
∑

e∈Th

∫

e

a(e)∇uh · ∇vhdx.

Here a(e) is a piece-wise constant symmetric positive definite matrix, defined by the
integral averaged values of a(x) over the current element from the triangulation Th.
We note that in this way strong coefficient jumps across the boundaries between
adjacent finite elements from Th are allowed.

Here we will consider the case of discretization by non-conforming rotated bilinear
finite elements [7]. The square ê = [−1, 1]2 is used as a reference element in the
definition of the rotated bilinear element e ∈ Th. Let

Ψe : ê→ e

be the corresponding bilinear bijective transformation. The nodal basis functions are
determined by the relations

{φi}4i=1 = {φ̂i ◦Ψ−1
e }4i=1, {φ̂i} ∈ span{1, x, y, x2 − y2}

where ◦ means the superposition of functions φ̂i and Ψ−1
e . For the variant MP (mid-

point) the shape functions {φ̂i}4i=1 are found by the point-wise interpolation condition

φ̂i(b
j
Γ) = δij ,
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where bjΓ, j = 1, 4 are the midpoints of the boundary Γê. Alternatively, the variant
MV (mean-value) corresponds to the integral mean-value interpolation condition

|Γj
ê|−1

∫

Γj
ê

φ̂idΓ
j
ê = δij ,

where Γj
ê are the sides of the reference element ê. Here in the presented numerical

tests we will consider MV discretization variant.
The preconditioned conjugate gradient (PCG) method is used for solving the resulting
linear algebraic system

Au = f ,

where A and f are the corresponding global stiffness matrix and global right hand
side.
The preconditioner is constructed by modified incomplete Cholesky (MIC(0)) factor-
ization (see [1, 4, 5]). For symmetric and positive definite (SPD) matrices, the set of
M-matrices with nonnegative row-sum reads as follows:

MN =




A ∈ RN×N : aii > 0; aij ≤ 0, i 6= j;

N∑

j=1

aij ≥ 0




 .

It is known that a MIC(0) factorization is applicable if the stiffness matrix A ∈ MN

which is not the case in many applications. Here, the idea is first to construct an M-
matrix approximation of the global stiffness matrix and then to apply a MIC(0) fac-
torization. For this purpose we will consider the following local optimization problem:
For a given element stiffness matrix A(e) find the symmetric and positive semidefi-
nite matrix B(e), with nonpositive offdiagonal entries, such that the effective spectral
condition number

κ̂
(
B(e), A(e)

)
=
λ

(e)
max

λ
(e)
min

is as small as possible, where A(e)v(e) = λB(e)v(e), v(e) 6= (c, c, . . . , c)t, c ∈ R.
The arising local optimization problem is solved symbolically following the technique
proposed in [6]. Applying then the standard FEM assembling procedure we obtain a
locally optimal M-matrix approximation B of the global stiffness matrix A.
Let us consider the elliptic model problem where the coefficient matrix is of the form

a(x) = a(e)

[
ǫ 0
0 1

]
,

and for the coefficient ǫ we have the inequality 0 < ǫ ≤ 1. It is shown in [3] that if
we use the diskretization aligned with the coordinate (anisotropy) axes the spectral
condition number κ

(
B−1A

)
is not uniformly bounded with respect to the anisotropy.

We can overcome this disadvantage by using the 45◦ skewed orthogonal square mesh
and as it is shown in [3] we get the spectral condition number estimate

κ
(
B−1A

)
≤ 3

2
,
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which hold uniformly with respect to the anisotropy and possible coefficient jumps.

We will present numerical tests illustrating the convergence rate of the studied PCG
algorithm when the size of the discrete problem and the anisotropy coefficient are

varied. A relative stopping criterion
(C−1ri, ri)

(C−1r0, r0)
< ε2 is used, where C is the MIC(0)

preconditioner, ri stands for the residual at the i-th iteration step, and ε = 10−6.
The anisotropy parameter is varied as ǫ = 2−l, where l is a test parameter. Pure
homogeneous Dirichlet boundary conditions are imposed. A uniform square mesh
with mesh-size parameter h = 1/n is used.

Example 1. The computational domain

Ω =

{
|x| ≤ y ≤

√
2− |x| : −

√
2

2
≤ x ≤

√
2

2

}
.

The model problem with constant coefficient a(e) = 1 is considered. The size of the
discrete problem is N = 2n(n + 1). The numerical results are presented in Table
1. The stable behavior of the number of iterations with respect to the anisotropy
confirms the obtained uniform condition number estimates.

Table 1: Example 1 - PCG iterations.

h−1 l = 0 l = 2 l = 4 l = 6 l = 8
128 34 40 39 35 27
256 47 57 55 49 41
512 69 82 78 70 57
1024 100 118 112 100 82

Example 2. The computational domain Ω from Example 1 is divided in two subdo-
mains Ω = Ω1

⋃
Ω2, Ω1

⋂
Ω2 = ∅, see Figure 1 (a). We will denote with a1 and a2

the problem coefficients corresponding to the subdomains Ω1 and Ω2. The coefficient
jump relates to the coefficients a1 = 1 and a2 = 10000. The numerical results are
presented in Table 2.

Example 3. Here again the domain Ω = Ω1

⋃
Ω2 but the geometry of the subdomains

Ω1 and Ω2 is different, see Figure 1 (b). The related problem coefficients are a1 = 1
and a2 = 10000. The numerical results for Example 3 are presented in Table 3.

The number of iterations in Table 2 and Table 3 increases less than two times when
the coefficient jump is of order 104. The qualitative analysis of the results for the con-
sidered examples confirms that the number of iterations is O(N1/4) for large enough
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Figure 1: Computational domain: (a) Example 2, (b) Example 3

Table 2: Example 2 - PCG iterations.

h−1 l = 0 l = 2 l = 4 l = 6 l = 8
128 69 71 65 55 40
256 98 103 98 91 74
512 140 147 142 136 127
1024 198 208 202 199 197

N, which is in agreement with the theoretical expectations, see [4]. The construction
of MIC(0) preconditioner C as well as each iteration can be carried out in O(N)
arithmetic operations.

The modification of the element stiffness matrices is a natural and very useful pro-
cedure for the construction of preconditioners using MIC(0) factorization for second
order elliptic problems. It is, however, also an important issue in the separate dis-
placement component preconditioning of elasticity problems [2].
Acknowledgements. The authors have been supported by the Bulgarian NSF Grant
DO 02-338/08.
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Notes on the Numerical Treatment of Sparse Matrices
Arising in a Chemical Model

Krassimir Georgiev, Zahari Zlatev

A two-dimensional advection-diffusion-chemistry module of a large-scale environmen-
tal model is taken. The module is described mathematically by system of partial
differential equations. Sequential splitting is used in the numerical treatment. The
non-linear chemistry is most the time-consuming part and it is handled by six implicit
algorithms for solving ordinary differential equations. This leads to the solution of
very long sequences of systems of linear algebraic equations. It is crucial to solve
these systems efficiently. This is achieved by applying four different algorithms.

1 The 2D version of the Danish Eulerian model and

rotational test

The Danish Eulerian model (UNI–DEM)([6]) is an model for studying the long-range
transport of air pollutants. The model computational domain covers Europe and parts
of Asia, Africa and the Atlantic Ocean. The long-range transport of air pollution is
usually studied by a system of partial differential equations (PDEs), which can be
written as follows (it should be mentioned that similar systems are used in other
environmental models):

∂cs
∂t

= −∂(ucs)

∂x
− ∂(vcs)

∂y

+
∂

∂x

(
Kx

∂cs
∂x

)
+

∂

∂y

(
Ky

∂cs
∂y

)
(1)

+Es +Qs(c1, c2, . . . cq)− (k1s + k2s)cs, s = 1, 2, . . . q ,

where:

(i) cs(t, x, y) are the concentrations of the chemical species;

(ii) u(t, x, y), v(t, x, y) are the wind components along the coordinate axes;

(iii) Kx(t, x, y), Ky(t, x, y) are the diffusion coefficients;

(iv) Es(t, x, y) present the emission sources;

(v) k1s(t, x, y), k2s(t, x, y) are correspondingly the dry and wet deposition coeffi-
cients, and finally,

(vi) Qs((t, x, y, c1, c2, . . . cq) are non-linear functions which describe the chemical re-
actions between species under consideration.
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When some numerical methods shod be tested and tuned it is more convenient to use
the following two-dimensional module:

∂cs
∂t

= −µ(y − y0)
∂cs
∂x
− µ(x0 − x)

∂cs
∂y

+K

(
∂cs
∂x2

+
∂cs
∂y2

)

(2)

+Es(t, x, y) +Qs (t, x, y, c1, c2, . . . , cq) , s = 1, 2, . . . q ,

where x ∈ [a1, b1] , y ∈ [a2, b2] , t ∈ [a, b] x0 = b1−a1

2 , y0 = b2−a2

2 , µ =
2π

b−a . Very often the space domain is square, i.e. a1 = a2, b1 = b2 and the length
of the time interval is 86 400 s. (24 hours with starting point being 6:00 AM).
The problem (2) is considered with a given initial value vector c(c, y, a) and some
boundary conditions (Dirichlet boundary conditions which be used hereafter). The
most essential difference in (2) according to (1) is the special definition of the wind
velocity field. The trajectories of the wind in (2) are concentric circles with center
(x0, y0) and particles are rotated along these trajectories with a constant angular
velocity. Such wind velocity field was first defined in [1, 5]. There, the test in which
only the first two terms in the right-hand-side of (2) are kept (the pure advection
test) was introduced. Chemical reactions were included to the Crowley-Molenkampf
test by Hov et al (see [3]). The module defined in this paper by (2) is a further
extension of the original Crowley-Molenkampf test. It is worthwhile to study this
module (generalized rotation test) because it is much closer to real environmental
model than the previous two modules. By setting some of the coefficients to zero or
keeping all of them different from zero, six situations can be studied by (2):

• No non-zero emissions are specified (puff; Es = 0 for all values of s):

(A) Pure advection-diffusion process (only the terms containing the spatial
derivatives are kept).

(B) Pure chemical process (only the non-linear functions are kept).

(C) Combining the advection-diffusion process with the chemistry process
(all terms except the emissions are kept).

• Some emissions are no zero (plume; Es 6= 0 for some values of s ):

(D) Pure advection-diffusion process (only the terms containing the spatial
derivatives and the emissions are kept).

(E) Pure chemical process (only the non-linear functionsQs and the emissions
are kept).

(F) Combining the advection-diffusion process with the chemistry process
(all terms are kept).
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2 Sequential splitting procedure

A splitting procedure proposed in [4] is used in Danish Eulerian model. In the three
dimensional version of the model it leads to five submodels representing the horizontal
advection, the horizontal diffusion, the chemistry and the emissions, the depositions
(dry and wet) and the vertical exchange. Simple sequential splitting will be used
in this paper. Applying this kind of splitting to (2 leads to the following two sub-
problems:

∂gs

∂t
= −µ(y − y0)

∂gs

∂x
− µ(x0 − x)

∂gs

∂y
+ K

(
∂2gs

∂x2
+
∂2gs

∂y2

)
, (3)

∂hs

∂t
= Es(t, x, y) +Qs(t, x, y, g1, g2, . . . gq) (4)

It is worthwhile to emphasize here that:

• The sequential splitting procedure allows different numerical methods to be
used in the treatment of the two sub-problems. This is a very useful feature,
because the two sub-problems have different properties. The first sub-problem,
the advection-diffusion module is a non-stiff problem, while the second sub-
problem, the chemistry module is a stiff sub-problem.

• The system (3) consists of q independent PDEs. If the computational space
domain is discretized into Nx ×Ny grid-points, then (4) will be decoupled into
Nx×Ny independent systems of ordinary differential equations (ODEs) each of
which contains q equations. This observation indicates that in general efficient
parallel computations can be achieved in a natural way.

3 Numerical treatment in the chemistry module

The chemical submodel is described by (4). Let the space domain is discretized by
using (Nx + 1) (Ny + 1) grid points. Then the non-linear system of PDE’s (4) is
reduced to (Nx + 1) (Ny + 1) independent systems of ODEs (one per each grid-point
in the space domain). The number of equations in every system of ODEs is q. An
arbitrary system of ODE’s can be written as

∂ĥ

∂t
= f(t, ĥ), ĥ ∈ R

q, f ∈ R
q. (5)

The system of ODEs (5) is stiff. Let us denote with J(t, ĥ) of the vector function

f ∈ Rq (J(t, ĥ) = ∂f(t, ĥ)/∂ĥ ∈ Rq×q). Now, the Newton Iterative Method (see e.
g. [2]) is applied to solve the nonlinear system of ODEs (5). At each iteration m of
the Newton Iterative Method, the following system of linear algebraic equations has
to be solved:
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Bm zm = dm, ĥ[m+1]
new = ĥ[m]

new + zm, (6)

where

Bm = I − γ∆tJ
“
tn+1,bh[m+1]

new

”
, zm = ∆bh[m+1]

new , dm = s
“

bhold,bh[m]
new

”
, m = 0, 1, 2, . . . . (7)

Some properties and characteristics of the matrices arising in the chemistry module
are:

• general (these matrices ARE NOT symmetric, diagonally dominant, banded
or positive definite);

• badly scaled;

• ill-conditioned;

• their elements vary in large intervals on diurnally basis which cause great
diurnal variation of the involved concentrations.

The following several techniques for treatment of the matrices which arise in the
chemistry module are used in the performed numerical and computer experiments:

• Dense matrix technique: LAPACK – (DGETRF and DGETRS);

• Regular sparse matrix technique: PARASPAR – DIR (Direct solution using
Gaussian Elimination);

• Preconditioned sparse matrix technique: PARASPAR – ORTH (Precon-
ditioned Modified Orthomin);

• Special sparse matrix technique – only for the chemical scheme in UNI–
DEM.

The main problems which appear when a regular sparse matrix code is applied for
small matrices, are related mainly to: (i) the indirect addressing, the use of many
integer arrays the content of which must very often be updated, the performance
of many short loops and the need to search for pivotal elements at every stage of
the Gaussian elimination (in an attempt to preserve both the sparsity and and the
stability). Therefore, the special sparse matrix technique has been developed. This
technique is based on the following steps:

• A preliminary reordering procedure based on the application of a Markovitz
pivotal strategy for general sparse matrices is performed. All small non-zero
elements are removed during this preliminary procedure.

• The positions, in which new non-zero elements will be created, are determined
and locations for these elements are reserved in the arrays where the LU factor-
ization of the diagonal block under consideration is stored.
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Table 1: Computing times measure in CPU hours for different space and time dis-
cretizations

Method Time-steps Nx ×Ny Dense Sparse Precond. Special
direct sparse sparse

Backward 960 1089 0.112 0.067 0.052 0.040
Euler 1920 4225 0.621 0.269 0.157 0.063
Method 3840 16641 4.249 1.732 0.875 0.241
(first 7680 66049 31.383 12.575 6.238 1.506
order) 15360 263169 250.712 98.921 52.775 12.116
Implicit 960 1089 0.243 0.118 0.087 0.039
Midpoint 1920 4225 1.507 0.608 0.360 0.059
Rule 3840 16641 9.464 3.693 2.030 0.200
(second 7680 66049 61.622 22.930 11.772 1.407
order) 15360 263169 384.331 138.737 72.002 11.647
Two-stage 960 1089 0.205 0.088 0.064 0.041
2nd order 1920 4225 1.400 0.402 0.234 0.071
diag.implicit 3840 16641 9.944 2.891 1.552 0.269
Runge-Kutta 7680 66049 75.052 22.665 11.880 1.972
Method 15360 263169 542.686 179.742 93.748 15.479
3-stage 960 1089 0.301 0.322 0.410 0.128
5th order 1920 4225 1.958 2.108 1.152 0.668
fully impl. 3840 16641 13.862 15.184 13.294 4.543
R-K 7680 66049 107.426 118.113 68.278 33.052
Method 15360 263169 657.868 921.914 403.838 268.724
Two-stage 960 1089 0.060 0.067 0.065 0.047
2-nd order 1920 4225 0.321 0.288 0.256 0.095
Rosen- 3840 16641 1.620 2.082 1.724 0.437
brock 7680 66049 12.939 16.976 13.070 2.801
Method 15360 263169 105.220 144.371 99.395 21.083
Trapezo- 960 1089 0.118 0.063 0.051 0.039
idal 1920 4225 0.632 0.233 0.145 0.056
Rule 3840 16641 4.481 1.514 0.817 0.207
(second 7680 66049 33.966 11.445 6.198 1.155
order) 15360 263169 252.372 91.759 49.137 10.369
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• A loop-free code for the numerical calculation of the LU factorization of the
diagonal block under consideration is prepared.

• A loop-free code for the back-substitution (based on the LU factorization com-
puted in the previous step) is prepared.

The computing time when six different numerical methods for solving systems of
ODEs and four different techniques for treatment of the sparse matrices arising in the
chemical model discussed above are presented in Table 1.

4 Conclusion

An important component of the large-scale air pollution models, a chemistry module,
was studied in this paper. The numerical treatment of this module requires the
solution of very long sequences of systems of linear algebraic equations. It has been
shown in this paper that the selection of efficient algorithms for solving systems of
linear algebraic equations is very important. The computing time can be reduced
by a large factor (sometimes by a factor larger than 30) when the proper method is
chosen.
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Numerical Study of Sensitivity Analysis Techniques

Rayna Georgieva, Sofiya Ivanovska

1 Introduction

Sensitivity analysis (SA) of model output aims to quantify how a model (describing
chemical, physical, biological, or social processes) depends on its input parameters.
Sensitivity analysis is increasingly recognized as an important tool for model building
and validation. In general, sensitivity analysis is useful for all processes where it is
important to know which input factors contribute most to output variability [5, 9].

This paper aims at numerical studies of variance-based techniques for sensitivity
analysis - Sobol’ approach and Fourier Amplitude Sensitivity Test (FAST). The ap-
proaches have been implemented using Monte Carlo algorithms and SIMLAB software
tool for sensitivity analysis [11]. The main mathematical problem here is numerical
integration of model function to estimate the corresponding numerical indicators of
sensitivity. A discussion about reliability of the results have been done after a number
of numerical experiments with a model simulating remote transport of air pollutants.
The issue of computing small sensitivity indices is very important in this particular
case.

2 Mathematical Background

Several variance-based techniques for sensitivity analysis have been compared during
the sensitivity study of the concentration levels of ozone to variation of chemical rates
of an air pollution model - Unified Danish Eulerian Model (UNI-DEM). The chemical
scheme used in the model is the condensed CBM-IV (Carbon Bond Mechanism, [10]).

Consider a scalar model output u = f(x) corresponding to a number of non-correlated
model parameters x = (x1, x2, . . . , xd) with a joint probability density function p(x) =
p(x1, . . . , xd). The issue about parameter importance can be studied via numerical
integration in the terms of analysis of variance (ANOVA). A number of unbiased
Monte Carlo estimators for global sensitivity indices have been developed applying
ANOVA-decomposition of model function [3, 5, 7, 8].

2.1 Sobol’ Approach

In Sobol’ approach [7] the variance of the square integrable model function is de-
composed into terms of increasing dimension. The sensitivity of model output to
each parameter or parameter interaction is measured by its contribution to the total
variance.

An approach for evaluating small sensitivity indices (to avoid loss of accuracy because
the analyzed database comes under this case) has been applied - a combined approach

45



(between approach of reducing of the mean value and correlated sampling) suggested
in [8].

2.2 Fourier Amplitude Sensitivity Test

The method is based on Fourier transformation of uncertain model input parameters
into a frequency domain [1]. It converts a multidimensional integral over all the
uncertain parameters to an one-dimensional integral defined by a set of parametric
equations, i.e. the idea is to explore the input space along a curve.

An extension of the FAST (eFAST) method [6] was developed to estimate the total
effects. Decomposition of variance in eFAST works by varying different parameters
at different frequencies, encoding the identity of parameters in the frequency of their
variation. Fourier analysis then measures the strength of each parameter frequency
in the model output.

If N denotes the sample size and d - the number of inputs, the original Sobol’ method
requires N × (2d+ 1) model runs to calculate all first- and total order sensitivity in-
dices. For comparison, the extended FAST requires dN model runs. An enhancement
of Sobol’ method has been made [4] - this modification provides the first-, second- and
total order sensitivity indices using N× (2d+2) model runs. As a summary, the com-
putational cost of the sensitivity analysis approaches under consideration to compute
all first- and total order sensitivity indices has an optimal rate - it is proportional to
the sample size and the number of input parameters (see Table 1).

Table 1: Methods for evaluating global sensitivity indices.

Method Cost (model runs) Sensitivity measures

FAST (1973) O(d2) Si, ∀i
Sobol’ (1993) N(2d+ 2) Si, S

tot
xi
, ∀i

EFAST (1999) dN Si, S
tot
xi
, ∀i

Saltelli (2002) N(d+ 2) Si, S
tot
xi
, ∀i, S−lj, ∀l, j, l 6= j

Saltelli (2002) N(2d+ 2) Si, S
tot
xi
, ∀i, Slj , S−lj , ∀l, j, l 6= j

2.3 Adaptive Monte Carlo Algorithm

The adaptive Monte Carlo algorithm uses a posteriori information about the variance.
Its idea consists in the following: the domain of integration is separated initially
into sub-domains with identical volume. The subdomain with the largest standard
deviation is chosen for the next division. The algorithm stops when the standard
deviation at all obtained after division subdomains satisfies the preliminary given
accuracy ε.
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3 Discussion of Numerical Results

A comparison between results obtained applying plain Monte Carlo approach, two
approaches for SA from the software tool SIMLAB and our adaptive Monte Carlo
algorithm [2] is given on Table 2. The goal of the performed comparative analysis
here is to study and specify the numerical advantages of the proposed adaptive Monte
Carlo algorithm for estimation of unknown quantities.

Table 2: First-order and total sensitivity indices of inputs estimated using differ-
ent approaches of SA applying Plain and Adaptive Monte Carlo algorithms (S1 =
0.53234, S3 = 0.00198, Stot

x1
= 0.53782, Stot

x3
= 0.00226).

Est. Combined: Plain FAST: SIMLAB Combined: Adaptive Sobol’: SIMLAB
quant. N Rel. error Rel. error #sub Nsub Rel. error N Rel. error

S1 192 0.2214 0.0296 64 3 0.0473 256 0.0978
7200 0.0046 0.0011 180 40 0.0031 8192 0.0035
32000 0.0004 0.0014 64 500 0.0001 16384 0.0051

S3 192 1.7695 1.9798 64 3 0.1790 256 1.7778
7200 0.5367 0.1111 64 500 0.3463 8192 0.0606
32000 0.3250 0.1111 64 500 0.0581 16384 0.1111

Stot
x1

192 0.0923 0.0576 64 3 0.0503 256 0.0807
7200 0.0061 0.0001 180 40 0.0061 8192 0.0006
32000 0.0020 0.00004 64 500 0.0004 16384 0.0023

Stot
x3

192 1.1693 12.628 64 3 1.1013 256 0.5044
7200 0.7529 0.8142 180 40 0.0895 8192 0.0619
32000 0.2094 0.6814 64 500 0.0153 16384 0.0619

The following notation is used in the tables: #sub is the number of subdomains after
domain division, Nsub is the number of samples in each subdomain, N is the number
of samples in the domain of integration (for the plain algorithm). For our experiments
the desired estimate of standard deviation is chosen as ε ∈ {0.0165; 0.1; 0.5}. Relative
error has been chosen as a main quantitative measure for comparison of approaches
under consideration. The number of samples for Monte Carlo techniques has been
chosen following the requirement for consistency of obtained results. The number
of samples for plain Monte Carlo algorithm is a multiplication of average number of
subdomains and number of samples in each subdomain specified for adaptive Monte
Carlo algorithm. FAST approach is carried out via SIMLAB for the same correspond-
ing number of samples and Sobol’ approach via SIMLAB - for the nearest possible
number.

The results for plain and adaptive approach show a numerical advantage for the
adaptive algorithm - smaller relative error for a fixed number of samples. It can be
expected according to variance reduction property of the adaptive procedure.
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Table 3: Higher-order sensitivity indices of inputs estimated using SIMLAB Sobol’
approach (S12 = 0.00537, S13 = 0.000096, S23 = 0.00018, S123 = 0.000004).

Est. N = 256 N = 8192 N = 16384
quant. Est. value Rel. error Est. value Rel. error Est. value Rel. error

S12 0.0133 1.4767 0.0068 0.2663 0.0065 0.2104
S13 0.0045 45.875 0.00007 0.2708 0.000072 0.25
S23 0.0067 36.222 0.00021 0.1667 0.0003 0.6667
S123 -0.034 7658.1 -0.0015 339.91 0.0006 135.36

The computational cost of Sobol’ approach and FAST is similar and optimal as it
has been mentioned before. The results in Table 2 show that the order of relative
error is similar for the both cases except for small total sensitivity index - in our
case Stot

x3
. The relative error in computing Stot

x3
using FAST is larger than other

ones. The adaptive Monte Carlo algorithm has an advantage over Sobol’ approach of
SIMLAB implementation for more specified data in Table 2. One more advantage of
the proposed adaptive algorithm is that we can control number of samples and the
accepted level of accuracy for it. In contrast to that number of samples is fixed for
SIMLAB algorithms and the maximum number for Sobol’ approach is comparatively
small - 16384.

The results about estimate value and relative error in computing higher-order sen-
sitivity indices using SIMLAB Sobol’ approach are presented in Table 3. It can be
seen that this kind of indices have comparatively small values and SIMLAB imple-
mentation of Sobol’ approach gives acceptable order of approximation only for larger
number of samples. This algorithm produces also non acceptable negative value for
S123.
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Figure 1: Scatter plots of chemical rate of third and twenty second time-dependent
and sixth time-independent reaction (x3) against ozone concentration (y).

The main conclusion about extent of sensitivity of the mathematical model under con-
sideration according the inputs is that the main effect of input parameters dominates
over higher-order interactions.
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All scatter plots have been made for N = 16384 points. Figure 1a and Figure 1b
show the scatter plot of the most important inputs against the model output. The
dependence between model inputs and output can be clearly seen by that figures -
inversely proportional at the first one and directly proportional at the second one.
Figure 1c confirms inessential influence of the third input parameter on the model
output.

4 Concluding remarks

The proposed adaptive Monte Carlo algorithm for numerical integration is one more
approach to compute the main sensitivity measures - Sobol’ global sensitivity indices.
The experimental comparative analysis of relative error obtained applying various
algorithms shows that the results of Sobol’ algorithm from SIMLAB and adaptive
Monte Carlo algorithm for all unknown quantities of interest are reliable. The ad-
vantages for the adaptive Monte Carlo algorithm can be found according to relative
error as well as the possibility to control numerical parameters of the algorithm.
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Generalized Zakharov-Shabat Systems and Nonlinear
Evolution Equations with Deep Reductions

Vladimir S. Gerdjikov, Nikolay A. Kostov, Tihomir I. Valchev

Abstract

We analyze the nonlinear evolution equations with Zh-reductions related to
classical simple Lie algebras g, where h is the Coxeter number of g. We derive
their recursion operators Λ and show that they possess factorization properties.

1 Introduction

Many nonlinear evolution equations integrable by means of the inverse scattering
method (ISM) correspond to a Lax representation which has additional algebraic
symmetries. In some cases, for example, affine Toda field theories [8]

∂2
xtqk = eqk+1−qk − eqk−qk−1 , k = 1, . . . , n, eqn+1 ≡ eq1 (1)

or Zn-derivative nonlinear Schrödinger equation [3, 10, 5]:

i∂tqk + γ coth
πk

n
∂2

xxqk + iγ

n−1∑

p=1

∂x (qpqk−p) = 0, k = 1, . . . , n (2)

these symmetries are induced by a finite group of order bigger than 2 (in both cases
above the group is Zn). Such equations are called deeply reduced. The purpose of this
paper is to shed some light on how the basic notions and results of soliton theory are
transferred to the case of deeply reduced equations. We stress on the interpretation of
the ISM as a generalised Fourier transform which holds true also after the reductions
are applied.

2 Direct and Inverse Scattering Problem

All nonlinear evolution equations under consideration here are integrable in the sense
of inverse scattering method, i.e. they represent compatibility condition

[L(λ),M(λ)] = 0,

for some linear differential operators

L(λ) = i∂x + U(x, λ), M(λ) = i∂t + V (x, λ)

The functions U and V take values in a simple complex Lie algebra g and they are
chosen polynomial in the spectral parameter λ

U(x, λ) = q(x) − λJ, V (x, λ) =
∑

k

Vk(x)λk. (3)
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The constant matrix J can be chosen as an element of the Cartan’s subalgebra h ⊂ g

while q is expanded over Weyl’s generators only

q(x) =
∑

α∈∆

qα(x)Eα,

where ∆ is the set of roots of g. We also assume that U and V are Zh-reduced

CU(ωλ)C−1 = U(λ), CV (ωλ)C−1 = V (λ), (4)

where C realizes an action of Coxeter’s automorphism (Ch = 11), ω = exp(2πi/h) and
h is Coxeter’s number of g. Due to the reduction conditions (4) the eigenvalues of J
are powers of ω. In the simplest case g ∼ sl(n) we have

J = diag (1, ω, ω2, . . . , ωh−1).

The direct and inverse scattering problems for generalized Zakahrov-Shabat operators
with complex-valued J and generic potentials Q(x) has been solved in [1] for g ≃
sl(n); for the other simple Lie algebras see [4]. Applying the Zh-reductions requires
additional efforts, see [3, 6, 11].
The continuous spectrum of the Zh-reduced Lax operator L consists of 2h rays lν ,
ν = 1, . . . , 2h defined by the requirement

Imλα(J) = 0, α ∈ ∆, λ ∈ lν ≡ |λ|eπiν/h, (5)

for some roots α. In the case when g ∼ sl(n) one can check that

Imλ(Jj − Jk) = Imλ
(
ωj−1 − ωk−1

)
= 0, j 6= k, j, k = 1, . . . , n.

The subset of all roots to satisfy (5) on some ray lν will be denoted by δν . The rays
lν divide the complex plane C into 2h identical sectors Ων . The discrete eigenvalues
of L come in 2h-tuples {λ±k ωs, s = 0, . . . , h−1}mk=1 in a symmetric manner, i.e. there
is a single eigenvalue in each sector.
There exists an ordering in ∆ unique for every sector Ων defined by

∆±
ν = {α ∈ ∆; Imλα(J) ≷ 0, λ ∈ Ων .} (6)

The roots in ∆+
ν are called positive for Ων and those in ∆−

ν – negative. As a con-
sequence each sector Ων represents the analyticity region for a fundamental solution
χν(x, λ). With each ray lν we also relate the subsets of roots δν such that Imλα(J) = 0
for λ ∈ lν . The roots δ+ν = ∆+

ν ∩ δ can be viewed as the set of positive roots of a
subalgebra gν ⊂ g. By explicit construction one is able to prove that:

Lemma 1 ([3]) Let C be the Coxeter automorphism of the simple Lie algebra g and
let the subalgebras gν and their sets of roots δν are defined as above. Then: i) any two
non-collinear roots α, β ∈ δν are orthogonal, i.e. (α, β) = 0, and as a consequence ii)
gν is a direct sum of sl(2)-subalgebras.
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The explicit construction of χν(x, λ) resembles that in the nonreduced case

χν(x, λω) = ψ(x, ωλ)T∓
ν (λ)D±

ν (λ) = φ(x, λω)S±
ν (λ), (7)

where the Gauss factors

S±
ν (λ) = exp



∑

β∈δ+
ν

s±ν,βE±β


 , D+

ν = exp




r∑

j=1

d+
ν,jHj


 (8)

T±
ν (λ) = exp




∑

β∈δ+
ν

t±ν,βE±β



 , D−
ν = exp




r∑

j=1

d−ν,jw0(Hj)



 . (9)

take values in the corresponding subgroups Gν

Remark 1 Strictly speaking the Jost solutions ψ and φ do not admit analytic con-
tinuation. The product of the Jost solutions and the corresponding Gauss factors have
analytic properties however [1, 4].

Any pair of fundamental analytic solutions (FAS) with adjacent analyticity regions
are connected via a local Riemman-Hilbert problem

χν+1(x, λ) = χν(x, λ)Gν (λ), λ ∈ lν , Gν(λ) = Ŝ−
ν (λ)S+

ν (λ). (10)

The Coxeter’s automorphism induces a grading in g.

g =
h−1
⊕

k=0
g(k),

[
g(k), g(l)

]
⊂ g(k+l) (11)

The subspaces g(k) are eigenspaces of C

g(k) =
{
X ∈ g;CXC−1 = ω−kX

}
. (12)

The special property of the C is in the fact that g(0) is isomorphic to the Cartan
subalgebra.
The Zh-symmetry imposes the following constraints on the FAS and on the scattering
matrix and its factors:

Cχν(x, λω)C−1 = χν−2(x, λ), CTν(λω)C−1 = Tν−2(λ),

CS±
ν (λω)C−1 = S±

ν−2(λ), CD±
ν (λω)C−1 = D±

ν−2(λ),
(13)

where the index ν − 2 should be taken modulo 2h. The independent scattering data
is provided on two rays only, e.g. on l1 and l2h ≡ l0.
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3 Generalised Fourier transform

The generalised Fourier transform interpretation of the ISM is based on the notion of
”squared solutions”. The ”squared solutions” are constructed by using FAS and the
Cartan-Weyl basis of g as follows [4]:

eν
β(x, λ) = χνEβχ̂

ν(x, λ), eν
β(x, λ) = P0J(χνEβχ̂

ν(x, λ)), (14)

where P0J = ad−1
J adJ is a projector onto the off-diagonal part of the corresponding

matrix-valued function. Obviously eν
β(x, λ) satisfy the equation:

i
deν

β

dx
+ [Q− λJ, eν

β(x, λ)] = 0. (15)

The presence of adJ · ≡ [J, ·] naturally splits the space of functions taking values in g

into two: the ones that lie in the kernel of adJ and the rest MJ , for which P0JX ≡ X .
The squared solution eν

β(x, λ) are a complete set of functions in MJ [4, 6, 11]. Hence

any function X : R2 → g/ ker adJ can be expanded over them. For example, the
potential q and its variation admit the following expansions

q(x) = − i
π

h−1∑

ν=0

(−1)ν

∫

lν

dλ
∑

α∈δ+
ν

(
s+ν,α(λ)eν

α(x, λ) − s−ν,α(λ)eν
−α(x, λ)

)

ad−1
J δq(x) =

i

π

h−1∑

ν=0

(−1)ν

∫

lν

dλ
∑

α∈δ+
ν

(
δs+ν,α(λ)eν

α(x, λ) + δs−ν,α(λ)eν
−α(x, λ)

)
.

Thus a one-to-one correspondence between the potential and the scattering data (as
well as between their variations) occurs

q(x) ⇆
h−1∪
ν=0
{sν,±

α (λ), α ∈ δν , λ ∈ lν}, δq(x) ⇆
h−1∪
ν=0
{δsν,±

α (λ), α ∈ δν , λ ∈ lν}.

In case the variations of scattering data and the potential are generated by the time
flow

δt −→ δs±(λ), δq

one obtains

ad−1
J Qt =

i

π

h−1∑

ν=0

(−1)ν

∫

lν

dλ
∑

α∈δ+
ν

(
sν,α;t(λ)e

ν
α(x, λ) + sν,α;t(λ)e

ν
−α(x, λ)

)
.

4 Recursion operators

Here we introduce the recursion operators Λ± as the ones for which the squared
solutions eν

α(x, λ) are eigenfunctions

Λ±
k eν

∓α,k(x, λ) = λheν
∓α,k(x, λ), α ∈ ∆+

ν . (16)
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In order to derive the explicit form of Λ± we will make use of equations (14), (15)
and of the grading in g introduced by C (11). It means that the squared solutions
can be represented as the sum of its projections onto g(k):

eν
α(x, λ) =

h−1∑

k=0

eν
α,k(x, λ), eν

α,k(x, λ) ∈ g(k). (17)

In addition we have to split each of the projections eν
α,k(x, λ) into diagonal and off-

diagonal parts:
eν

α,k(x, λ) = eν,d
α,k(x, λ) + e

ν,f
α,k(x, λ),

This requires that we have to establish which of the linear subspaces g(k) have non-
trivial section with h. To this end we make use of the explicit form of the Coxeter
element C of the Weyl group and its eigenvectors. It is most effective to use the
dihedral realization of C in the form:

C = w0w1, w2
0 = 11, w2

1 = 11, Ch = 11.

Here we split the set of simple roots of g into two subsets R0 ∪R1 such that each of
the sets Ri contains only roots that are mutually orthogonal; then wi =

∏
α∈Ri

Sα

where Sα is the Weyl reflection with respect to the root α. Next we evaluate the
action of C in the root space Er and determine its eigenvectors:

C~x(k) = ω−mk~x(k), ω = exp(2πi/h).

The integers mk, k = 1, . . . , r are called the exponents of g. The elements H(k) of the
Cartan subalgebra h that are dual to ~x(k) obviously satisfy:

C(H(k)) = ωmkH(k), i.e. H(k) ∈ g(mk).

Using the properties of the Killing form 〈X,Y 〉 on g (see [7]) and normalizing the
non-vanishing H(mk) so that 〈H(mk), H(mj)〉 = δmk,h−mj

we conclude that

eν,d
α,mk

(x, λ) = H(mk)
〈
H(h−mk), eν

α,mk
(x, λ)

〉
, (18)

Let for definiteness g ≃ Br, Cr. Then h = 2r, mk = 2k − 1, k = 1, . . . , r and

dim(g(2k−1) ∩ h) = 1, dim(g(2k) ∩ h) = 0.

If we choose J = H(m1), then H(mk) = Jmk and:

e(2k)
ν,α (x, λ) ≡ e(2k)

ν,α (x, λ), eν
α,mk

(x, λ) = eν,d
α,mk

(x, λ) + eν
α,mk

(x, λ),

Thus from equation (15) we get:

Λ±
mk

eν
α,mk

(x, λ) = λeν
α,mk−1(x, λ), Λ0e

ν
α,mk+1(x, λ) = λeν

α,mk
(x, λ), (19)
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where

Λ±
mk
X(x) ≡ ad−1

J

(
i
dX

dx
+ P0J [Q(x), X(x)]

+ i [Q(x), Jmk ]

∫ x

±∞
dy
〈
Jh−mk , [Q(y), X(y)]

〉)
,

Λ0X(x) ≡ ad−1
J

(
i
dX

dx
+ [Q(x), X(y)]

)
.

(20)

Using equation (19) we get that for Zh-reduced systems the recursion operators fac-
torize as follows:

Λ±
m1

Λ0Λ
±
m2

Λ0 · · ·Λ±
mr−1

Λ0Λ
±
mr

Λ0e
ν
∓α,0(x, λ) = λheν

∓α,0(x, λ),

Λ0Λ
±
m2

Λ0Λ
±
m3
· · ·Λ0Λ

±
mr

Λ0Λ
±
m1

eν
∓α,m1

(x, λ) = λheν
∓α,m1

(x, λ),
(21)

i.e.

Λ±
0 = Λ±

m1
Λ0Λ

±
m2

Λ0 · · ·Λ±
mr

Λ0, Λ±
0 = Λ0Λ

±
m2

Λ0Λ
±
m3
· · ·Λ±

mr
Λ0Λ

±
m1

(22)

and similar expressions for the operators Λ±
k with k > 1. These results generalize

those presented in [6, 11] for the classical series of Lie algebras Br and Cr. Similar,
but more complicated factorizations exist also for Dr and for the exceptional Lie
algebras.

5 Conclusions and perspectives

We have demonstrated that the generalized Fourier transforms hold true also for Lax
operators with deep symmetries. The outlined above results could be used in deriving
the fundamental properties of the corresponding NLEE with deep reductions. Another
potential development of our results includes extending the theory to systems with
non-commutative reduction groups (dihedral, octahedral etc., see [9].
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The Camassa-Holm Hierarchy and Soliton Perturbations

Georgi G. Grahovski, Rossen I. Ivanov

Introduction. Integrable equations are widely used as model equations in various
problems. Such equations are in some sense exactly solvable, e.g. by the inverse
scattering method (ISM) and exhibit global regular solutions.
In hydrodynamic context, even though water waves are expected to be unstable in
general, they do exhibit certain stability properties in physical regimes where in-
tegrable model equations are accurate approximations for the evolution of the free
surface water wave. The model equation is not integrable, but is somehow close to an
integrable equation, i.e. can be considered as a perturbation of an integrable equation.
In such case it is still possible to obtain approximate analytical solutions.
There two main approaches treating the perturbations of integrable equations: a
“Direct Approach” and a “Spectral” Approach.
The direct approach is based on expanding the solutions of the perturbed equation
around the unperturbed one, then the corrections due to perturbations are to be
determined:

ũ(x, t) = u(x, t) + ∆u(x, t).

Here ũ(x, t) (u(x, t)) is the solution of the perturbed (unperturbed) nonlinear equation
and ∆u(x, t) is a (small) perturbation. The strength of the perturbation is measured
by a parameter ǫ: ∆u(x, t) = O(ǫ). By small (weak) perturbation one means 0 < ǫ≪
1. Such perturbations can be studied directly in the configuration (coordinate) space,
The effect of the perturbations on the scattering data can be studied in the spectral
space of the associated spectral problem.
Several authors had used various versions of the direct approach in the study of soliton
perturbations: D. J. Kaup [3] had used a similar approach for the perturbed sine-
Gordon equation. Keener and McLaughlin [4] had proposed a direct approach by
obtaining the appropriate Green functions for the nonlinear Schrodinger and sine-
Gordon equations. For a comprehensive review of the direct perturbation theory see
e.g. [2, 5] and the references therein.
In the spectral space, the study of the soliton perturbations is based on the pertur-
bations of the scattering data, associated to the spectral problem. It is based on the
use of the expansions of the “potential” u(x, t) of the associated spectral problem
over the complete set of “squared solutions” (the eigenfunctions of the corresponding
recursion operator). Such methods are used by a number of authors, for studying
perturbations of various nonlinear evolutionary equations: the sin-Gordon equation –
[6]; the nonlinear Schrödinger equation – [7, 8, 9]; etc.
The completeness of the squared eigenfunctions helps to describe the ISM for the
corresponding hierarchy as a GFT. The role of the Fourier modes for the GFT is
played by the Scattering data of the associated Lax operator. The GFT provides
a natural setting for the analysis of small perturbations to an integrable equation:
The leading idea is that starting from a purely soliton solution of a certain integrable
equation one can ’modify’ the soliton parameters such as to incorporate the changes
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caused by the perturbation. There is a contribution to the equations for the scattering
data that comes from the GFT-expansion of the perturbation.

2. The Camassa-Holm Hierarchy: An Overview. Closely related to the KdV
hierarchy is the hierarchy of the Camassa-Holm (CH) equation [10]. This equation
has the form

ut − uxxt + 2ωux + 3uux − 2uxuxx − uuxxx = 0, (1)

where ω is a real constant. It is integrable with a Lax pair [10]

Ψxx =
(1

4
+ λ(m+ ω)

)
Ψ, Ψt =

( 1

2λ
− u
)
Ψx +

ux

2
Ψ + γΨ, (2)

where m ≡ u− uxx and γ is an arbitrary constant.
Both CH and KdV equations appeared initially as models of the propagation of two-
dimensional shallow water waves over a flat bottom. The solitary waves of KdV are
smooth solitons, while the solitary waves of CH, which are also solitons, are smooth
if ω > 0 and peaked (called “peakons” and representing weak solutions), if ω = 0.
The problem of perturbation of the CH equation arises when one deals with model
equations that are in general non-integrable but close to the CH equation. A pertur-
bation could appear for example when one takes into account the viscosity effect.
Another possible scenario comes from the so-called “b-equation” that also is a model
of shallow water waves [11] :

mt + bωux + bmux +mxu = 0.

It generalizes the CH equation and is integrable only for: A) b = 2 – Camassa-Holm
equation; B) b = 3 – Degasperis-Procesi equation.
The solutions of the b-equation for values of b close to b = 2 can be analyzed in the
framework of the CH-perturbation theory. The “b-equation” can be casted into a
form of a CH perturbation

mt + 2ωux + 2mux +mxu = (2− b)(ωux +mux) ≡ P [u],

for a small parameter ǫ = b− 2.

3. Inverse Scattering Method and Generalised Fourier Transform for
the Camassa-Holm Hierarchy. For simplicity we consider the case where m
is a Schwartz class function, m(x) ∈ S(R). For simplicity we use the notation
q = u − uxx + ω; q(x, t) > 0 for all t if q(x, 0) > 0. Let k2 = − 1

4 − λω, i.e.

λ(k) = − 1
ω

(
k2 + 1

4

)
. The continuous spectrum in terms of k corresponds to k – real.

The discrete spectrum consists of finitely many points kn = iκn, n = 1, . . . , N where
κn is real and 0 < κn < 1/2. The continuous spectrum vanishes for ω = 0, [12].
The Jost solutions of the spectral problem f±(x, k) are fixed by their asymptotic
when x→ ±∞ for all real k 6= 0:

lim
x→∞

e∓ikxf±(x, k) = 1,
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and moreover at the points of the continuous spectrum

f−(x, k) = a(k)f+(x,−k) + b(k)f+(x, k), Im k = 0.

The scattering coefficient a(k) has an analytic continuation in the upper complex
plane. At the points iκn of the discrete spectrum, a(k) has simple zeroes, a(iκn) = 0.
Then f−(x, iκn) = bnf

+(x, iκn) for some coefficient bn.
The quantities R±(k) = b(±k)/a(k) are known as reflection coefficients. One can

define their analogues R±
n =

b±1
n

ian
at the points of the discrete spectrum k = ikn [13]

where ȧn = [ ∂
∂ka(k)]k=kn

.
With the asymptotics of the Jost solutions and (2) one can show that

L±F
±(x, k) =

1

λ
F±(x, k) L±F

±
n (x) =

1

λn
F±

n (x), (3)

where λn = λ(iκn); F±(x, k) ≡ (f±(x, k))2, F±
n (x) ≡ F (x, iκn) are the squares of the

Jost solutions and

L± = (∂2 − 1)−1
[
4q(x)− 2

∫ x

±∞
dym′(y)

]
· (4)

is the recursion operator. The inverse of this operator is also well defined [13]. The
completeness relation for the eigenfunctions of the recursion operator is [13]

ω√
q(x)q(y)

θ(x − y) = − 1

2πi

∫ ∞

−∞

F−(x, k)F+(y, k)

ka2(k)
dk

+

N∑

n=1

1

iκnȧ2
n

[
Ḟ−

n (x)F+
n (y) + F−

n (x)Ḟ+
n (y)−

( 1

iκn
+
än

ȧn

)
F−

n (x)F+
n (y)

]
. (5)

where Ḟ±
n (x) ≡ [ ∂

∂kF
±(x, k)]k=kn

, etc. Therefore F±, F±
n and Ḟ±

n can be considered
as ’generalised’ exponents. It is possible to expand m(x) and its variation δm(x) over
the above mentioned basis, or rather the quantities depending on q(x) (which are
determined by m(x)) [13]:

ω
(√ ω

q(x)
− 1
)

= ± 1

2πi

∫ ∞

−∞

2kR±(k)

λ(k)
F±(x, k)dk +

N∑

n=1

2κn

λn
R±

nF
±
n (x); (6)

ω√
q(x)

∫ x

±∞
δ
√
q(y) dy =

1

2πi

∫ ∞

−∞

i

λ(k)
δR±(k)F±(x, k)dk

±
N∑

n=1

[ 1

λn
(δR±

n −R±
n δλn)F±

n (x) +
R±

n

iλn
δκnḞ

±
n (x)

]
(7)

The expansion coefficients are given by the scattering data and their variations. This
makes evident the interpretation of the ISM as a generalized Fourier transform. Now
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it is straightforward to describe the hierarchy of Camassa-Holm equations. To every
choice of the function Ω(z), known also as the dispersion law we can put into cor-
respondence the nonlinear evolution equation (NLEE) that belongs to the Camassa-
Holm hierarchy:

2√
q

∫ x

±∞
(
√
q)tdy + Ω(L±)

(√ω

q
− 1
)

= 0. (8)

An equivalent form of the equation is

qt + 2qũx + qxũ = 0, ũ =
1

2
Ω(L±)

(√ω

q
− 1
)
. (9)

The choice Ω(z) = z leads to ũ = u and thus to the CH equation (1). Other choices of
the dispersion law and the corresponding equations of the Camassa-Holm hierarchy
are discussed in [13]. The CH equation is equivalent to the following linear evolution
equations for the scattering data:

R
±
t (k)∓ ikΩ(λ−1)R±(k) = 0, (10)

R±
n,t ± κnΩ(λ−1

n )R±
n = 0, (11)

κn,t = 0. (12)

The time-evolution of the scattering data for the CH equation (1) can be computed
from the above formulae for Ω(z) = z,

4. Perturbation Theory for for the Camassa-Holm Hierarchy. Let us start
with a perturbed equation of the CH hierarchy of the form

qt + 2qũx + qxũ = P [u], ũ =
1

2
Ω(L±)

(√ω

q
− 1
)
, (13)

where again, P [u] is a small perturbation, by assumption in the Schwartz-class. It is
useful to write (13) in the form

2√
q

∫ x

±∞
(
√
q)tdy + Ω(L±)

(√ω

q
− 1
)

=
1√
q

∫ x

±∞

P (y)√
q(y)

dy. (14)

With the completeness relation (5) one can deduce the gereralised Fourier expansion
for expressions, like the one on the right-hand side of (13).
Theorem: Assuming that f+ and f− are not linearly dependent at x = 0 and g(x) ∈
S(R), the following expansion formulas hold:

ω√
q

∫ x

±∞

g(y)√
q(y)

dy = ± 1

2πi

∫ ∞

−∞
g̃±(k)F±

x (x, k)dk

∓
N∑

j=1

(
g±1,jḞ

±
j,x(x) + g±2,jF

±
j,x(x)

)
, (15)
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and the Fourier coefficients are

g̃±(k) =
1

ka2(k)

(
g, F∓) ,

g±1,j =
1

kj ȧ2
j

(
g, F∓

j

)
,

g±2,j =
1

kj ȧ2
j

[(
g, Ḟ∓

j

)
−
(

1

kj
+
äj

ȧj

)(
g, F∓

j

)]
,

where (g, F ) ≡
∫∞
−∞ g(x)F (x)dx.

The substitution of the expansions (15) for P [u], (6) and (7) into the perturbed
equation (14) gives the following expressions for the modified scattering data:

R
±
t ∓ ikΩ(1/λ)R± = ∓ iλ(P, F

∓)

2ka2(k)
, (16)

kj,t =
λj(P, F

∓
j )

2kj ȧ2
jR

±
j

(17)

R±
j,t −R±

j λj,t ± κjΩ(1/λj)R
±
j

= − λj

2kj ȧ2
j

[
(P, Ḟ∓

j )−
(

1

kj
+
äj

ȧj

)(
P, F∓

j

)]
, (18)

From (18) we obtain the following for the coefficient bj:

bj,t + κjΩ(1/λj)bj = − λj

4κjȧj

(
P, b2j Ḟ

+
j − Ḟ−

j

)
.

The ’perturbed’ solution for the hierarchy in the adiabatic approximation can be
recovered from the following expansion for ũ(x) with the ’modified’ scattering data
keeping the unperturbed ’generalised’ exponents:

ũ(x) = ± 1

2πi

∫ ∞

−∞

kΩ(1/λ(k))

ωλ(k)
R

±(k)F±(x, k)dk +

N∑

n=1

κnΩ(1/λn)

ωλn
R±

nF
±
n (x).

This formula follows from the second part of (9) and (6). Note that for the CH
equation (1) ũ ≡ u.
5. Conclusions. In our derivations we used completeness relations that are valid
only given the assumption that the Jost solutions f+ and f− are linearly independent
at x = 0. The case when this condition is not satisfied is quite exceptional, however
this is exactly the case when one has purely soliton solution. Then one has to take
into account a nontrivial contribution from the scattering data at k = 0 and some of
the presented results require modification. This means that no shelf is formed behind
the soliton.
The presence of shelf for KdV equation is observed e.g. under the perturbation
P [u] = ǫu [14]. The evaluation of the perturbation terms for the CH hierarchy could
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be technically difficult due to the complicated form of the CH multisoliton solutions
[15]. However the limit ω → 0 leads to the relatively simple peakon solutions.
We end up with listing some open problems: 1) Using the presented general formu-
lae to study the perturbations of the peakon parameters; 2) To study the soliton
interactions of pure solitons and peakons for CH.
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Regularity and Decay Issues for Compactly Supported
Solitary Waves

Todor Gramchev

The main goal of the talk is to present some recent results, obtained in collaboration
with G. Gaeta (Università di Milano) and S. Walcher (University of Aaachen), on the
regularity (smoothness) of solitary waves near non Lipschitz equilibrium points.
We start by recalling some basic facts on solitary (travelling waves). The first doc-
umentation of the existence of shallow water waves appeared in 1834 when J. Scott
Russell wrote one of the most cited papers about what later became known as soliton
theory. Russell observed propagation of a solitary wave in the Glasgow-Edinburgh
canal. In 1895 Korteweg and De Vries derived an equation describing shallow water
waves, and gave the following interpretation of the solitary wave of Scott Russell.
Ignoring some relevant physical aspects and simplifying parameters, we may write for
short the KdV equation as

vt + 2vvx + vxxx = 0, (1)

where t is the time variable, x the point in the canal, v(x, t) the height of the water (let
us address to [3, 27, 41] for a much more detailed presentation). Looking for a solitary
wave solution, travelling forward with velocity V > 0, we impose v(t, x) = u(x − ct)
in (1) and we obtain

d

dx
(−cu+ u2 + u′′) = 0

hence u(x) satisfies u′′−cu+u2 = const. Assuming further const = 0, we are reduced
to solve

Pu = u′′ − cu+ u2 = 0, (2)

sometimes called Newton equation. Equation (2) possesses explicit solutions in terms
of special functions. If we impose u(x)→ 0 for x→ ±∞, we obtain simply translations
of the function

u(x) =
3
2c

Ch2
(√

c
2 x
) , (3)

where

Cht =
et + e−t

2
.

We emphasize two properties of u(x) in (3): first, it can be extended as analytic
function in a strip of the form {z ∈ C : |ℑz| < a} in the complex plane. Second
property is the exponential decay for x→ ±∞.
It seems that the first detailed investigations on the analytic regularity on R of trav-
elling waves have been done by Bona and Li [3] (see also [2], [6], [7] for further studies
and generalizations). After KdV equation, several related models were proposed.
In particular recently, the theory of the solitary waves had impressive developments,

64



both concerning applicative aspects and mathematical analysis. Let us mention appli-
cations to internal water waves, nerve pulse dynamics, ion-acoustic waves in plasma,
population dynamics, etc. In this order of ideas, we observe in particular that during
the years 1990-2000, several papers were devoted to 5th order and 7th order general-
ization of KdV, see [27], Chapter 1. Let us emphasize that, to reach the exponential
decay, the boundedness of u(x) is not sufficient as initial assumption. We shall express
later a precise threshold in terms of Sobolev estimates; as counter-example, consider
here the celebrated Burger’s equation (1948):

vt + vxx + 2vvx = 0. (4)

Imposing v(t, x) = u(x− ct) and arguing as before we obtain the Verhulst equation

u′ − cu+ u2 = 0. (5)

It admits the bounded solution

u(x) =
c

1 + e−cx
. (6)

Assuming c > 0, we have exponential decay only for x→ −∞, whereas u(x)→ c 6= 0
as x→ +∞.
Next, we consider travelling waves for the KdV-Burgers (KdVB) equation. We follow
the notation of Jeffrey and Mohamad [23], namely, the KdVB equation is written as

vt + 2avvx + 5bvxx + cvxxx = 0,

with b < 0, i.e. we have a dissipative term. The authors obtain the travelling wave
type solution

v(x, t) = (3b2/(2ac)){sech2(ξ/2)± 2 tanh(ξ/2)± 2},

where ξ = ±(b/c)(x∓ (6b2/c)t).

Next, we describe briefly the findings of Gaeta, Gramchev and Walcher [14].
Solitons – both dynamical and topological – are among the main concepts organizing
our understanding of nonlinear phenomena [5, 22, 11, 16, 21, 28, 42].
Solitons are highly local objects, i.e. they differ substantially from a trivial solution (a
vacuum in field theoretic language) only in a small region of space. They are however
smooth solutions, and as such the approach to trivial states can only be asymptotic,
albeit very fast (exponential).
It was shown by Rosenau and Hyman [34] that completely localized (non-smooth)
solitons can also exist; they have compact support – i.e. they differ from trivial
solutions only in a compact region of space – and were hence termed compactons.
In the same way as one can have solitary waves which are not necessarily solitons
in proper mathematical sense (see e.g. [5] for a discussion), but in many cases are
physically equally interesting, one can have compact solitary waves which are
not necessarily compactons in proper mathematical sense, but are equally interesting
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physically (a large part of physical literature on compactons deals, in strict mathe-
matical sense, with compact solitary waves). We also note that in the same way as
one can have topological solitons [22, 11] and topological solitary waves, one can have
topological compactons (that is, topological solitons with compact support; for
theories with degenerate vacua, the support is the region in which the field is not in
any of them) and topological compact solitary waves.
The possible relevance of compactons for applications as well as for theoretical devel-
opments need not be emphasized; here we only quote some papers dealing with their
theory and applications [1, 9, 10, 12, 15, 17, 18, 19, 29, 30, 31, 32, 33, 34, 35, 38, 39].
We also mention that certain theories exhibit an intriguing duality between solitons
and compactons [24].
We can consider and classify the regularity of multi-compactons; from the mathe-
matical point of view, these display an intriguing phenomenon of non-uniqueness in
the reduction from the second order Newton equation to the first order ODE express-
ing conservation of energy.

ẋ2(t) ≡ 2(E − U(x(t)), (CE)

In U ∈ C2 the point of equilibrium x0,

U(x0) = E, U ′(x0) = 0

is the unique solution of

ẋ = ±W (x) = ±
√
E − U(x)

and may give rise to homoclilinic or heteroclinic solutions connecting points of equilib-
rium for infinite time. We observe the the C2 smoothness of the potential implies that
under the non degeneracy assumption U ′′(x0) > 0, that E−U(x) ≈ 1

2U
′′(x0)(x−x0)

2.
The final part of the talk will deal with the regularity of the solutions of we dwell upon
the regularity of the solutions (compactons) of (CE) near x0, provided the

√
E − U(x)

is not Lipschitz near the equilibrium point x0 which ma lead to nonuniquness of the
solution (cf. [26, 40] for more details).
On physical basis, solutions with strictly compact sup- port are quite attractive in
many respects both when dealing with very long polymers (as DNA, which was the
first motivation for our investigation in this field), where one would not like the
solution at a point x to affect (no matter how little) regions of the polymer too far
away, and when dealing with field theory, where Relativity re- quires far away regions
are not interacting before signals travelling at speed of light had time to connect
them. On the other hand, in many physical situations one would like to deal with
C∞ smooth solutions or field con- figurations.
It is thus natural albeit apparently overly optimistic to wonder if within the class
of problems studied in [9] one could have potentials leading to SWS which are both
compactly supported and C smooth. Quite surprisingly, this turns out to be possible
(need- less to say, for rather special potentials), as we can show by explicit example.
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We stress these special models and solutions could be of substantial applicative in-
terest, e.g. in transmission lines or optical fibers engineering: in this framework com-
pactly supported signals have obvious advantages (including avoiding any interference
between tails of different signal packets), and on the other hand infinitely smooth sig-
nals are easier to handle when they must be detected, analyzed and transformed. On
the other hand, they would also present a purely theoretical interest from the point of
view of Field Theory, being smooth field configurations with particle properties (and,
in an obvious sense, stronger particle properties than ordinary solitons).
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Nonlinear Dynamics and Complete Stability of Cellular
Nonlinear Networks

Victoria Ivanova

An oscillatory Cellular Nonlinear Network (CNN) with two cells using M×N = 1×2
with feedback synaptic weights a0,−1 = β;a0,0 = α and a0,1 = β, can be represented
by the signal flow graph show in Fig.1

Fig.1.

The state equation for this CNN is given by:

ẋ1 = −x1 + αy1 − βy2 (1)

ẋ2 = −x2 + αy2 + βy1,

where we neglect the row index for simplicity. Here the output yi is related to the
state xi by the standard nonlinearity.

yi = f(x) = 0.5|xi + 1| − 0.5|xi − 1|, (2)

which is shown graphically in Fig. 2. The solution waveforms of Eq.(1) corresponding
to α = 2 and β = 2 and initial condition: x1(0) = 0, 1 and x2(0) = 0, 1 are shown
in examples 1a) and 1a)Since the trajectory from (0.1, 0.1) does not converge to an
equilibrium point (x1Q, x2Q). This CNN is not completely stable.
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Fig.2.Example 1: Periodic solution wavefront of x1(t) and x2(t) and the
corresponding trajectory for α = 2 , β = 2, x1(0) = 0.1 and x2(0) = 0.1

For this simple example, we can prove that all trajectories starting from any initial
state except the origin will converge to a limit cycle. Hence, upon setting Equation
(1) to 0, the equilibrium points of this two-cell CNN are the solutions of:

−x1 + 2f(x1)− 2f(x2) = 0 (3)

−x2 + 2f(x2) + 2f(x1) = 0

To determine the dynamical behavior near the origin, we examine the associated linear
equation:

ẋ1 = x1 − 2x2 (4)

ẋ2 = 2x1 + x2

obtained by setting f(x1) = x1 and f(x2) = x2 in Eq.(1). Since the eigenvalues are
given by λ1 = 1 + j2 and λ2 = 1− j2, the solution of Eq.(4) has the form:

x1(t) = ket cos(2t+ θ) (5)

x2(t) = ket sin(2t+ θ)
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Consider now a chaotic CNN with only two cells and one sinusoidal input. Suppose
we apply a sinusoidal input u11(t) − 4.04 sin(π

2 ) to cell C(1, 1) of the two-cell CNN
shown in Fig.1 and choose α = 2 and β = 1.2 as its parameters. In this case, under
the same ”zero” boundary conditions as before, the state equation (1) generalizes to
the following non-autonomous of two nonlinear differential equations:

ẋ1 = −x1 + 2y1 − 1.2y2 + 4.04 sin(
π

2
t) (6)

ẋ2 = −x2 + 1.2y1 + 2y2,

where yi = f(xi) is defined by Eq.(1). Equation (6) is the state equation of a 1× 2
CNN with templates:

Fig.3.

zero boundary conditions, a sinusoidal input u11(t) to cell C(1, 1), and a zero input
u12(t) = 0 to cell C(1, 2). The solution waveforms x1(t) and x2(t) corresponding to
the initial condition x1(0) = 0.1 and x2(0) = 0.1, are shown in Figs 2(a) and 2(b),
respectively

Fig.4.Example 2: Chaotic solution waveforms of x1(t) and x2(t) and the
corresponding trajectory for α = 2; β = 1.2; x1(0) = 0.1 and x2(0) = 0.1

The resulting set of points is called a Poincare cross section, or by an abuse of lan-
guage, simply a Poincare map because it was first introduced by the famous French
physics and mathematician Poincare. In this example, the periodic of the sinusoidal
input is T = 4.
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Fig.5.Example 3: The Poincare map extracted from the strange attractor in
Example 2 (c) is called the ”Lady’s shoe attractor” in view of its striking

resemblance to a high-heel lady’s pump.

Fig.6.Example 4: (a) Strange attractor obtained experimentally from the circuit in
Fig.3 (b) The ”Lady’s shoe” Poincare map extracted experimentally from the

attractor in (a).

Symmetric A template implies complete stability
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Complete Stability Theorem 1. Any M × N space-invariant CNN of arbitrary
neighborhood size with constant inputs and constant threshold is completely stable if
the following three hypotheses are satisfied:
(i) the A template is symmetric A(i, j; k, l) = A(k, l; i, j);
(ii) the nonlinear function yij = f(xij) is differentiable, bounded and f

′

(xij) > 0 for
all −∞ < xij < +∞;
(iii) All equilibrium points are isolated.
Positive and sign-symetric A template implies complete stability.
Complete Stability Theorem 2 An M × N CNN with a (2r + 1) × (2r + 1)A
template is completely stable, for arbitrary B template and arbitrary threshold z if the
following three conditions are satisfied:
- The A template is sign symmetric;
- The template satisfied any one of the four synaptic weight conditions;
- All the equilibrium points are isolated.
Corollary to Complete Stability Theorem 2. An M × N CNN with 3 × 3A
template, for arbitrary B template and arbitrary threshold z is completely stable if the
A template possesses any one of the six synaptic weight patterns shown in Fig.7.

Fig.7.

where: 0 denotes a ”zero ” synaptic weight + denotes a ”positive” or ”zero” synaptic
weight - denotes a ”negative” or ”zero” synaptic weight x may assume any value
Thus the stability of synaptic patterns 4 and 5 can be deduced from the stability of
synaptic pattern 2.
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A Second-Order Numerical Method for a Free-Boundary
Problem in Price Formation

Juri D. Kandilarov

In this work we develop and analyze a second-order numerical method for a mean field
model in Economics and Finance, which was introduced in a series of papers by J. M.
Lasry and P. L. Lions [4]. Given a large group of buyers and a large group of vendors
the non-linear free boundary evolution model describes the dynamical formation of
the price of trading good under negotiation between the two groups. The groups are
described by two non-negative density functions fB and fV . In the model, x denotes
a possible value of the price. We denote by p(t) the price resulting from a dynamical
equilibrium and we assume that there is the same friction measured by a positive
parameter. After substitution f = fB − fV this situation can be described by the
following free-boundary problem, see also [2, 3]:

ft − fxx =
(
δp(t)+a − δp(t)−a

)
fx(p(t), t) in (−1, 1)× (0,∞) (1)

fx(−1, t) = fx(1, t) = 0, t ∈ [0,∞), (2)

f(x, 0) = f0(x), x ∈ (−1, 1). (3)

where
p(t) = {x : f(x, t) = 0}. (4)

The symbol δ denotes the Dirac delta function, concentrated respectively on the curves
x = p(t)± a, a ∈ (0, 1). For the moving interface p(t) one can obtain the equation

ṗ(t) = −fxx(p(t), t)/fx(p(t), t). (5)

1 DISCRETIZATION

Let us introduce the uniform grids in space and time directions:

ωh = {xi = ih, i = 0, 1, ...,M, h = 2/M}; ωτ = {τn = nτ, n = 0, 1, ..., N, τ = T/N}.

In view of (5) the problem is nonlinear and we need of some iteration process. It
consists of the following stages:

• Using (5) and the solution on the previous time layer n we obtain an initial
guess of p(tn+1);

• Then we solve the problem (1)-(3) and obtain the solution f(x, tn+1);

• From (4) we update the free boundary p(tn+1).
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To discretize the problem (1) - (3) we use the idea of the IIM [1, 5]. Let denote the
numerical solution at mesh point (xi, tn) by yn

i . We use Crank-Nicolson scheme. It is
standard at regular grid points and is modified at irregular grid points, i.e. near the
interface. The difference scheme looks as follows:

yn+1
i − yn

i

τ
−Qn+1/2

i =
1

2

(
yn+1

i−1 − 2yn+1
i + yn+1

i−1

h2
+ Pn+1

i

)

+
1

2

(
yn

i−1 − 2yn
i + yn

i−1

h2
+ Pn

i

)
(6)

for i = 1, ...,M − 1 and n = 0, 1, ..., N − 1, where the correction terms Q
n+1/2
i and

Pn+1
i , Pn

i are chosen to improve the local truncation error (LTE) at irregular grid
points and will be specified later. To preserve the second order we discretize the
boundary conditions in the following way:

(
1

h
+

h

2τ

)
yn+1
0 − 1

h
yn+1
1 =

h

2τ
yn
0 ; (7)

− 1

h
yn+1

M−1 +

(
1

h
+

h

2τ

)
yn+1

M =
h

2τ
yn

M . (8)

Let us consider the correction term Pn
i . Let for some tn = nτ the interfaces α1(tn) =

p(tn) − a and α2(tn) = p(tn) + a are located as follows: xI1 ≤ α1(tn) < xI1+1 and
xI2 ≤ α2(tn) < xI2+1. Then Pn

i = 0 for i ∈ {1, 2, ...,M − 1} \ {I1, I1 + 1, I2, I2 + 1}.
At irregular nodes for j = 1, 2 we have

Pn
Ij

= − (xIj+1 − αj(tn))

h2
fx(p(tn), tn)

= − (xIj+1 − αj(tn))

h2
(â1y

n
J−1 + b̂1y

n
J + ĉ1y

n
J+1) +O(h), (9)

Pn
Ij+1 =

(xIj
− αj(tn))

h2
fx(p(tn), tn)

=
(xIj
− αj(tn))

h2
(â1y

n
J−1 + b̂1y

n
J + ĉ1y

n
J+1) +O(h), (10)

where J satisfies xJ ≤ p(tn) ≤ xJ+1.

The coefficients â1, b̂1, ĉ1 are respectively:

â1 =
2ρJ − 1

2h
, b̂1 =

−2ρJ

h
, ĉ1 =

1 + 2ρJ

2h
, and ρJ =

p(tn)− xJ

h
.

I1, I2 and J depend on the time tn, but for simplicity the upper index n is omitted.

The correction term Q
n+1/2
i = 0 if the curve y = p(t) ± a does not intersect the the
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grid line x = xi for some t ∈ [tn, tn+1). If it is happened, then the correction is:

Q
n+1/2
i =

tn+1/2 − t̃n
τ

|p′(t̃n)|[fx]p(t̃n)±a

=
tn+1/2 − t̃n

τ
|p′(t̃n)|fx(p(tn+1)), tn+1) +O(h+ τ) (11)

=
tn+1/2 − t̃n

τ
|p′(t̃n)|(â1y

n+1
J−1 + b̂1y

n+1
J + ĉ1y

n+1
J+1) +O(h+ τ),

where t̃n ∈ [tn, tn+1) is the time, for which p(t̃n)± a = xi.
To summarize, the grid points are divided in three groups:

• regular, if the interface curve does not intersect the six point stencil of the
Crank-Nicolson scheme and all the correction terms are zero: Pn

Ij
=Pn

Ij+1

= Pn+1
Ij

= Pn+1
Ij+1 =Q

n+1/2
i = 0;

• irregular, if there is intersection only in space direction and then the corrections

Pn
Ij

, Pn
Ij+1, P

n+1
Ij

, Pn+1
Ij+1 are not zero and Q

n+1/2
i = 0;

• irregular with intersections in both directions and then the corrections Pn
Ij

,

Pn
Ij+1, P

n+1
Ij

, Pn+1
Ij+1 and Q

n+1/2
i are not zero.

Theorem 1 Let the solution f(x, t)∈C4,3((−1, 1)\{p(t) ± a}, (0, T )). Then the
scheme (6)-(11) approximates the problem (1)-(3) and the LTE at regular grid points
is O(h2 + τ2) and at irregular grid points it is O(h+ τ).

2 ALGORITHM DESCRIPTION

We denote the solution vector Yn+1 = (yn+1
0 , ..., yn+1

i , ..., yn+1
M )T on the new time

layer tn+1 and rewrite the difference scheme in the following matrix form:

An+1Yn+1 = Bn n = 0, 1, ..., N − 1. (12)

The matrix An+1 can be decomposed as An+1 = A+ Ãn+1, where A is three-diagonal

matrix and Ãn+1 is a result of the correction terms Pn
Ij

, Pn
Ij+1, Q

n+1/2
i , see (9)-(11).

The entries of the matrix A are:

c0 = cM =
1

h
+

h

2τ
, b0 = aM = − 1

h
, ai = bi = − 1

2h2
, ci =

1

τ
+

1

h2
.

The entries of the matrix Ã are result of the correction terms Pn+1
Ij

Pn+1
Ij+1 and Q

n+1/2
i :
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Ãn+1 =

0
BBBBBBBBBBBBB@

· · ·

... ã1 b̃1 c̃1

...
... ˜̃a1

˜̃
b1

˜̃c1

...
· · ·

... ã2 b̃2 c̃2

...
... ˜̃a2

˜̃
b2

˜̃c2

...
· · ·

1
CCCCCCCCCCCCCA

← I1

← I1 + 1

← I2

← I2 + 1

.

The matrix Bn is decomposed as Bn = Bn + B̃n:

Bn =

0
BBBBBBB@

h

2τ
yn
0

...`
1
τ
−

1
h2

´
yn

i + 1
2h2 (yn

i−1 + yn

i+1)
...

h

2τ
yn

M

1
CCCCCCCA

, eBn =

0
BBBBBBBBBBBB@

...
P n

I1

P n

I1+1

...
P n

I2

P n

I2+1

...

1
CCCCCCCCCCCCA

← I1

← I1 + 1

← I2

← I2 + 1

.

The matrix B̃n is a result of the corrections Pn
Ij

and Pn
Ij+1 on the old time layer tn.

To solve (12) we suggest the next algorithm.
First stage. We seek the numerical solution in the linear form

yn
i = un

i + vn
i y

n
J−1 + wn

i y
n
J + zn

i y
n
J+1. (13)

Let us fix the time level t = tn and omit for simplicity the upper index n. We insert
(13) into (12). For un

i we obtain:

c0u0 − b0u1 = φ0, −aMuM−1 + cMuM = φM ,

−aiui−1 + ciui − aiui+1 = φi, i = 1, ..., J − 2, J + 2, ...M − 1 (14)

uJ−1 = uJ = uJ+1 = 0,

where φi is the i-th element of Bn. For vn
i we obtain:

c0v0 − b0v1 = φv
0 , −aMvM−1 + cMvM = φv

M ,

−aivi−1 + civi − aivi+1 = φv
i , i = 1, ..., J − 2, J + 2, ...M − 1 (15)

vJ−1 = 1, vJ = vJ+1 = 0,

where φv
i = 0 for i = 0, ..., I1 − 1, I1 + 2, ..., J − 2, J + 2, ..., I2 − 1, I2 + 2, ...,M , and

φv
Ij

= −ãj , φ
v
Ij+1 = −˜̃aj , j = 1, 2. Analogously, for wn

i we obtain:

c0w0 − b0w1 = φw
0 , −aMwM−1 + cMwM = φw

M ,

−aiwi−1 + ciwi − aiwi+1 = φw
i , i = 1, ..., J − 2, J + 2, ...M − 1 (16)

wJ−1 = 0, wJ = 1, wJ+1 = 0,
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where φw
i = 0 for i = 0, ..., I1 − 1, I1 + 2, ..., J − 2, J + 2, ..., I2 − 1, I2 + 2, ...,M , and

φw
Ij

= −b̃j , φw
Ij+1 = −˜̃bj , j = 1, 2. For zn

i we obtain:

c0z0 − b0z1 = φz
0, −aMzM−1 + cMzM = φz

M ,

−aizi−1 + cizi − aizi+1 = φz
i , i = 1, ..., J − 2, J + 2, ...M − 1 (17)

zJ−1 = 0, zJ = 0 zJ+1 = 1,

where φz
i = 0 for i = 0, ..., I1 − 1, I1 + 2, ..., J − 2, J + 2, ..., I2 − 1, I2 + 2, ...,M , and

φz
Ij

= −c̃j , φz
Ij+1 = −˜̃cj , j = 1, 2.

Second stage. Plugging (14)-(17) into the J − 1-th, J-th and J + 1-th equation of
the difference scheme, we obtain for yJ−1, yJ , yJ+1 the system:

(cJ−1 − aJ−1vJ−2)yJ−1 − (aJ−1wJ−2 + bJ−1)yJ − aJ−1zJ−2yJ+1

= φJ−1 + aJ−1uJ−2,

−aJyJ−1 + cJyJ − bJyJ+1 = φJ , (18)

−bJ+1vJ+2yJ−1 − (aJ+1 + bJ+1wJ+2)yJ + (cJ+1 − bJ+1zJ+2)yJ+1

= φJ+1 + bJ+1uJ+2.

Third stage. Having yJ−1, yJ , yJ+1, from (13) we find the solution Yn+1 on the new
time level t = tn+1.

3 NUMERICAL EXPERIMENTS

We consider the following model example

ft − fxx = g(x, t) +
(
δp(t)+a − δp(t)−a

)
fx(p(t), t) in (−1, 1)× (0,∞),

fx(−1, t) = fx(1, t) = 0, t ∈ [0,∞),

f(x, 0) = f0(x), x ∈ (−1, 1)

with an exact solution

f(x, t) = exp(−t)





λa, x ≤ αt2 − a;
−λ(x− αt2), αt2 − a ≤ x ≤ αt2 + a;
−λa, αt2 + a ≤ x.

The functions g(x, t) and f0(x) are found from the exact solution. The parameters are:
a = 0.3, α = .25, λ = 1. The moving interface is p(t) = αt2. In Table 1 we present
the mesh refinement analysis. With ‖EM,N‖∞ we denote the infinity norm of the
error when the mesh parameter h = 1/M and τ = 1/N . With ‖EM,N‖p∞ we denote
the corresponding error in maximum norm of the computed moving boundary p(t).
The results with correction Qn+1/2 confirm second order of the proposed method. As
the scheme is of order O(h2 + τ2) we keep the mesh parameters proportional in all
experiments.
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Table 1: Grid refinement analysis
with correction Qn+1/2 without correction Qn+1/2

M N ‖EM,N‖∞ ‖Ep
M,N‖∞ ‖EM,N‖∞ ‖Ep

M,N‖∞
30 100 6.1844e-05 8.4295e-05 4.6585e-04 6.2108e-04
60 200 1.6008e-05 4.1981e-05 1.3017e-04 2.5773e-04
120 400 4.1124e-06 5.4424e-06 4.9524e-05 2.0341e-05
240 800 1.0232e-06 1.3462e-06 2.0302e-05 1.3410e-05
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Figure 1: (a) The numerical solution; (b) The error in maximum norm.
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Fast Two-Grid Algorithms for the Elliptic Monge-Ampère
Equation

Miglena N. Koleva, Lubin G. Vulkov

1. Introduction. Nonlinear partial differential equation (PDEs) arise in a quite
natural way in many physical context such as kinetic theory, meteorology and semi-
geostrophic fluid dynamics, material science, differential geometry, image processing
and computer vision, see [3, 5] and references therein. Recently, new models of finance
mathematics was described by fully nonlinear PDEs of Monge-Ampère type [11, 12].
This paper concerns with numerical solution of the Dirichlet problem for the Monge-
Ampère equation

detD2u = f in Ω ∈ R
2, u = g on ∂Ω, (1)

where D2u is the Hessian of the function u and f, g are given functions, f > 0 (or,
later measure). Since we will be restricting to domains Ω ∈ R2, we can rewrite the
PDE in (1) as

[
uxxuyy − u2

xy

]
(x, y) = f(x, y), (x, y) ∈ Ω ∈ R

2. (2)

For the fully nonlinear PDEs, tremendous progress has been made in the past three
decades [3, 10]. A revolutionary viscosity solution theory has been established (cf.
[3]) and wealthy amount of efficient and robust numerical methods and algorithms
have been developed and implemented (cf. [2, 4, 5, 8, 9]). However, for fully nonlinear
second order PDEs, the situation is strikingly different. On one hand, there have been
enormous advances on PDE analysis in the past two decades after the introduction of
the notion of viscosity solutions by M.Crandall and P.L. Lions in 1983 (cf. [3]). On
the other hand, in contrast to success of the PDEs analysis, numerical solutions for
general fully nonlinear second order PDEs (except in the case of Bellman type PDEs,
see [5] details) is mostly an untouched area, and computing viscosity solutions of fully
nonlinear second order PDEs has been impracticable. There are several reasons for
this lack of progress. Firstly, the strong nonlinearity is an obvious one. Secondly,
the conditional uniqueness (i.e.uniqueness holds only in certain class of functions) of
solutions is difficult to handle numerically. Lastly and most importantly, the notion
of viscosity solutions, which is not variational, has no equivalence at the discrete level.
We will emphasize the contribution of J. Benamou, B. Froese, A. Oberman in [2].
They propose two different monotone methods for solving (1), which have advan-
tageous of simplicity and performance. The first one is an explicit, Gauss-Seidel
iteration method that is obtained by solving a quadratic equation at each grid point
and choosing the smaller root to ensure selection of the convex solution. The second
method is an iterative method which requires the solution of a Poisson equation at
each iteration. The source term in the Poisson equation involves the source function
of (2), f and the Hessian of the current iterate. The authors have been studied in
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details the performance of the two methods on solutions ranging from smooth to mod-
erate to very singular. The backs of these methods is slow convergence. Even in the
simplest cases (of smooth solution) this algorithms require a great number iterations.
Loeper and Rapetti [8] solve the equation (with pereodic boundary conditions) by
linearization and iterate using Newton’s method. They prove convergence of the
Newton algorithm for the linearization of the continious problem to the solution of
(1). However, they do not address the issure of the convergence of the discretised
solution to the solution of the equation in the limit of the discretisation parameter
going to zero.
In this paper we propose a two-grid (=two-level) method, which first computes an
approximate solution by solving the problem (1) on a coarse grid. The coarse mesh ap-
proximation is interpolated on the fine mesh and then a discretization of the linearized
problem (1) is computed. The two-grid method was first proposed by Axelsson [1]
and J. Xu [13], independently of each other, for a linearization of the nonlinear prob-
lems. The two-grid finite element method was also used by J.Xu [13] and many others
scientists for discretizing nonsymmetric indefinite elliptic and parabolic equations.
The advantage of the two-grid algorithm is clear: we need to solve the nonlinear
system corresponding to problem (1) only on the coarse mesh. On the fine mesh
we solve the corresponding linearized system. For an appropriate choice of mesh
parameters, the two-grid algorithm computes an approximate solution with the same
order of accuracy as the one obtained by solving the full nonlinear system on the fine
mesh at a fraction of the computational cost, see for example [6, 7].

2. Difference schemes. In this section we present two difference schemes for solving
the two-dimensional Monge-Ampère problem (1) in rectangle Ω = [a, b]× [c, d].
In the domain Ω = Ω ∪ ∂Ω we introduce the uniform mesh ωh:

ωh = {(xi, yj)| xi = a+ (i− 1)hx, i = 0, . . . , nx, hx = |b− a|/nx,

yj = c+ (j − 1)hy, j = 0, . . . , ny, hy = |d− c|/ny} ,
ωh = ωh ∪ {a, yj} ∪ {b, yj} ∪ {xi, c} ∪ {xi, d}, i(j) = 0, . . . , nx(ny).

The first scheme involves simply discretising the second derivatives in (1) using stan-
dard central differences on uniform mesh ωh. The result is the following consistent
with (1) and second order accurate approximation [2]

(D2
xxu

h
i,j)(D

2
yyu

h
i,j)− (D2

xyu
h
i,j)

2 = fi,j , (3)

where

uh
i,j = uh(xi, yj), fi,j = f(xi, yj), i = 0, . . . nx, j = 0, . . . ny,

D
2
xxu

h
i,j =

1

h2
x

(uh
i+1,j − 2uh

i,j + uh
i−1,j), D

2
yyu

h
i,j =

1

h2
y

(uh
i,j+1 − 2uh

i,j + uh
i,j−1),

D
2
xyu

h
i,j =

1

4hxhy
(ui+1,j+1 + ui−1,j−1 − ui+1,j−1 − ui−1,j+1)
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The next seven-point scheme is obtained by mixed finite element approximation [5].
The only difference with the previous scheme is that in (3) for D2

xyu
h we have

D
2
xyu

h
i,j =

1

2hxhy
(ui+1,j+1 + ui−1,j−1 − ui+1,j − ui−1,j − ui,j+1 − ui,j−1 + 2ui,j).

3. Two-grid Newton’s algorithms. To solve the system of nonlinear algebraic
equations (3) we use Newton’s method, i.e. we consider the following iterative process

with initial guess uh
i,j

(0)
:

(D2
xxu

h
i,j

(k)
)(D2

yyδu
h
i,j

(k+1)
) + (D2

yyu
h
i,j

(k)
)(D2

xxδu
h
i,j

(k+1)
)

(4)

−2(D2
xyu

h
i,j

(k)
)(D2

xyδu
h
i,j

(k+1)
) = fi,j − (D2

xxu
h
i,j

(k)
)(D2

yyu
h
i,j

(k)
) + (D2

xyu
h
i,j

(k)
)2

and find uh
i,j

(k+1)
= uh

i,j
(k)

+ δuh
i,j

(k+1)
, k = 0, 1, . . . .

Analogically to ωh, we define a new mesh ωH with step sizes Hx >> hx, Hy >> hy

and Nx + 1(Ny + 1) grid nodes in x(y) direction. This mesh we will call coarse mesh,
while the first one ωh we will call fine mesh. In this section we propose two-grid
algorithms based on the Newton’s method. Let uI = uI(x) is the interpolant of the
continuous solution u. Now, we present the basic steps of our algorithm.

1◦ Solve the discrete problem (3) on the coarse grid ωH and interpolate the result
to obtain uH

I (x, y), (x, y) ∈ Ω;

2◦ Solve the linear discrete problem

(D2
xxu

H
I (xi, yj))(D

2
yyu

h(xi, yj)) + (D2
yyu

H
I (xi, yj))(D

2
xxu

h(xi, yj))

−2(D2
xyu

H
I (xi, yj))(D

2
xyu

h(xi, yj))

= fi,j + (D2
xxu

H
I (xi, yj))(D

2
yyu

H
I (xi, yj))− (D2

xyu
H
I (xi, yj))

2

to find the fine mesh numerical solution uh(xi, yj), (xi, yj) ∈ ωh.

Algorithm 1 (A1). The iteration process (4) performs as follows:

� For m = 0 - do 1◦ with mesh step sizes Hx, Hy;

� For m = 1, . . . ,M - repeat 2◦ with optimal mesh step sizes hx . H2M

x and

hy . H2M

y fixed for all iterations m > 0 and yH
I (xi, yj) := yh(xi, yj) for m > 1.

Algorithm 2 (A2). The iteration process (4) performs as follows:

� For m = 0 - do 1◦ with mesh step sizes Hx, Hy;

� For m = 1, 2, . . . - repeat 2◦ with optimal mesh step sizes hx . H2m

x and
hy . H2m

y for each iteration m > 0 and yH
I (xi, yj) := yh

I (xi, yj) for m > 1.
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Theorem 1 Suppose that the problem (1)-(2) is classical solvable and ‖u−uh(0)‖H ≤
CH2, H = max{Hx, Hy}. Then for the error of Algorithm 1 and Algorithm 2 at m-th

iteration, with optimal choice of the fine mesh step size h = max{hx, hy}, we have

‖uh − u‖H ≤ C(H2)2
m

.

4. Numerical results. Numerical results verify the theoretical statements and
demonstrate the efficiency of the two-grid algorithms. We will test our method for
smooth example to compare the results with those, given in [2]. The solution is
computed on an uniform quadratic meshes with mesh step sizes H = Hx = Hy

(N = Nx = Ny) and h = hx = hy (n = nx = ny). The results are given in
max discrete and L2 discrete norms. The convergence rate is calculated, using the
formulas: CRH

N = log2[E
H
N/2/E

H
N ] and CRh

N = log2[E
h
N/2/E

h
N ] for the coarse and fine

mesh solution, respectively. Here, with EH
N and Eh

N the errors in max discrete norms
(EH

N = ‖yH
i − u(xi)‖H and Eh

N = ‖yh
i − u(xi)‖h, i = 0, . . . , N) are denoted.

The initial guess for Newton’s iteration process is the solution of uxx + uyy = 2
√
f

in Ω, u = g on ∂Ω [5]. For m = 0 iteration of Newton’s method continued until the
maximum difference between two subsequent iterations is less than 10−12.
The computations are performed with optimal chosen fine mesh step size h, i.e.

h .

{
H2M

, fixed for all iterations 0 < m ≤M, computing up to M with A1,
H2m

, at each iteration m > 0, computing with A2.

Example Let Ω = [−1, 1]× [−1, 1]. An exact radial solution is

u(x, y) = exp
[
(x2 + y2)/2

]
, f(x, y) = (1 + x2 + y2) exp(x2 + y2).

Errors and convergence rates in corresponding discrete norms are given in Table 1
for A1 and A2 based on the nine-point scheme (3). Also, we compare CPU times for
one-grid procedure (m = 0) and two-grid algorithms (m = 1, 2) when approximately
one and the same accuracy is reached. On Figure 1 numerical solution and errors are
plotted following the two-grid algorithm A2 based on the nine-point stencil scheme
and optimal chosen fine mesh step sizes. In Table 2 errors in max discrete norm for
different stages of A1 with seven-point scheme (3) are compared. Thus, the validation
of Theorem 1 is established. The convergence rate in max discrete norm of A1 and
A2 is O(H2) for m = 0, O(h2 +H4) = O(H4) for m = 1 and O(h2 +H8) = O(H8) for
m = 2.
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Appliance of Artificial Intelligence Forms for Examination
of the Resolution’s Radiolocational Station Influence on the

Recognition Accuracy of Dynamic Object

Milena Kostova, Valerij Djurov

1 Introduction

The modern radiolocational systems working with cvasioptic probing signals give an
opportunity for receiving radioholograms of observing objects in accepting trackt for
given radiolocational station. The recreation of the received radiohologram leads to
receiving of a radiolocational portrait or also called radioholographic image (RHI) of
the object. It is a scaled model of the real object and its quality depends on the count
of reflecting points by the surface of the object. They are determined to distance and
azimuth by the accomplished resolution. The recognition of the dynamic object by
radioholographic image can be realized by comparing with a standard image [3]. This
method requires centering of the image in the frame which creates extra difficulties
when it is processed. The recognition of dynamic objects (aircrafts) by geometric
causes does not require such centering. The use of forms of artificial intelligence -
neural networks, fuzzy logic, computer vision, expert systems and so on, helps for
processing the information in real time.

2 Model of a system for processing and classifica-

tion of radioholographic image of an aircraft

A system for processing and classification of radioholographic image of aircrafts is
modeled. It includes filtration of the image by a cellular neural network (CNN) [1,4],
receiving of an outline, taking of peculiar points and determination of the values of
image’s informational causes (Fig. 1). The classification is based on the geometrical
characteristic of the objects and it is made by two classifiers which take decision based
on the fuzzy logic and probability neural network [2].
A vector of geometrical causes (A,α, LR, LK) is formed for recognition of dynamic
object’s image, where

A =
Width of wings

Length of fuselage axis
, α = arctg

wing

fuselage axis

LR = geometrical center, geometrical middle, LK = width of the aircraft’s wings.
An algorithm for receiving the values of the causes is developed and applied at res-
olution 0.07; 0.15 and 0.5 m. The results are given in Table 1. Based on a given
criterions are accepted the causes A and α, which are the same when the resolution
is changed, i.e invariant the scale.
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Figure 1: Model of a system for processing and classification of RHI of an aircraft
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Table 1: Causes at resolution - 0.07; 0.15 and 0.5 m

3 Examination of the recognition accuracy at reso-

lution 0.07; 0.15 and 0.5 m.

Radioholographic images of 30 types of aircrafts are received at resolution 0.07; 0.15
and 0.5 m [3]. A classification of the aircrafts is accomplished, in class military and
class transport, by two classifiers based on probability neural network (PNN) and
fuzzy logic respectively, which work parallel. A graphics user interface is created
for easier examination. The results are given in Table 2. For convenience by (1)
is marked correct recognition and by (0) is marked wrong classification. The way of
work of Fuzzy classifier and PNN classifier are shown in Fig. 2 and Fig. 3 respectively.
The results shows that the Fuzzy classifier gives better results - the accuracy vary
from 95% to 100% for military aircrafts and from 90% to 100% for transport aircrafts.
In some cases is possible the classifier to be unable to take decision. The accuracy of
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Table 2: Accuracy of recognition at resolution 0.07; 0.15 and 0.5 m

PNN classifier for military aircrafts vary from 85% to 90% and for transport aircrafts
is from 90% to 100%.
Logical rules for taking decisions can be lead in the two classifiers in parallel work.
The following abbreviations are accepted:military - M, transport - T
If Fuzzy- not recognized and PNN- M, then M If Fuzzy- M and PNN- T, then M IF
Fuzzy- T and PNN- M, then M If Fuzzy- T and PNN- T, then T If Fuzzy- M and
PNN- M, then M
In this case the accuracy of the system for military aircrafts reaches 100% no mater
of the resolution, and for the transport aircrafts at resolution 0.07 and 0.15 is 100%,
and at resolution 0.5 is 90%.
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Figure 2: Way of work of Fuzzy classifier

Figure 3: Way of work of PNN classifier
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4 Conclusions

At a corresponding device realization, the system can be applied at radiolocational
stations working in centimeter and millimeter frequency area (according to NATO
standards X and K) which can provide a resolution from 0.07 to 0.5m. The high
accuracy of recognition gives the opportunity to analyse and observe objects which
got in exceptional situation (technical failure, terroristic act and s.o.) or entering
of a unknown object in a air corridor. The system can manage full day automatic
monitoring without human intervention. The appliance of two different methods for
classification increase the protection of the system against cyberattacks.
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Scalable PCG Solution Algorithms for µFEM Elasticity
Systems

Nikola Kosturski

In this study we analyze the performance of a parallel PCG solver for micro finite ele-
ment method (µFEM) elasticity systems on the IBM Blue Gene/P massively parallel
computer. The test problems arise from the µFE simulation of human bones. The
voxel representation of the bone micro structure is obtained from a high resolution
computer tomography (CT) image. Linear elasticity models at micro and macro lev-
els are applied. A numerical homogenization scheme is applied to upscale the elastic
properties of the reference volume element (RVE). The RVE of the studied trabecular
bone tissue has a strongly heterogeneous micro structure composed of solid and fluid
phases (see Fig. 1). Nonconforming Crouzeix–Raviart (C.–R.) elements are used to

32 × 32 × 32 64 × 64 × 64 128 × 128 × 128

Figure 1: Structure of the solid phase of the bone specimens.

discretize the resulting linear elasticity problems. The solver for the arising large-
scale linear systems is based on a parallel PCG [1] method. The preconditioner is the
parallel algebraic multigrid implementation BoomerAMG [8]. The presented parallel
tests well illustrate the scope of efficient applications.
In a number of earlier articles dealing with µFE simulation of bone structures (see,
e.g., [6, 7]), the contribution of the fluid phase is neglected. In this study the fluid
phase, located in the pores of the solid skeleton, is considered as an almost incom-
pressible linear elastic material (see for some additional details, e.g., [5]). The bulk
modulus Kf is fixed and the related Poisson ration νf is approaching the incompress-
ible limit of 0.5. The elasticity modulus Es and the Poisson ratio νs of the solid phase
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as well as the bulk modulus of the fluid phase Kf are taken from [2]. Let us note that
the C.–R. elements (after a proper modification of the related bilinear form) provide
a locking-free approximation of almost incompressible elasticity problems.
Let us briefly describe the applied numerical upscaling scheme. A more detailed
description along with a description of the locking-free FEM discretization can be
found in [4].

Figure 2: Boundary conditions of the RVE problem.

We study the implementation of a numerical homogenization scheme of Dirichlet
boundary conditions type [3]. The RVE boundary value problem (BVP) has zero
normal displacements on five of the faces of the cube and a (small) nonzero constant
normal displacement on the sixth face (see Fig. 2).
By symmetry arguments, it simply follows that the homogenized stress and strain
tensors have zero shear components, and therefore the following relation between the
homogenized normal stress and strain components holds




σx

σy

σz



 =
E(1− ν)

(1 + ν)(1 − 2ν)




1 ν

1−ν
ν

1−ν
ν

1−ν 1 ν
1−ν

ν
1−ν

ν
1−ν 1








εx

εy

εz



 .

Let us now consider the case, where the nonzero constant normal displacement (in z
direction) is applied on the top face of the RVE cube. Then εx = εy = 0 and therefore

σx = σy =
Eν

(1 + ν)(1 − 2ν)
εz, and σz =

E(1− ν)
(1 + ν)(1 − 2ν)

εz.
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From these relations we can directly calculate the homogenized elasticity coefficients
as follows

ν =
1

1 + p
, E =

(1 + ν)(1 − 2ν)

1− ν r,

where
p =

σz

σx
=
σz

σy
, r =

σz

εz
.

Similar relations hold when the nonzero displacements are alternatively applied in the
x and y directions.
Here, we focus our attention on the parallel performance of the solver for the RVE
BVP. The presented results are based on three different test cases of RVE. The voxel
representations (with sizes 32×32×32, 64×64×64, and 128×128×128) of the related
bone micro structures are extracted from a high resolution CT image, taken from [9].
The elastic properties of the bone materials are taken from [2]. The elasticity modulus
of the solid phase is Es = 14.7 GPa and the related Poisson ratio is νs = 0.325. The
fluid phase is considered as an almost incompressible material with bulk modulus
Kf = 2.3 GPa. In the presented parallel tests, the Poisson ratio is νf varied between
0.4 and 0.499999, and respectively Ef = 3Kf (1− 2νf).
The studied methods and algorithms are targeted to the case of µFEM numerical
homogenization, which leads to large-scale linear systems. The solver is based on the
PCG method, where BoomerAMG is the preconditioner. A relative PCG stopping
criterion in the form

rT
kC

−1rk ≤ ε2rT
0 C

−1r0,

where rk stands for the residual on the k-th step of the PCG method, is used. The
selected coarsening algorithm for the BoomerAMG preconditioner is Falgout-CLJP
with a strength threshold of 0.02. Modified classical interpolation is applied. The se-
lected relaxation method is hybrid symmetric Gauss-Seidel or SSOR in lexicographical
ordering on each processor. In order to fit in the available operating memory three
levels of aggressive coarsening are used and the maximum number of elements per
row for the interpolation is restricted to six.
The presented parallel tests are performed on the IBM Blue Gene/P machine at
the Bulgarian Supercomputing Center (see http://www.scc.acad.bg/). This super-
computer consists of 2048 PowerPC 450 based compute nodes, each with four cores
running at 850 MHz and 2 GB RAM. It is equipped with a torus network for the
point to point communications capable of 5.1 GB/s and a tree network for global
communications with a bandwidth of 1.7 GB/s. Our code is compiled using the IBM
XL C++ compiler with the following options: “-O5 -qstrict”.
The parallel times and the weak scaling of the linear solver for ν = 0.4, 0.499, and
0.499999 are presented in Tables 1, 2, and 3 respectively. The number of processors
is denoted with p. Nit stands for the number of performed PCG iterations. The
setup time for the BoomerAMG preconditioner Tsetup is given separately from the
solution time Tsolve. T stands for the total time including both the setup and the
solution stage. The weak scaling of the solver is measured on the smallest sample
(32× 32× 32) with two consecutive uniform mesh refinement steps, and on the next
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sample (64 × 64 × 64) with one refinement. After that, the parallel times for the
largest sample are presented.

Table 1: Parallel times and weak scaling for ν = 0.4, ε = 10−3.

Bone sample p DOF Nit Tsetup Tsolve T Weak scaling
32× 32× 32 1 608 256 8 32 59 91

8 4 792 320 9 45 67 112 82 %
64 38 043 648 10 72 77 149 61 %

64× 64× 64 8 4 792 320 9 47 68 115
64 38 043 648 9 72 71 143 80 %

128× 128× 128 64 38 043 648 9 75 71 146

Table 2: Parallel times and weak scaling for ν = 0.499, ε = 10−3.

Bone sample p DOF Nit Tsetup Tsolve T Weak scaling
32× 32× 32 1 608 256 13 32 95 127

8 4 792 320 12 45 90 135 94 %
64 38 043 648 17 79 129 209 61 %

64× 64× 64 8 4 792 320 17 50 127 178
64 38 043 648 19 77 144 220 81 %

128× 128× 128 64 38 043 648 13 83 104 187

Table 3: Parallel times and weak scaling for ν = 0.499999, ε = 10−3.

Bone sample p DOF Nit Tsetup Tsolve T Weak scaling
32× 32× 32 1 608 256 9 32 69 101

8 4 792 320 10 45 78 123 83 %
64 38 043 648 11 92 91 183 55 %

64× 64× 64 8 4 792 320 16 50 121 172
64 38 043 648 14 90 113 202 85 %

128× 128× 128 64 38 043 648 11 93 92 185

The observed numbers of iterations strongly depend on the Poisson ratio of the fluid
phase. The worst case is for ν = 0.499. Less iterations are needed in last case,
where the Poisson ratio is much closer to the incompressibility limit. The parallel
times depend both on the size of the problems and on the structure of the considered
bone samples. However, similar parallel times for both setup and solution steps are
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observed for the problems with equal numbers of degrees of freedom (DOF) when the
numbers of the performed PCG iterations are equal. The results indicate that the
BoomerAMG setup stage has a worse scalability than the PCG solution stage.
The homogenized elastic material coefficients for the three test specimens are pre-
sented next in Table 4. The coefficients (Efluid, νfluid) correspond to the case when
the fluid phase of the bone micro structure is considered as an almost incompressible
linear elastic material. If the fluid phase is not taken into account (a solid skeleton
with empty pores is considered), the resulting homogenized material properties are
(Eempty , νempty). A significant difference between the two sets of results is observed.
The percentages of the volume of the solid phase for the samples are also included in
the table.

Table 4: Homogenized elastic properties of the bone samples.

32× 32× 32 64× 64× 64 128× 128× 128
Solid phase 26 % 19 % 18 %
Eempty 1.10 GPa 0.58 GPa 0.70 GPa
νempty 0.141 0.158 0.142
Efluid 1.86 GPa 1.05 GPa 1.23 GPa
νfluid 0.396 0.436 0.425

The presented parallel tests on the BlueGene/P massively parallel computer demon-
strate the ability to simulate, with reasonable efficiency, bones with strongly hetero-
geneous structure at the level of detail provided by the micro CT resolution.
The presented numerical homogenization results clearly demonstrate the significant
contribution of the fluid phase to the homogenized material properties.
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Challenges for the Iterative Solution of Phase-Separation
Flow Problems

Maya Neytcheva, Petia Boyanova

1 Introduction

We are interested in the numerical solution of problems, modelled by the so-called
Cahn-Hilliard equation.
The basic Cahn-Hilliard equation (after John W. Cahn and John E. Hilliard) is a
partial differential equation which describes the process of phase separation, by which
the two components of a binary fluid spontaneously separate and form domains pure
in each component.
The problem reads as follows

∂C

∂t
− ε(∆(Ψ′(C) −∆C)) = 0 in ΩT ≡ Ω× (0, T )

∂C

∂n
=

∂

∂n
(Ψ′(C)−∆C) = 0 on ∂ΩT

C = C0 in Ω× (0)

(1)

where C is the concentration of the two different phases, Ψ is the so-called double-well
potential with two global minima at ±1, e.g., Ψ(C) = (C+1)2(C−1)2, ε is a positive
but small parameter and defines the interaction length. The boundary conditions
imply that the mixture can not pass through walls. Further, ∂C

∂n
= 0 means that the

total free energy decreases with time. The function η = Ψ′(C) −∆C is the so-called
chemical potential.
As is seen from (1), Cahn-Hilliard (C-H) equation is a fourth-order nonlinear parabolic
equation, which turns out to be very stiff and hard to solve numerically.
In related works, various formulations of the Cahn-Hilliard equation have been consid-
ered, describing different physical phenomena, in conjunction with phase separation.
Formulation (1), referred to as the ’solid model’, is among the simplest, in which the
diffusion is the only transport process. The parameter ε determines the slope of the
surfaces, formed by the concentration, and the difficulty in solving (1) increases with
decreasing ε. In the discrete case, special care has to be taken on relating the space
discretization to ε in order to resolve the layers well enough.
A more advanced ’fluid model’ is the one described below,

∂C

∂t
+ (u · ∇)C −∇ · (k∇η)) = 0, (2)

where k is the so-called mobility. In (2), u denotes the velocity of a hydrodynamic
flow, the presence of which means that material can be transported both by diffusion
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and flow field. The velocity is computed by solving the Navier-Stokes equations for
fluid flow, coupled with C-H equation,

ρ
∂u

∂t
+ (ρu · ∇)u = −∇p+∇ · (µ(∇u + (∇u)T ))− η∇C + F

∇ · u = 0
(3)

with ρ(C) abd µ(C) being the fluid density and viscosity and F - body force. Solving
(2) and (3) as a coupled system is a substantial computational challenge and therefore
the equations are usually solved in an alternating fashion until convergence is achieved.
The area of research where Cahn-Hilliard equations are applied, is progressively ex-
tending. For example, it has recently been found that in addition to the above
well-known models a new model of phase separation is required to describe the phase-
separation behaviour of a dynamically asymmetric mixture, which is composed of fast
and slow components. Such ‘dynamic asymmetry’ can be induced by either the large
size difference or the difference in transition temperature between the components
of a mixture. The former often exists in so-called complex fluids, such as polymer
solutions, micellar solutions, colloidal suspensions, emulsions and protein solutions.
This new type of phase separation is referred to as ‘viscoelastic phase separation’
since viscoelastic effects play a dominant role.
In the sequel we consider only the models (1) and (2), and the solution of the algebraic
systems arising from their discretization by the Finite Element method (FEM) in
space and a suitable (stable) discretization in time.

2 Discretization and matrix formulation

To avoid discretizations of the higher order derivatives, C-H equation is decomposed
into a coupled system of two second-order PDEs. Then, the ’fluid mode’ reads as

η +∇2C − Cn2 Ψ′(C) = 0,
∂C

∂t
+ (u · ∇)C − 1

Pe
∇ · (k∇η) = 0.

(4)

where Cn and Pe are Cahn and Pecle numbers appearing after the problem is made
dimensionless. We recall, that C is a continuous scalar variable that describes the
diffusive interface profile and has a constant value in each phase, ±1.
Consider first a discretization in space using the finite element method (FEM). Here
we omit the details since the space discretization is straight forward. Then, the
semidiscrete problem takes the form

Mηh +
(
KCh − (C3

h − Ch)
)

= 0,
1

PeKηh + M ∂Ch

∂t + V Ch = 0,
(5)

where M,K, V are the mass, stiffness and discrete convection matrices. Within this
work we use standard piece-wise linear FEM basis functions. More detailed analysis
of that space discretization can be found in [5].
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To discretize in time we use the fully implicit Euler method and therefore the fully
discrete system reads as

Mηk+1
h − KCk+1

h − ((Ck+1
h )3 − Ck+1

h ) = 0
δt

Pe Kη
k+1
h + MCk+1

h + δt V C
k+1
h = MCk

h

(6)

The so-arising system of algebraic equations is nonlinear due to the chemical potential
function and is solved by Newton’s method. The linear systems with the Jacobian,
which have to be handled at each nonlinear iteration, are solved using an iterative
method. Both the system matrix and the corresponding Jacobian have a two-by-two
block structure,

A =

[
A11 A12

A21 A22

]
, (7)

which is utilized when constructing a suitable preconditioner.

3 Numerical solution methods

The real-life applications of interest, which are modeled via C-H, lead to large scale
linear systems. Therefore, due to their lower computer resource demands, iterative
techniques become the methods of choice. For achieving numerical efficiency (fewer
iterations to converge), iterative solvers require computationally efficient and robust
preconditioners. The construction of such preconditioners is our main interest.
There is a vast amount of theoretical results and experience on how to construct
efficient preconditioners for matrices in the form (7) The best known preconditioners
utilize the available matrix structure, i.e.,

M =

[
B11 0
A21 S

] [
I1 B−1

11 A21

0 I2

]
or M =

[
B11 0
A21 S

]
, (8)

where S ∼ SA ≡= A22 − A21A
−1
11 A12, B11 ∼ A11 (or B−1

11 ∼ A−1
11 ). For details on

preconditioners for matrices of two-by-two block form and their properties, we refer
to [3] and [4], for example.
The existing theory states that there arises the need for an accurate approximation of
the Schur complement SA. The task to approximate the Schur complement of a matrix
in a two-by-two block form is studied in various frameworks, such as hierarchical bases
and nested meshes, algebraically constructed levels, systems of PDEs. The framework
is also related to (A)MG methods.
Clearly, to approximate SA, and in particular, by a sparse matrix, is not an easy task,
since for large problems SA is still a large matrix. Furthermore, even if A is sparse,
SA might be dense.
In this work we precondition A by

M =

[
[A11] 0
A21 S

] [
I1 [A11]

−1
A12

0 I2

]
, (9)
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where S ∼ SA. The notation [A11] is used to denote that an inner (cheap) iterative
method is used to solve systems with the pivot block.
To approximate the Schur complement we apply the so-called ’element-by-element’
(EBE) technology. Briefly, the EBE idea is as follows. We notice, that when dis-
cretizing in space, the arising element stiffness matrix is in a block two-by-two form,

Ak =

[
A11,k A12,k

A21,k A22,k

]
. Ak is of small size and is easy to manipulate. We compute

exactly Sk = A22,k−A21,kA
−1
11,kA12,k and then assemble those in the usual FEM way,

S =
m∑

k=1

Sk, where m is the number of finite elements in the discretization mesh. In

this way we construct a sparse approximation of the Schur complement in a cheap
way. The EBE technology replaces the exact Schur complement

SA = A22 −
(
∑

k

RT
kA21,kRk

)(
∑

l

RT
l A11,lRl

)−1(∑

m

RT
mA12,mRm

)

by S = A22 −
∑
k

RT
k

(
A21,kA

−1
11,kA12,k

)
Rk, where Rm are the Boolean maps from

local to global numbering of the degrees of freedom.
The question how good is the so-constructed approximation is relevant. It is shown
that the approximation is very good for symmetric and positive definite matrices. For
general nonsymmetric matrices, the study is not completed and there are both very
promising results as well as cases where the quality of the approximation is not high
enough to ensure optimal order preconditioned method. For details, we refer to [2],
[6] and the references therein.

4 Numerical experiments

Below, we illustrate the behaviour of the solution of C-H problem and the performance
of an iterative solution method. The preconditioner is as in (9). All experiments are
performed in Matlab. The iterative solver is the Generalized Conjugate Gradient
(GCG) method (cf. [1]). In Figure 1 we show the solution of problem (1) for ε = 0.01
on a regular mesh of size 64 × 64, time increment 10−5 and 50 time-steps. The
space discretization parameter h is chosen in such a way that there are about six
discretization points in the layer regions. Table 1 illustrates the quality of the EBE
approximation of the Schur complement for problem (4). Here Ca = 300, P e = 0.1 As
we can see, the iteration counts are relatively few but nearly double with increasing
the problem size four times. For smaller problem sizes, some eigenvalue information
for S−1SA is included, showing some increase in both real and imaginary parts of the
eigenvalues.
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Figure 1:

Size Iter eig(S−1SA)
min(Real) max(Real) max(Imag)

1122/ 561 11 1 3.0642 0.2728
4290/ 2145 23 1 10.5635 1.3129
16770/ 8385 49 - - -
66306/16770 88 - - -

Table 1:
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5 Conclusions and outlook

From Table 1 we see that the element-by-element Schur complement approximation
shows reasonable performance, however it is not fully robust with respect to the
space discretization parameter. Therefore, the technique how to approximate the
Schur complement should be improved in a future work. One idea how to improve
the quality of the Schur complement approximation is to use coarse grid correction.
The second direction of research is to use nonconforming FEM to discretize the C-H
equation. Then, for the Croizeux-Raviart element, the diagonal blocks in (7) become
diagonal and the corresponding Schur complement can be explicitly computed. How-
ever, nonconforming FEM will lead to increase in the number of degrees of freedom
(roughly three times in 2D). A thorough analysis would be necessary to compare the
increase of computational complexity due to discretization with the computational
gains due to a better matrix structure.
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Upscaling of Deformable Porous Media with Applications
to Bone Modelling

Peter Popov

1 Introduction

In this work we consider upscaling the deformable porous microstructure of trabecular
bones. The work is in progress, with the eventual goal being performing coarse-
scale simulations of coupled fluid flow and mechanical deformations of bone tissue.
Currently, a number of upscaling approaches exist, aimed at resolving the coarse scale
mechanical response of bones [6, 9]. The fluid phase is not explicitly accounted for,
eventhough some works modify the effective elastic coefficient in order to account for
the fluid. In contrast, we consider Biot’s diphasic model of poroelasticity [2, 3], in
which a macroscopic point is simultaneously occupied by fluid and solid. We explicitly
compute the appropriate macroscopic coefficients from the porous microstructure.

2 The physical problem at the fine scale

The physical processes under consideration span two length-scales. On the macro-
scopic level, one has fluid, diffusing through a porous solid. At the microscale the
solid has a complex pore geometry and interacts with a Stokes flow. We assume
good scale separation, with the usual small parameter ε being the ratio of the fine
to the coarse length scales. We denote the fine scale domain by Ω0

ε, which contains
two subdomains - a fluid part F0

ε and solid part S0
ε. The superscript 0 indicates the

reference, or undeformed configuration of the body. The interface between the solid
and fluid domains is denoted by Γ0

ε = ∂F0
ε ∩ ∂S0

ε. The physics is described by the
strongly coupled, stationary fluid structure interaction problem [4]: Find the interface
Γε, velocity vε, pressure pε and displacements uε such that:

Γε =
{
X + uε(X)| ∀ X ∈ Γ0

ε

}
, (1)

the Stokes and Elasticity equations are satisfied:

−∇pε + µ∆vε + f = 0, ∇ · vε = 0 in Fε (2)

−∇ · S(Eε) = f in S
0
ε (3)

with the interface condition

det (I +∇uε) (−pεI + 2µDε) (I +∇uε)
−T

n0 = S(Eε)n0 on Γ0
ε. (4)

Here X is the material and x the spatial coordinate, µ is the fluid viscosity, f is
the body force. Further, S is the first Piola-Kirchhoff stress tensor in the solid. It
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depends, linearly or nonlinearly, on the strain E(u) = 1
2

(
∇u(X) +∇u(X)T

)
. Recall,

that given a Cauchy stress σ one has S = det(I + ∇uε)σ (I +∇uε)
−T

. D(v) =
1
2

(
∇v(x) +∇v(x)T

)
is the rate of stretching tensor, and n0 is the reference normal

to the interface. Note, that the interface condition (4) introduces a nonlinearity into
the problem, regardless of the constitutive form for S.

3 Upscaled Biot model

Recall that in classical linear poroelasticity it is assumed that the solid is governed by
the linearized constitutive relationship S = L : E, where L is the elasticity tensor. The
form of the homogenized equations depends on the magnitude of the displacements of
the microscopic interface Γ0

ε. If one assumes infinitesimal displacements in the sense
that there is no difference between Γ0

ε and Γε, and in addition, a quasi-steady regime,
the media is described by the classical Biot’s law (c.f. e.g. [2, 5]):

∇ · (L∗ : e (u0)−A∗p0) = 0, (5a)

∇ · (K∗∇p0) = (∇φf ) · ∂u0

∂t
+ A∗ : e

(
∂u0

∂t

)
+ β∗ ∂p0

∂t
. (5b)

Here p0 and u0 are the macroscopic pressure and displacements. In the above equa-
tions, the acoustic effects in both phases are disregarded. These equations form the
phenomenological theory of [2]. Later, they were re-derived via asymptotic homoge-
nization (c.f. e.g. [1, 8]). They involve three different sets of cell problems needed to
determine the effective properties L∗, A∗, K∗ and β∗.
To obtain the cell problems a Representative Element of Volume (REV) Y is defined.
Since we have two domains, we denote with YF the fluid part and with YS the solid
part of the REV, that is, Y = YF ∪ YS. The initial interface is denoted by ΓY

0 .
The first set of cell problems defines L∗ and is (c.f., e.g. [3, 5]):

∇ · (L : e (ϕmn)) = −∇ · (L : δmn) in YS, (6a)

(L : e (ϕmn))n0 = − (L : δmn)n0 on ΓY
0 , (6b)

with ϕmn being Y periodic and with zero mean. Note, that due to symmetry, the cell
problems can be reduced to just six. The cell solutions ϕmn then determine effective
elastic properties L

∗ as follows:

L
∗
ijkl = 〈Lijpq (δpkδql + epq (ϕmn))〉Y . (7)

Here 〈·〉Y is the Y - averaging operator. Note that the effective tensor L∗ is simply
the homogenized elasticity coefficient in the absence of any fluid.
Next, the Biot coefficient A∗ is determined from the single cell problem

∇ · (L : e (η)) = 0 in YS, (8a)

(L : e (η))n0 = n0 on ΓY
0 , (8b)
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Figure 1: CAT scan of trabecular bone tissue, largest REV (643).

with η being Y periodic and with zero mean. The solution yields A∗ as follows:

A∗
ij = φδij + 〈Lijpqepq (η)〉Y . (9)

The Biot coefficient takes into account the contribution of the fluid pressure p0 into
the momentum equation (6a), as well as the pore volume change term A∗ : e

(
∂u0

∂t

)

in the balance of mass (6b), due to macroscopic deformations u0. The pore volume
change in (6b) due to p0 is captured by the β∗ coefficient, defined as:

β∗ = 〈eii (η)〉Y . (10)

The permeability is determined via the final set of cell problems:

∆wi +∇qi = −ei, ∇ ·wi = 0 in YF, (11a)

wi = 0 on ΓY
0 , (11b)

with the permeability K∗ being defined as

K∗
ij = 〈wi · ej〉Y . (12)

4 Numerical Results

In this section we present a numerical example of homogenizing a real porous mi-
crostructure of a human thigh bone. A series of REVs were considered, with 163, 323

and 643 voxels, each being a subset of the next larger size (Figure 1). The voxelized
geometry, obtained via CAT scan, were used in a number of studies, related to up-
scaling the elastic properties only [6, 9]. The goal here was to obtain both the elastic
(L∗) and Biot’s coefficients (A∗, β∗), so that simulations based on Biot’s poroelastic
model could be performed.
The voxelized geometry was converted to a tetrahedral mesh. Due to the large number
of elements in a directly meshed voxelized geometry we also attempted to generate
a coarser mesh by smoothing the original geometry. This was done by first starting
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(a) 323 voxel geometry, solid domain (b) smoothed geometry

Figure 2: Smoothing of the voxelized Fluid-solid interface

Table 1: Elastic properties for several REV sizes
REV Solid Phase E∗

11 E∗
22 E∗

33 ν∗12 ν∗21 ν∗13 ν∗31 ν∗23 ν∗32
Voxels3 GPa
163 0.47% 5.72 5.69 4.09 0.32 0.32 0.31 0.22 0.31 0.22
323 0.26% 2.26 1.72 1.46 0.27 0.21 0.20 0.13 0.30 0.26
643 0.19% 1.08 0.90 1.10 0.23 0.19 0.17 0.17 0.19 0.23

with the original tetrahedral mesh of the entire REV, fluid and solid voxels being
marked with two distinct markers. Secondly, all elements are removed except those
bordering the Fluid-solid interface. Next, a standard Laplace equation is solved in
the remaining voxels, with a Dirichlet boundary condition of 0 at the boundary of the
fluid voxels which is not boundary of the REV and a Dirichlet boundary condition of 1
at the boundary of the solid voxels which is not boundary of the REV. The remainder
of the boundary had natural boundary conditions. The Fluid-Solid interface is then
reconstructed as particular level surface of the solution to this Laplace problem. The
resulting level surface (Figure 2(b)) retained the topology of the original interface and
was much smoother than the voxel-based interface. Unfortunately, we were not able
to then generate a mesh from this surface. For that reason, all the computations were
performed on voxel-derived meshes (Figure 2(a)).
The homogenization was conducted for linear isotropic elastic material with E =
14.7GPA and ν = 0.35. The solution of the elastic cell problem (6), for the 323

REV is shown in Figure 3. As the geometry is not periodic, we used linear boundary
conditions, instead of periodic. A summary of the results for several REV sizes is
given in Table 1. Shown are the Young modulii in the three coordinate directions
(E11, E22 and E33) as well as the Poisson ratios. From the table it is seen that the
REV sizes were not sufficiently large to obtain converging properties. The anisotropy
in the coefficients is however decreasing with increasing REV size. This implies that
a factor of 2 or 4 increase in REV size will be sufficient for the volume to be truly
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(a) u1 (b) σ11 (c) σ12

Figure 3: First cell problem (out of six) for computing elastic modulii

Table 2: Fluid-Solid coupling coefficients
REV A∗

11 A∗
22 A∗

33 β∗

163 0.79 0.79 0.89 0.021
323 0.46 0.48 0.49 0.014
643 0.37 0.38 0.37 0.011

representative. This will be addressed in future works either by meshing the smoothed
interface or by optimizing the existing solver.
The results for the Biot coefficient A∗ were also obtained for the same geometries by
solving the cell problem (8). The tensor is diagonal with the three entries given in
Table 2. The cell solution for the 323 case is shown in Figure 4. It is seen that as the
REV is increased, the tensor becomes almost isotropic.

5 Conclusions

We have successfully computed the macroscopic coefficients for Biot’s poroelasticity
equations for a couple of REVs representative of the microstructure of human thigh

(a) |u| (b) σ11 (c) σ22

Figure 4: Cell problem for computing fluid-solid coupling term
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bone tissue. We obtained anisotropic elastic and biot tensors. In the future, we plan
to first find a suitable way to mesh the smoothed FSI interface, so that bigger REVs
can be handled. Secondly, we plan to solve representative macroscopic poroelastic
problems and compare the results with the various proposed schemes for upscaling
the bone microstrocure to purely elastic mascroscopic problems. If it is shown that
fluid flow plays an important role, we further plan to compare the classical macroscopic
model of Biot with schemes particularly designed for large pore-level deformations [7].
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A Hybrid Multiscale Multigrid Approach by Incorporating
Analytical Results

Rosangela F. Sviercoski, Svetozar Margenov

Abstract

In this paper, convergence results for a multigrid solver for a linear elliptic
equation is presented, which uses the continuous homogenized problem to define
coarse-grid operators. The differences from previous approaches are that the
upscaled tensor is given by an analytical form presented in [11], which generally
is a full tensor, and it is applicable to media not necessarily periodic. The
numerical results indicate the robustness of the algorithm by comparing average
convergence rates with the standards arithmetic and harmonic averages.

1 Introduction

Complex multiscale problems of flows in porous media are routinely encountered as
part of research and development activities in a number of engineering, environmental
and biomedical fields. A major challenge in computational sciences is the develop-
ment of efficient methods for predicting the mechanical and flow behavior of systems
with complex hierarchical structures. The presence of multiple length-scales in such
media leads to numerical discretizations with very large number of degrees of freedom
(107− 109). One option for solving these systems is by using iterative methods, espe-
cially hierarchical ones like multigrid, which often shows to have optimal complexity.
However, in many interesting cases, particularly when the heterogeneous media is
described by step functions with high contrast coefficient, optimal performance of
multigrid is still a challenging problem. This may happen due to, for example, the
mesh anisotropy, which is caused by elements having very large aspect ratio, which
typically appears as a factor in the condition number of the stiffness matrix, which
easily generates a highly ill-conditioned problem [7]. Another related problem is that
the smallest eigenvalues in absolute value do not correspond to very smooth eigen-
functions. It is therefore, not easy to represent them on coarser grids [3]. Algorithms
for dealing with these problems already exist, such as [1, 3, 4, 6, 8] among others, but
yet there has been no definite answer. For example, in [3, 4, 8], the algorithms are de-
fined by specific prolongation and restriction operators for periodic oscillations of the
media. Because of this particular case, some have closed forms showing convergence
criteria as a function of the period ε and discretization size δ.
In this paper, we also present convergence results for a multigrid solver for a linear
elliptic equation (1), by using the continuous homogenized problem to define coarse-
grid operators. Unlike previous works, there is no constrain regarding periodicity
of the media, and the upscaled tensor is given by an analytical form presented in
[11], which may be a full tensor. The results are still preliminaries and no explicit
formalism has been yet developed. In the next section, the main problem and its
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approach is presented and, in the last section, convergence results using two types of
media. The first one is a randomly generated described by a polynomial type and,
the second one is defined by step function with various degree of contrasts.

2 Setting of the Problem

Without loss of generality, we consider the two-dimensional boundary value problem
(BVP) for u(x) on Ω = [0, 1]2 as:

{
−∇ · (K(x)∇u(x)) = f(x) x ∈ Ω
u(x) = g(x) x ∈ ∂Ω

(1)

where K(x) = k(x)I ∈ M2×2 is positive definite, and may be called a permeability
tensor, with k(x) > 0 being a scalar function and I ∈M2×2 the identity matrix. The
existence of an upscaled coefficient K ∈M2×2, positive definite, derived from periodic
homogenization, and applicable to non-periodic media is based on the mathematical
concept of G-convergence [5].
The homogenized coefficient K, replaced in (1), lead to the upscaled or homogenized
solution, u(x), which converges to u(x) in the sense of H−convergence [5, 10]. In this
case, K (2) is generally obtained by solving numerically the periodic cell-problem for
wi(x) i = 1, 2 at each partition of Ω, χj , and it is obtained by [5]:

K =
1

|χj |

∫

χj

K(x)

(
1 + ∂w1

∂x1

∂w1

∂x2
∂w2

∂x1
1 + ∂w2

∂x2

)
dx (2)

In this paper, an analytical approximation to K from [11] is used, which is given by:

K⋆ =

(
0.5 (Ka

11 +Kg
11) −b sin(2θ)

−b sin(2θ) 0.5 (Ka
22 +Kg

22)

)
(3)

where Ka
ii and Kg

ii are the arithmetic and geometric averages of the well known
Cardwell and Parsons bounds (CPB) [2]. The angle θ and the coefficient b, are
derived from the rotation of a diagonal matrix and the center of mass of the cell. The
coefficient is then given by:

b =

{
K⋆

ii−K⋆
jj

2 cos(2θ) ifKii 6= Kjj
K̂ii+K̂jj

4 − K̃ii+K̃jj

4 ifKii = Kjj

(4)

where K̃ii and K̂ii are the lower and upper bounds of (CPB), respectively. As pre-
sented in [11], K⋆ approximates the K which is derived by solving wi(x)’s with peri-
odic boundary condition, even when K(x) is not periodic.

2.1 Analytic Homogenized Coarse Grid Operator

The sequence of grids: Ω0 ⊂ Ω1 ⊂ ... ⊂ Ωh ⊂ ... ⊂ Ωk = Ω is defined and the
corresponding sequence of equations here is discretized by using bilinear rectangular
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finite elements. The approximation K⋆ leads to a sequence of linear operators from
the coarse to fine level L⋆

0U
⋆
0 = f0, ..., L

⋆
hU

⋆
h = fh, LkUk = fk, where a coarse-grid

operator at a given level h, is:

(L⋆
h)ij =

∫

Ω

∇ϕh
j K

⋆∇ψh
i dx (5)

where {ϕh
j }nh

j=1 and {ψh
j }nh

j=1 are test functions at that level. Application of a two-level

multigrid to, say LkUk = fk at the nth iteration, is usually done by [3]:

1. Presmoothing. Compute an approximation to Un
k , i.e. U

nη

k by applying η steps
of a iteration to the system at the k−level, with initial value Un

k on the k−grid
level. This can be formalized as: U

nη

k = Sη(Un
k , Lk, fk).

2. Coarse grid correction. Define a coarse grid, k− 1 level, and its operator L⋆
k−1,

then: (2.1) - Restrict the residual to the k−1 grid, by solving rk−1 = Ik−1
k (fk−

LkU
n+ 1

2

k ). (2.2) - Solve for the corrector ek−1, with L⋆
k−1ek−1 = rk−1. (2.3) -

Compute the approximation U by interpolating the correction back to the grid
k, to have: U = U

nη

k + Ik
k−1ek−1.

3. Postsmoothing. Use U as the initial value to give: Un+1
k = Sηpos(U,Lk, fk).

The resulting two-level multigrid method is then:

G = Sηpos(I − Ik−1
k (L⋆

k−1)
−1Ik

k−1Lk)Sηpre (6)

This procedure can be repeated until the coarsest level is reached, where the correction
is resolved exactly, corresponding to 1 V-cycle. In this paper, the intergrid operators
were defined by using the standard full weight restriction and bilinear interpolation,
like early works by [1, 3]. The smoothing, S in this paper, was done by applying
Gauss-Seidel procedure η times. At each level, the corresponding homogenized op-
erator is obtained by first dividing the entire domain into many cells. At each cell,
K⋆ is determined and L⋆ maintains the form of the homogenized operator but with
still varying coefficient from one cell to another. The next section, the results from
applying the above algorithm will be presented.

3 Numerical Results

The goal here is to show that the algorithm derived using K⋆, which is generally given
as an anisotropic and full tensor, can produce equal or better results than using the
standard diagonal tensors given by either the arithmetic or the harmonic averages,
Ka and Kh, respectively. The BVP is given by:





−∇ · (K(x)∇u(x)) = f(x) x ∈ Ω
u(0, x2) = 10, u(1, x2) = 1 x ∈ ∂Ω
∂u
∂η (x1, 0) = ∂u

∂η (x1, 1) = 0 x ∈ ∂Ω
(7)
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The media K(x) are shown in Figure 1 taken from [11]. The medium on the right is
described by step function, whereas the random medium on the left is a realization
of a log-normal homogeneous stochastic process with expected value E[Y (x, ω)] =
−1 on Ω = [0, 1]2. Y (x, ω) is a Gaussian process with covariance kernel given by

R(x, y) = σ2 exp
(
− |x1−x2|2

2L2
1

− |y1−y2|2
2L2

2

)
, with σ = 4 and L1 = 0.1 is the correlation

length in x−direction and, L2 = 0.2 is the correlation in the y−direction. The results
are shown on Tables 1-3, where the average convergence rate is shown for each case
of K(x). The average convergence rate, ρa, is obtained as the average of the residual
over the total number of V-cycles, starting from the 2nd up to the 10th V-cycle (in
those tables). In another words, ρa = 1− [10(log10(residual(10)/residual(2))/8)]. In all of
them, the fine-scale problem has a grid size of 63× 63, followed by coarse-grids with
31 × 31 (30 × 30 upscaled tensors), 15 × 15 (14 × 14 upscaled tensors), 7 × 7 (6 × 6
upscaled tensors) and 3 × 3 (2 × 2 upscaled tensors), respectively. For the Fig. 1
(right), the mesh resolves the coefficient jumps, i.e., the value of k(x) is unique within
each rectangular element. All examples use an initial guess of u = 0 and solve the
coarsest grid problem directly.

Figure 1: Media used on the simulations presented on Tables 1-3.

ηpre = ηpos 3 5 10 15 20 25
K⋆ 0.4364 0.6387 0.6302 0.6700 0.7041 0.7300
Ka 0.4336 0.5930 0.5823 0.6305 0.6723 0.7037
Kh 0.4316 0.7578 0.8124 0.8327 0.8336 0.8395

Table 1: Average convergence rates as a function of number of smoothing steps η,
after 10 V-cycle iterations. Here K(x) is of polynomial type, Fig. 1(left). In this
case, K⋆ performed better than Ka, but worse than Kh.

In general, the operator L⋆ derived from K⋆ showed to be a robust operator. This is
because neither one of the others, that are commonly used [1, 3], showed to be the
best on all the cases. Indeed, by looking at Table 1, the harmonic average showed
better results than the others, but this was not consistent throughout the experiment,
and it even failed to converge for the high contrast coefficient Table 3.
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ηpre = ηpos 2 5 10 15 20 25
K⋆ 0.0257 0.5677 0.6871 0.7350 0.7687 0.7946
Ka 0.1376 0.5720 0.6680 0.7172 0.7521 0.7896
Kh ... 0.4879 0.6764 0.7340 0.7641 0.7829

Table 2: Average convergence rates as a function of number of smoothing steps η,
after 10 V-cycle iterations, for K(x) as step function on Fig. 1 (right), where on the
dark gray K(x) = 0.1, on the gray K(x) = 0.5 and on the light gray K(x) = 1. In
this case, K⋆ showed to be a better option than the others. The sign ... indicates that
it did not converge.

ηpre = ηpos 20 25 30 35 40 45 50
K⋆ 0.1230 0.3200 0.4293 0.4877 0.5303 0.5563 0.5846
Ka 0.3955 0.5938 0.6642 0.7022 0.7261 0.7435 0.7576
Kh ... ... ... ... ... ... ...

Table 3: Average convergence rates as a function of number of smoothing steps η,
after 10 V-cycle iterations. K(x) is described as step function on Fig. 1 (right), where
the dark gray K(x) = 0.1, gray K(x) = 1 and light gray K(x) = 10. In this case,
using K⋆ demonstrated being a better option than the harmonic average, Kh, which
failed to converge, indicated by the sign ... above.

3.1 Conclusion

It is known that the efficiency of a multigrid method is tightly coupled to both the
coarse-grid operator̈ı¿1

2 s approximation of the fine-grid and the ability of the inter-
grid transfer operators to approximate the interaction between the various scales. In
this paper a coarse grid operator, L⋆, derived from an analytical approximation to
the homogenized coefficient, K⋆, showed to be a robust operator, in the sense that it
converged, even when others failed to do so. As mentioned before, these are prelimi-
nary results suggesting that further improvements should be pursued. In this sense,
the next step will be to derive more specific interpolation and restriction operators,
instead of the standard ones used here. This may include the use of analytical approx-
imation of the cell problems presented in [9, 10], in light of what has been presented,
for example, in [8, 7].
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Approximation Properties of Coarse Spaces by Algebraic
Multigrid

Panayot S. Vassilevski

Abstract

This note provides an application of the “window”-based spectral AMG
method (cf. [FVZ05] or [Va08]) for proving energy error estimates desired in pro-
viding coarse (upscaled) discretization of fairly general classes of PDEs. Compu-
tationally more efficient versions of the original window-based spectral AMG, as
well as a new method utilizing local element matrices, are outlined summarizing
the results from a forthcoming report.

1 The strong approximation property

We are given a s.p.d. n × n sparse matrix A and let P : Rnc 7→ Rn, nc < n, be a
given (rectangular) interpolation matrix.
We are interested in the following strong approximation property:
For any fine-grid vector u ∈ Rn there is a coarse interpolant Puc such that

‖A‖‖u− Puc‖2A ≤ CA ‖Au‖2. (1)

If the problem of our main interest

Au = f ,

comes from a finite element discretization of a PDE on a domain Ω ⊂ Rd (d = 2 or
3), then f = (fi) comes from a given r.h.s. function f(x) ∈ L2(Ω), where the entries
fi are computed as the following integral moments

fi = (f, ϕi) ≡
∫

Ω

f(x)ϕi dx.

Above, ϕi runs over a basis of the fine–grid finite element space Vh associated with a
triangulation of Ω with characteristic fine-grid mesh size h. For a nodal (Lagrangian)
basis, the index “i” runs over the set of fine degrees of freedom xi ∈ Nh. The unknown
u stands for the coefficient vector of the finite element, Galerkin, approximation uh

to the solution of the underlined PDE posed variationally, i.e., uh ∈ Vh solves the
discretized PDE in a variational form associated with a given bilinear form a(., .),
stated as follows

a(uh, ϕ) = (f, ϕ) for all ϕ ∈ Vh.

As an example, we consider a second order self–adjoint elliptic bilinear form a(u, ϕ) =∫
Ω

k(x) ∇u · ∇ϕ dx for u, ϕ ∈ H1
0 (Ω) and a given positive coefficient function k =
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k(x), x ∈ Ω, the given polygonal/polyhedral domain in Rd, d = 2 or 3. Using
a standard piecewise linear conforming finite element space Vh on a quasiuniform
triangulation Th, as it is well-known, the stiffness matrix A = (a(ϕj , ϕi)) computed
from a nodal Lagrangian basis {ϕi}xi∈Nh

of Vh satisfies

‖A‖ ≃ hd−2. (2)

The equivalence constants above generally depend on the variation
max
x∈Ω

k(x)

min
x∈Ω

k(x) but are

mesh-independent.
Assume, that we have come up with a coarse space VH ⊂ Vh such that the coefficient
vectors of functions in VH viewed as elements of Vh can be represented as the range
of an interpolation mapping P . We can define respective coarse basis functions by
forming Peic

for each coarse coordinate vector eic
∈ Rnc that has a single nonzero

entry at the icth position. Then, consider the fine–grid function φ
(H)
ic

that has coef-

ficient vector the icth column of P , i.e., equal to Peic
. The set of functions {φ(H)

ic
}

forms the coarse basis of interest. The parameter H stands for characteristic size of
the support of the coarse basis functions.
The above matrix–vector strong approximation property (1) admits the following
finite element function form:

‖A‖ a(uh − uH , uh − uH) ≤ CA

∑

xi∈Nh

f2
i = CA

∑

xi∈Nh




∫

Ω

f(x)ϕi dx




2

.

Using Cauchy-Schwarz inequality, we have

∑

xi∈Nh




∫

Ω

f(x)ϕi dx




2

≤
∑

xi∈Nh

∫

support (ϕi)

f2(x) dx

∫

Ω

ϕ2
i dx.

For a fairly general class of basis functions (including piecewise linears) on a quasiu-
niform mesh, we have ∫

Ω

ϕ2
i dx ≃ |support (ϕi)| ≃ hd.

Due to the bounded overlap of the supports of the finite element basis functions, we
also have ∑

xi∈Nh

∫

support (ϕi)

f2(x) dx ≤ κ ‖f‖20.

Thus, we arrive at the energy error estimate of our main interest (using (2))

a(uh − uH , uh − uH) ≤ CAκ
hd

‖A‖‖f‖
2
0 ≃ CAκ h

2 ‖f‖20.
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In practice, we typically have CA = O(
(

H
h

)2
) with a constant in the O symbol,

independent of the two mesh sizes (h and H); see, e.g., Corollary 1 later on. Thus,
we get the following final upscaling energy error estimate:

a(uh − uH , uh − uH) ≤ cA H2‖f‖20. (3)

In the remaining sections, we summarize a few AMG methods that provide strong
approximation property.

2 Efficient window-based spectral AMG methods

In [FVZ05] (see also [Va08]), the following AMG method was proposed that exhibits
strong approximation property. The original version tends to lead to relatively large
coarse spaces so that the resulting two (and multi)–level methods have unaccept-
ably high complexities. In the present section, we propose several approaches in the
attempt to reduce the complexity of the original method.
Given an overlapping partition {w} of the set of indices i = 1, 2, . . . , n, we extract
the rows of a given n× n matrix A with indices from any given set (called window)
w. The respective rectangular matrix is denoted by Aw. By proper reordering, Aw

can be written as follows
Aw = [Aww, Aw, χ] .

Here, Aww is the principal submatrix of A (row and column indices from w) and Aw,χ

is the submatrix of A with columns outside w (and row indices from w).
We are interested, for a proper nonnegative diagonal matrix Dw, in the normal ma-
trices AT

wDwAw. The diagonal matrices Dw provide a partition of unity, i.e., if Iw
stands for extension by zero outside the set w, then

∑
w
IwDwI

T
w = I. This property

ensures that
∑

w

vTAT
wDwAwv =

∑

w

vTAT IwDwI
T
wAv = ‖Av‖2, Aw = IT

wA. (4)

The method in question uses the symmetric semi-definite Schur complements Sw

defined as follows:

vT
wSwvw = inf

vχ

[
vw

vχ

]T

AT
wDwAw

[
vw

vχ

]
. (5)

The original method utilizes the eigenvectors of the semidefinite Schur complements
Sw,

Swpk = λk pk, k = 1, . . . , nw. (6)

For efficiency reason, for a given tentative interpolation matrix P̃ , we use in (6) instead
the modified Schur complements

vT
wSwvw = inf

vχ∈IT
χ Range( eP )

[
vw

vχ

]T

AT
wDwAw

[
vw

vχ

]
. (7)
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In what follows, we denote the exact window Schur complement with S∗
w.

We first form local interpolation matrices Pw by putting together the first nc
w ≥ 1

eigenvectors (in the lower part of the spectrum of Sw), i.e.,

Pw =
[
p1, . . . , pnc

w

]
. (8)

The corresponding eigenvalues (ordered in an increasing order) are such that λk ≤
tol λmax(Sw) for k ≤ nc

w and

λk(Sw) > tol ‖Sw‖ = tol λmax(Sw) for k > nc
w. (9)

Here, we have the freedom to choose the pre-selected tolerance “tol” (a number be-
tween zero and one) that may also vary with w.
The eigenvectors {pk}nw

k=1 are orthogonal and assumed normalized.
The global P is computed based on another partition of unity set of nonnegative
nw × nw diagonal matrices {Qw} that satisfy

I =
∑

w

IwQwI
T
w .

Then P is defined as follows

P =
∑

w

IwQw [0, Pw, 0] =
∑

w

IwQwPw(Ic
w)T . (10)

Here, Ic
w maps the local indices of the eigenvectors coming from the window w to

their global indices expanding the result with zeros elsewhere. Thus we have defined
a process that from a tentative P̃ produces another one P . This can be iterated
several times (by possibly changing the parameters such as {w} and tol). In the next
theorem, we formulate conditions ensuring that P admits a strong approximation
property.

Theorem 1 Consider the iterated window spectral AMG interpolation matrix P con-
structed on the basis of the modified window Schur complements using a P̃ that sat-
isfies the following estimate

∑

w

‖D
1
2
wAw, χ(vχ − IT

χ P̃wc)‖2 ≤ µ ‖Av‖2. (11)

That is, P̃ is such that for any v, when restricted to a complementary set χ, there is
a coarse vector wc (depending on v and the set χ) such that for a fixed number µ > 0
(11) holds. Then, if we choose tol = 1

δ ≤ 1 in the two-level spectral decomposition
defining the local Pw so that (see (9))

‖Sw‖ ≤ δ λmw+1(Sw),

and if we also assume the quasiuniformity of the windows, i.e., the estimate

β ‖A‖2 ≤ ‖S∗
w‖, (12)
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then, the following main strong approximation property holds for P

‖A‖2‖v− Pvc‖2 ≤ η ‖Av‖2. (13)

Here, η = δ
β (1 +

√
µ)2, where µ is from (11).

3 A new “window”-based spectral AMG method

for finite element matrices

Here, we present a modified version of the method applied to finite element matrices
A. The difference is in the eigenproblems that we use. Also, it utilizes a special
partition of unity matrices. A main additional assumption is that the window sets
are covered exactly by fine–grid elements and that we have access to the respective
fine–grid element matrices so that we can assemble the semi–definite local matrices
further denoted by Λw. Therefore, we have the identity A =

∑
w
IwΛwI

T
w .

We solve eigenproblems associated with the pair of matrices Λw and Sw, where Sw is
the exact window-based Schur complement (as introduced before). The eigenproblems
read (compare with (6)):

Swpk = λk Λw pk, k = 1, . . . , nw, (14)

where the eigenvalues are numbered in an increasing order and the eigenvectors are
Λw–normalized.
Since, the matrices Λw can also be only semi–definite, to have real eigenvalues the
nullspace of Λw should be contained in the nullspace of Sw, which is the case for finite
elliptic matrices (Laplacian–like as well as elasticity).
It is clear that we can choose the eigenvectors pk be orthogonal to the nullspace of

Λw (and Λw–orthogonal to each other). Let the columns of P
(0)
w span the nullspace

of Λw. Then, we have pT
k P

(0)
w = 0.

Based on a preselected tolerance tol ∈ [0, 1), we choose nc
w such that λk > tol λnw

for k > nc
w. The local interpolation matrices are defined similarly as before (cf., (8)),

now augmented with the nullspace, i.e.,

Pw =
[
P (0)

w , p1, . . . , pnc
w

]
. (15)

To define the global one, we use special diagonal matrices {Qw}w with nonnegative
entries that provide partition of unity, i.e., we have

I =
∑

w

IwQwI
T
w .

Each Qw has entries on its diagonal qw, i, i ∈ w, defined as follows:

qw, i =
‖Λw‖∑

w′ : i∈w′

‖Λw′‖ . (16)

At the end we formulate our main result.
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Theorem 2 Let A be a given finite element s.p.d. matrix. Consider a given set of
windows {w} where each window w is exactly covered by fine–grid elements. Assume
also that the local finite element matrices Λw corresponding to the sets w are available.
The nullspace (if nonempty) of the local matrices Λw is assumed known (explicitly
computed). That is, let the nullspace of Λw be represented by the range of an explicitly

available local matrix P
(0)
w . Assume that this nullspace is contained in the nullspace of

the window Schur complement Sw (defined in (5)). The global interpolation matrix P
is defined as in (10) based on the local interpolation matrices (15) and the weights qw, i

(entries of the diagonal partition of unity matrices Qw) are defined in (16). Then,
the following global strong approximation property holds

‖v − Pvc‖2A ≤ κ max
w

Cond+(Λw) max
w

(
1

tol λmax(Λ
+
wSw)

)
‖Av‖2.

Above, κ ≥ 1 depends on the overlap of {w}, tol ∈ (0, 1] (in general depending on
w) is the tolerance used to define the portion of the eigenvectors pk in the lower part

of the spectrum computed in (14) used to define Pw, Cond+(Λw) = ‖Λw‖
λ+

min
(Λw)

is the

effective condition number of Λw computed in a subspace orthogonal to the nullspace
of Λw. Finally, λmax(Λ

+
wSw) = maxk λk where λk are from (14).

Corollary 1 For finite element s.p.d. matrices A coming from second order ellip-
tic problems, the constructed finite element modification of the window-based spectral
AMG method, the following strong approximation property holds

‖v− Pvc‖2A ≤ C κ

(
H

h

)2

max
w

1

tol ‖Aw0,w0
‖ ‖Av‖2.
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The Role of Information Pattern in Approximation of
Control Systems

Vladimir M. Veliov

We consider a control system

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn, t ∈ [0, T ], (1)

where u ∈ U ⊂ L1([0, T ] 7→ U), U is a convex compact subset of Rr. For u ∈ U

denote by x[u] the solution of (1) that corresponds to u (assuming existence and
uniqueness). Control theory and the set-membership estimation theory raise two
main approximation problems related to (1): (i) approximate the set of trajectories,
X = {x[u] : u ∈ U}, of (1); (ii) approximate the reachable set, R = {x[u](T ) : u ∈ U},
of (1).

Since the set of admissible controls U contains rather irregular functions1 it is natural
to split the approximation problems of (1) into two parts:

(P1) Replace the set of admissible controls U by a finitely parameterized subset VN

consisting only of functions u for which (1) can be discretized efficiently;
(P2) Apply a discretization scheme for solving (1) for u ∈ VN .

The requirement that VN is a finitely parameterizable set (say, with a “degree of
freedom” proportional to N) is needed to make the approximation “computable”.
Moreover, for each u ∈ VN equation (1) should be well discretizable by single step
methods, that is, the restrictions of the functions from VN to each interval [tk, tk+1]
are sufficiently regular (for example, polynomial functions of a fixed degree and with
uniformly bounded coefficients).2 Then the error analysis of the discretization can be
carried out in the usual way as for differential equations. Therefore we focus on the
error analysis for the problem (P1), where one needs to estimate the uniform error

HC(X,XN) = sup
u∈U

inf
v∈VN

‖x[v]− x[u]‖C[0,T ]

and the terminal error

H(R,RN ) = sup
u∈U

inf
v∈VN

|x[v](T )− x[u](T )|,

where XN and RN are the set of trajectories and the reachable set corresponding to
the set VN of admissible controls.

1 We mention that the reachable set R is usually not generated by “nice” controls (differentiable,
Lipschitz, continuous). Even more, control functions of unbounded variation or non-integrable in
Riemann sense may generate points of R that are not reachable by other controls, as in Fuller’s
phenomenon or as in [10]. This creates the main difficulty of approximating (1) by discrete schemes.

2 Of course, there is a trade-off in choosing VN : the larger is VN , the better is the approximation
to X and R by controls from VN ; on the other hand, the lower is the accuracy of discretization.
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Let us assume that the mapping u −→ x[u] is continuous in L1 and VN is compact in
the same space, hence the infimum in v is achieved. (These assumptions are normally
fulfilled, as it will be the case in all considerations below.) Then there exists a mapping
πN : U 7→ VN such that

sup
u∈U

‖x[πN (u)]− x[u]‖C[0,T ] = HC(X,XN), (2)

or
sup
u∈U

|x[πN (u)](T )− x[u](T )| = H(R,RN), (3)

respectively (the mapping πN needs not be the same in the two equalities). This
formulation has an advantage: one can study the information pattern of the mapping
πN that provides the best approximations in (2) or (3), or at least some approximation
with a given order of accuracy with respect to N . Namely, we can distinguish the
following cases of a mapping πN : U 7→ VN :

Definition 1 (i) The mapping πN : U 7→ VN is called “local” if for every k =
0, . . . , N − 1, and for every u′, u′′ ∈ U with u′(t) = u′′(t) on [tk, tk+1] it holds that
πN (u′)(t) = πN (u′′)(t) on [tk, tk+1];
(ii) The mapping πN : U 7→ VN is called “non-anticipative” if for every k = 1, . . . , N ,
and for every u′, u′′ ∈ U with u′(t) = u′′(t) on [0, tk] it holds that πN (u′)(t) =
πN (u′′)(t) on [0, tk];
(iii) The mapping πN : U 7→ VN is called “anticipative” if it is not non-anticipative.

We shall see that for the same approximating set of inputs VN it may happen that
a certain order of approximation can be achieved by anticipative (non-anticipative)
approximating mappings πN but cannot be achieved by non-anticipative (resp. local)
mappings πN . That is, the information pattern of the approximating mapping πN

may play a role for the order of the accuracy.

It is to be stressed that in different problems related to the control system (1) one may
need to restrict the choice of the approximation mapping to a prescribed information
pattern: local or non-anticipative. This is the case, for example, if one has to simulate
a real system modeled by (1) only knowing the current, or the past information about
the input u. For other problems, say for an optimal open-loop control problem one can
freely employ anticipative approximation mappings to pass directly to mathematical
programming.

The concept of information pattern in the approximation theory for control systems
(or systems with “deterministic” uncertainties) opens a new filed of research in this
area. The aim of this note is to revisit some known results in the area from this
perspective.

First we recall a few often used approximation sets VN . For any natural number N
denote h = T/N , ti = ih, i = 0, . . . , N .
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Example 1.

VN = VN,0 := {u ∈ U : u(t) is constant on each (ti−1, ti))}.

Example 2.

VN = VN,1 := {u ∈ U : u(t) is p.-w. constant with at most 1 jump in each (ti−1, ti)}.

Example 3. Denote by U extr the set of all extreme points of U and define

VN = V
extr
N,0 := {u : [0, T ] 7→ U extr : u(t) is constant on each (ti−1, ti))}.

Clearly Vextr
N,0 ⊂ VN,0 ⊂ VN,1.

Below we reformulate some known results in a way which exhibits the information
pattern of the approximation mapping implicitly involved in the proofs, and comment
the validity of the results if a more stringent information pattern has to be used.

One commonly used approximation mapping πN : U 7→ VN,0 is defined as

πN (u)(t) =
1

h

∫ tk

tk−1

u(s) ds for t ∈ (tk−1, tk). (4)

Obviously it is local and even more, it is independent of the specific form of the
equation (1).

Let us consider first a liner control system, where f(x, u) = Ax + Bu in (1). From
a general result in [3] it follows that there exists a local approximation mapping
πN : U 7→ VN,0 (namely, defined by (4)) such that

‖x[πN (u)]− x[u]‖C[0,1] ≤ ch ∀u ∈ U. (5)

In the same time the results in [13, 1] imply that there exists an anticipative approxi-
mation mapping πN : U 7→ VN,0 (which is not explicitly defined in these papers) such
that

|x[πN (u)](T )− x[u](T )| ≤ ch2 ∀u ∈ U. (6)

We mention that the result holds for an arbitrary convex and compact set U , therefore
it applies also to the “pathological” examples in [10] mentioned in footnote 2. A
second order approximation as above cannot be achieved by using local approximation
mappings.

An important extension is proved in [9]: there exists an anticipative approximation
mapping πN : U 7→ VN,0 that ensures simultaneously (5) and (6). This non-trivial
result opens the door to error estimates for non-linear systems by local linearization.
Of course, in view of the previous paragraph, this simultaneous approximation cannot
be achieved in the class VN,0 by local approximation mappings.
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We recall also two results, again for a linear system as above, for the class VN,1 of
approximating controls, restricted to polyhedral sets U . From the results in [5] it can
be deduced that there exists a local approximation mapping πN : U 7→ VN,1 for which
an estimation such as in 6 holds. On the other hand, the results in [1] show that there
exists an anticipative πN : U 7→ VN,1 such that

|x[πN (u)](T )− x[u](T )| ≤ ch3 ∀u ∈ U.

Third order accuracy cannot be achieved in the class VN,1 by local approximation
mappings.

Now we turn to the non-linear case, assuming that the right-hand side in (1) has the
form

f(x, u) = g0(x) +

m∑

i=1

gi(x)ui, u = (u1, . . . , um) ∈ U.

We assume that U is convex and compact and that gi are sufficiently smooth. There
are only a few results obtaining higher than first order approximations in the nonlinear
case.3 The first is that in [12], where a second order approximation of X is proved
(or an approximation of order 3/2 for a more general form of f than the above one)
assuming, however, that f(x, U) is uniformly strongly convex, which is rather strong
for many applications. The implicitly involved approximation mapping πN is local.
Another group of results concern the case of commutative affine systems, i.e. such that
the Lie brackets [gi, gj] are all zero for i, j ≥ 1. A rather general indirect (variational)
estimation of H(R,RN ) in the class VN,0 is obtained in [14]. It allows to obtain a
second order estimation of H(R,RN ) provided that R and RN have the so called
external ball property. This property is present if R and RN are convex, for example.
The approximation mappings πN implicitly involve are anticipative. The drawback is
that the external ball property does not hold, in general, and is difficult for verification.

A more advanced result for commutative systems is proved in a paper in preparation
by the author and M. Krastanov. Namely, there exists a constant C such that for
every N there exists an (anticipative) approximation mapping πN : U 7→ VN,0 such
that

‖x[πN (u)]− x[u]‖C[0,T ] ≤ Ch, (7)

|x[πN (u)](T )− x[u](T )| ≤ Ch1.5. (8)

It is an open question if the estimation is sharp, but in any case the second estimation
cannot be achieved by using local approximation mappings only. Whether the result

3Higher than first order approximations to optimal control problems are known. However, most
of these results are based on a priori assumption that the optimal control is sufficiently regular (i.e.
is Lipschitz with derivative having bounded variation), see e.g. [4, 7]. The results recalled in the
present paper are applicable in the optimal control context without such assumptions.
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holds for a non-local but non-anticipative approximation mappings is another open
question.

Higher than first order approximations are particularly difficult for non-commutative
systems. An estimation like in (8) for class of non-commutative bilinear systems
is proved in [9]. The class approximating controls is again VN,0 and the employed
approximation mapping πN is anticipative. A different result for non-commutative
systems without drift term (g0 = 0) and with U = [0, 1]× [0, 1] ⊂ R2 is presented in
[8]. The error estimate in terms of the trajectories is like in (7) but with h2 in the
right-hand side (that is, of second order) and it is achieved by local approximation
mappings. However, the approximating control set VN is much reacher even than
VN,1, which creates a substantial problem in the numerical realization. The main
contribution in this paper is, in fact, how to cope with this problem.

The last issue we briefly address is that of approximations using the class Vextr
N,0 of

controls. This issue is of substantial importance for numerical treatment of optimal
control problems for switching systems, see e.g. [11]. The following estimation is
proved, essentially, in [2, 6]: for the approximating class of controls Vextr

N,0 ,

HC(X,XN) ≤ Ch1/2. (9)

This estimation is proved for the general system (1) under Lipschitz continuity of f . In
[15] the author of the present paper conjectured that a first order estimation holds in
(9) and proved this in several particular classes of systems. The paper [9] also contains
a small contribution in this direction. A substantial progress in proving the conjecture
is done in [11], where however, U is assumed to be a polyhedral set. In all the above
contributions the (implicitly or explicitly) involved approximation mapping πN is non-
local and non-anticipative. Also, it is quite clear that local approximation mappings
cannot provide even (9). In general, the problem of first order approximation is still
open.
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