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PREFACE

The Bulgarian Section of SIAM (BGSIAM) was founded on January 18, 2007 and the
accepted Rules of Procedure were officially approved by the SIAM Board of Trustees
on July 15, 2007. The activities of BGSIAM follow the general objectives of SIAM,
as established in its Certificate of Incorporation.

Realizing the importance of interdisciplinary collaboration and the role that applied
mathematics plays in advancing science and technology in industry, we solicit the
support of SIAM as the major international organization for Industrial and Applied
Mathematics in order to promote the application of mathematics to science, engineer-
ing and technology in Republic of Bulgaria.

The 2nd Annual Meeting of BGSIAM (BGSIAM’07) was hosted by the Institute of
Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia. It took part on
December 20 and 21, 2007. The conference support provided by SIAM is very highly
appreciated.

During BGSIAM’07 conference a wide range of problems concerning recent achieve-
ments in the field of industrial and applied mathematics were presented and discussed.
The meeting provided a forum for exchange of ideas between scientists, who develop
and study mathematical methods and algorithms, and researchers, who apply them
for solving real life problems.

More than 50 participants from four universities, two institutes of the Bulgarian
Academy of Sciences and also from outside the traditional academic departments
took part in BGSIAM’07. They represent most of the strongest Bulgarian research
groups in the field of industrial and applied mathematics. The involvement of younger
researchers was especially encouraged and we are glad to report that 7 from the
presented 23 talks were given by Ph.D. students.

LIST OF INVITED LECTURES:

� OLEG ILIEV
ITWM - Fraunhofer Institute for Industrial Mathematics, Kaiserslautern,
Germany
MODELLING AND SIMULATION OF MULTISCALE PROBLEMS IN
INDUSTRIAL FILTRATION PROCESSES

� VLADIMIR VELIOV
Institute for Econometrics, Operations Research and Systems Theory, Vienna
University of Technology, Austria
ON THE NUMERICAL INTEGRATION OF SYSTEMS WITH
DETERMINISTIC UNCERTAINTIES



� VLADIMIR GEORGIEV
University of Pisa, Italy
STABILITY OF SOLITARY WAVES FOR HARTREE TYPE EQUATIONS

� STEFAN DODUNEKOV
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences,
Bulgaria
MATHEMATICS IN DATA PROTECTION

LIST OF SPECIAL SESSIONS:

� Numerical Methods and Algorithms

� Control Systems and Applications

� Neural Networks

� Industrial Mathematics

The present volume contains the Rules of Procedure for BGSIAM (Part A), the
scientific program of BGSIAM’07 (Part B), extended abstracts of the conference talks
(Part C), and the list of participants (Part D). The extended abstracts are ordered
alphabetically according to the family names of the speakers.

Svetozar Margenov
Chair of BGSIAM Section

Stefka Dimova
Vice-Chair of BGSIAM Section

Angela Slavova
Secretary of BGSIAM Section

Sofia, January 2008



Part A

Rules of Procedure for BGSIAM



Rules of Procedure for BGSIAM Section

This Section Rules of Procedure (hereinafter called ”Rules”) applies to the Bulgarian
SIAM Section called ”BGSIAM”.

BGSIAM to which these Section Rules apply is formed under the aegis of SIAM, and
shall operate within its bylaws. This Section shall not affiliate with any other orga-
nization without first obtaining the written approval of the SIAM Board of Trustees
or its designee. No provisions of these Section Rules shall be construed so as to
contradict the SIAM Bylaws.

These Section Rules may be modified by the Board with due notice to the Section.

Article I: Purpose

The objectives of SIAM, as established in its Certificate of Incorporation, are

� To further the application of mathematics to industry and science.

� To promote basic research in mathematics leading to new methods and tech-
niques useful to industry and science.

� To provide media for the exchange of information and ideas between mathe-
maticians and other technical and scientific personnel.

Purposes of the proposed BGSIAM shall be consistent with these objectives. Re-
alizing the importance of interdisciplinary collaboration and the role that applied
mathematics plays in advancing science and technology in industry, we solicit the
support of SIAM as the major international organization for Industrial and Applied
Mathematics in order to promote the application of mathematics to science, engineer-
ing and technology in Republic of Bulgaria. We hope that under the leadership of
SIAM, as a vibrant and effective professional society, we will find the best way to en-
sure that applied mathematics receives the recognition and resources it needs to meet
the educational, scientific and industrial challenges that lie ahead in the developing
of our country.

Article II: Activities

The Bulgarian Section of SIAM will (co-)organize seminars, workshops and con-
ferences on advanced topics in applied mathematics and computational sciences.
BGSIAM will stimulate the enhanced collaboration between universities’ research
groups and the related institutes of Bulgarian Academy of Sciences. The Section
will work to strengthen of the connection between research groups from the academic
departments and the industrial partners. The joint projects with Bulgarian Small
and Medium Enterprises (SMEs) will be strongly encouraged and supported. The
participation of the Bulgarian mathematicians into SIAM activities will further ex-
pand the international collaboration of the local community. The participation of
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mathematicians from the neighboring countries into activities of BGSIAM is among
the priorities of the Section.

The organization of related scientific meetings, workshops and conferences in Bul-
garia will be encouraged to apply for in cooperation with BGSIAM status. For such
events, if there is a discounted registration fee offered to members of any sponsoring
or cosponsoring organization, the same discounted fee must also be offered to the
members of BGSIAM.

Article III: Territory

The Bulgarian SIAM Section (BGSIAM) will operate on the territory of Republic of
Bulgaria and will draw membership from Bulgarian Universities, Bulgarian Academy
of Sciences and also from outside the traditional academic departments. By doing
so, we would like to enrich our community and increase the role, influence and the
impact of mathematics on science, education, technology and the society as a whole.

Article IV: Membership

Any member of SIAM engaged or interested in mathematics and its applications and
who is a Bulgarian resident shall be eligible for membership in the Section. A written
application to the Chair of the BGSIAM is required. Any member of SIAM who does
not live in Bulgaria may join the Section and participate in its activities, except that
that member will not be a voting member nor will that member be eligible for officer
in the Section. A candidate for nonresident membership shall be advised of these
rules at the time of that member’s application for membership. Section members will
be designated as nonresident members if they reside outside Bulgaria.

Article V: Officers

Section 1. The Bulgarian Section of SIAM shall have a Chair, Vice Chair, and Secre-
tary. The Secretary combines the duties of the Treasurer. The officers shall be regular
members of SIAM in good standing.

Section 2. The Chair of the Section shall preside at the meetings of the Section. In
the absence of the Chair, the Vice Chair shall assume the duties of the Chair.

Section 3. The Secretary shall keep a record of the affairs of the Section, handle
correspondence, and submit an annual report of Section activities to the Secretary of
SIAM, which report shall be suitable for publication in SIAM News or its equivalent.

Section 4. The Secretary shall receive and take custody of Section funds, and shall
submit an annual Treasurer’s Report and other financial reports, as requested, to the
Treasurer of SIAM. The annual Treasurer’s Report shall be prepared as of December
31 and shall be transmitted to the Treasurer of SIAM by no later than January 15 of
the year following.

Section 5. The BGSIAM officers are elected for a period of two years. Re-election of
an officer for an additional term is permissible.
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Article VI: Meetings

Section 1. There shall be at least one technical meeting per year.

Article VII: Elections

Section 1. Section elections shall be secret ballot at the annual Section business
meeting, or by mail ballot. The winners of the election shall be determined by the
plurality of the votes cast for each officer. Mail ballots must be submitted to the
Section members at least 20 days in advance of the date of the annual Section business
meeting.

Section 2. A Nominating Committee shall be appointed by the Chair. Nominees must
be eligible as stated in Article V. The nominations made by the Section members are
to be send to the Nominating Committee atmost 30 days in advance of the date of
the annual Section business meeting.

Article VIII: Annual Business Meeting

Section 1. The Section shall conduct an annual Section business meeting once per
year in the period November 5 December 20. Other business meetings may be called
by the Chair on four weeks’ notice.

Article IX: Section Funds

Section 1. The Section can accept donations.

Section 2. The Section shall deposit all unused o which it has legal title in excess
of $200 in an insured savings account, unless current operating commitments are in
excess of that amount or unless the Section Treasurer obtains a written authorization
from the SIAM Treasurer.

Section 3. The Section Treasurer shall maintain books of account that show income
and expense items for all activities and balances for all accounts of the Section.

Section 4. Requests for funds in support of Section activities shall be made in writ-
ing to the Treasurer of SIAM who will forward it to the SIAM Committee on Sec-
tion/Chapter Funds. Grants to Sections may be made by the SIAM Treasurer acting
on behalf of the Committee on Section/Chapter Funds. Only one such grant may
be made to any given Section during any fiscal year. Other requests for funds shall
be substantiated by a proposed budget for expenditures and a current statement of
accumulated revenue and expenses.

Section 5. No officer or member of the Section may apply for a grant to support
Section activities or enter into any contract to support such activities or provide
services, or have authority to contract debts for, pledge the credit of, or in any way
bind SIAM, except to the extent that Section funds exist.

Section 6. All Society dues of Section members shall be payable to SIAM.
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Article X: Amendments

Section 1. These Rules may be altered or amended with the approval of the SIAM
Board of Trustees. Submission to the Board of proposed alterations or amendments
shall be made only after approval by the majority vote of members of the Section
present (or represented by proxy) at a scheduled meeting.

Article XI: Termination of the Section

Section 1. BGSIAM may terminate itself by the unanimous vote of the members of
the Section present (or represented by proxy) at a scheduled meeting, provided that
notice of the proposed termination and the meeting at which it is to be considered
has been given to all Section members at least 30 days in advance and to the Board
at least 90 days in advance.

Section 2. A Section may be terminated by the Board if there has been no Section
activity for one year.

Section 3. In the event a Section is terminated, the funds to which it has legal title
shall revert to the account of SIAM.

Approved:

SIAM Board of Trustees, Regular Session, July 15, 2007, Agenda Item 9
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Part B

Scientific program



Thursday, December 20

09:30 - 11:10 Plenary Session

09:30 - 09:50 Svetozar Margenov, Opening: One Year BGSIAM
Chairman Svetozar Margenov
09:50 - 10:30 Stefan Dodunekov, Mathematics in Data Protection
10:30 - 11:10 Vladimir Georgiev, George Venkov, Stability of Solitary Waves for

the Maxwell-Schrödinger System
Coffee Break

11:30 - 12:30 Special Session: Numerical Methods and Algorithms

Chairman Natalia Kolkovska
11:30 - 11:50 Geno Nikolov, Vesselin Gushev, Modified Product Cubature Formu-

lae
11:50 - 12:10 Andrey Andreev, Milena Racheva, Optimal Order FEM for Coupled

Eigenvalue Problems on Overlapping Domains
12:10 - 12:30 Boško S. Jovanović, Lubin G. Vulkov, etc., Formulation, Analysis

and Numerical Solution of Parabolic Interface Problems on Disjoint
Intervals

Lunch Break
14:00 - 15:20 Special Session: Numerical Methods and Algorithms

Chairman Stefka Dimova
14:00 - 14:20 Natalia Kolkovska, On the Numerical Solution of a Stationary Two-

Phase Venttsel Problem
14:20 - 14:40 Daniela Vasileva, On a Local Semirefinement Multigrid Algorithm

for Convection-Diffusion Problems
14:40 - 15:00 Nikola Kosturski, Svetozar Margenov, MIC(0) Preconditioning of

3D FEM Problems on Unstructured Grids: Conforming and Non-
conforming Elements

15:00 - 15:20 Ivan Hristov, Bifurcation of the Magnetic Flux Static Distributions
in Multilayered Josephson Junctions

Coffee Break
15:40 - 18:00 Special Session: Control Systems and Applications

Chairman Tsvetomir Tsachev
15:40 - 16:20 Vladimir Veliov, On the Numerical Integration of Systems with De-

terministic Uncertainties
16:20 - 16:40 Mikhail Krastanov, On the Local Attainability of a Closed Set
16:40 - 17:00 Tsvetomir Tsachev, Dimitar Vassilev, Age Structured Model for Op-

timal Fiscal Policy
17:00 - 17:20 Iordan Iordanov, Stoyan Stoyanov, Andrey Vassilev, Price Dynamics

in a Strategic Model of Trade between Two Regions
17:20 - 17:40 Mikhail Krastanov, Rossen Rozenov, On Chamley’s Problem of Op-

timal Taxation
17:40 - 18:00 Tzanko Donchev, Vinicio Ŕıos, Peter Wolenski, Approximate Semi-

Solutions to Hamilton-Jacobi Equations and Minimal Time Function
RECEPTION
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Friday, December 21

09:30 - 10:50 Special Session: Neural Networks

Chairman Angela Slavova
09:30 - 09:50 Valéry Covachev, Zlatinka Covacheva, Haydar Akça, Sannay Mo-

hamad, Global Exponential Periodicity for Discrete Hopfield Neural
Networks with Delays and Impulses

09:50 - 10:10 Angela Slavova, Maya Markova, Polynomial Lotka-Volterra CNN
Model: Dynamics and Complexity

10:10 - 10:30 Valeri Mladenov, Neural Networks for Solving Sudoku Problems
10:30 - 10:50 Angela Slavova, Victoria Ivanova, Applications of Cellular Neural

Networks for Image Processing
Coffee Break

11:10 - 13:10 Special Session: Industrial Mathematics

Chairman Ivan Dimov
11:10 - 11:50 Oleg Iliev, Zahra Lakdawala, Arnulf Latz, Peter Popov, Stefan Rief,

Konrad Steiner, Andreas Wiegmann, Modelling and Simulation of
Multiscale Problems in Industrial Filtration Processes

11:50 - 12:30 Emanoul Atanassov, Todor Gurov, Aneta Karaivanova, Mihail Ned-
jalkov, Sofiya Ivanovska, Rayna Georgieva, SALUTE - Grid Appli-
cation for Quatum Transport

12:30 - 12:50 Krassimir Georgiev, Nikola Kosturski, Svetozar Margenov, Jǐŕı
Starý, On the Adaptive Time-Stepping for Large Scale Parabolic
Problems: Computer Simulation of Heat and Mass Transfer in Vac-
uum Freeze-Drying

12:50 - 13:10 Svetozar Margenov, Yavor Vutov, Parallel PCG Algorithms for
Voxel Elasticity Problems

CLOSING
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Part C

Extended abstracts∗

∗Arranged alphabetically according to the speaker’s name.



Global Exponential Periodicity for Discrete Hopfield Neural
Networks with Delays and Impulses

Valéry Covachev, Zlatinka Covacheva,
Haydar Akça, Sannay Mohamad

1 Introduction

In the present paper we introduce the discrete counterpart of a class of Hopfield neural
networks with periodic integral impulsive conditions and finite distributed delays. We
apply the continuation theorem of coincidence degree theory [3] to obtain a sufficient
condition for the existence of a periodic solution of the discrete system considered.
By introducing an appropriate Lyapunov functional we derive a sufficient condition
for the uniqueness and global exponential stability of the periodic solution.

2 Statement of the problem. Main results

We consider a class of Hopfield neural networks with periodic integral impulsive con-
ditions and finite distributed delays, which are formulated in the form of a system of
impulsive delay differential equations

dxi

dt
= −ai(t)xi(t) +

m∑

j=1

bij(t)fj

(∫ ω

0

gij(s)xj(t− s) ds

)
+ Ii(t),

t 6= tk,

∆xi(tk) ≡ xi(tk + 0) − xi(tk) (1)

= −γikxi(tk) +

m∑

j=1

BijkΦj

(∫ ω

0

cij(s)xj(tk − s) ds

)
+ αik,

i = 1,m, k ∈ Z,

where m is the number of neurons in the network, xi(t) is the state of the i-th neuron
at time t, ai(t) > 0 is the rate at which the i-th neuron resets its state when isolated
from the system, bij(t) is the synaptic connection weight from the j-th neuron to the
i-th one, fj(·) are signal transmission functions of the j-th neuron, ω is the maximum
transmission delay from one neuron to another, gij(·) and cij(·) are nonnegative delay
kernels, Ii(t) is the external input to the i-th neuron, tk (k ∈ Z) are the instants of
impulse effect which form a strictly increasing sequence, γik (i = 1,m, k ∈ Z) are
positive constants.
We assume that the above system (1) satisfies the following periodicity conditions:
ai(t), bij(t), Ii(t) are ω-periodic in t; tk+p = tk + ω, γi,k+p = γik, Bij,k+p = Bijk,
αi,k+p = αik.
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As in [5, 1] we formulate the discrete counterpart of system (1). For a positive integer
N we choose the discretization step h = ω/N . For the moment we assume N so large
that h < min

k=1,p
(tk+1 − tk). Then each interval [nh, (n + 1)h] contains at most one

instant of impulse effect tk.
For convenience we denote n = [t/h], the greatest integer in t/h, and nk = [tk/h].
Clearly, we will have nk+p = nk +N for all k ∈ Z.
Let n ∈ Z, n 6= nk. This means that the interval [nh, (n+ 1)h] contains no instant of
impulse effect tk. First we approximate the integral term in (1) by a sum and then
we approximate the differential equation (1) on the interval [nh, (n+ 1)h] by

dxi

dt
+ ai(nh)xi(t) = Ii(nh) +

m∑

j=1

bij(nh)fj

(
N∑

ℓ=1

gij(ℓh)xj ((n− ℓ)h)ϕ(h)

)
.

We multiply both sides of this equation by exp (ai(nh)t) and integrate over the interval
[nh, (n+ 1)h]. Thus we obtain

xi ((n+ 1)h) − xi(nh) = −
(
1 − e−ai(nh)h

)
xi(nh) (2)

+
1 − e−ai(nh)h

ai(nh)



Ii(nh) +

m∑

j=1

bij(nh)fj

(
N∑

ℓ=1

gij(ℓh)xj ((n− ℓ)h)ϕ(h)

)
 .

Henceforth by abuse of notation we write xi(n) = xi(nh) and define ∆xi(n) = xi(n+
1) − xi(n) (i = 1,m, n ∈ Z).
Next, for n = nk the interval [nh, (n + 1)h] contains the instant of impulse effect tk.
On this interval we approximate the impulse condition in (1) by

∆xi(nk) = −γikxi(nk) + αik +

m∑

j=1

BijkΦj

(
N∑

ℓ=1

cij(ℓ)xj(nk−ℓ)
)
, (3)

i = 1,m, k ∈ Z.

Introducing some notations, we can write the difference system (2), (3) in operator
form as

∆x = Hx, (4)

where

(Hx)i(n) = −Ai(n)xi(n) + Ii(n)

+





m∑
j=1

bij(n)fj

(
N∑

ℓ=1

gij(ℓ)xj(n− ℓ)

)
, n 6= nk,

m∑
j=1

BijkΦj

(
N∑

ℓ=1

cij(ℓ)xj(nk − ℓ)

)
, n = nk.

In order to formulate our assumptions, we need some more notation:

IN = {0, 1, . . . , N − 1},
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Ai = min
n∈IN

Ai(n), Ai =

N−1∑

n=0

Ai(n), i = 1,m.

Now we introduce the following conditions:

H1. Ai(n+N) = Ai(n), Ii(n+N) = Ii(n) for i = 1,m, n ∈ Z;
nk ∈ Z for all k ∈ Z and nk+p = nk + N ; bij(n + N) = bij(n) (n 6= nk),
Bij,k+p = Bijk (k ∈ Z) for i, j = 1,m.

H2. Ai > 0, Ai < 1 for i = 1,m.

H3. The functions fj(·), Φj(·) (j = 1,m) are bounded on R and there exist positive
constants Mj and Lj such that

|fj(x) − fj(y)| ≤Mj |x− y|, |Φj(x) − Φj(y)| ≤ Lj |x− y|

for all x, y ∈ R.

H4. gij(ℓ) ≥ 0, cij(ℓ) ≥ 0 for i, j = 1,m, ℓ = 1, N .

We again introduce some notation:

Ii = max
n∈IN

|Ii(n)|, i = 1,m,

bij = sup
n6=nk

|bij(n)|, Bij = max
k=1,p

|Bijk|, i, j = 1,m.

For an N -periodic sequence v(n) we denote ṽ = 1
N

N−1∑
n=0

v(n); for i = 1,m

ρi = Ii +
1

N

m∑

j=1

[
(N − p)bij |fj(0)| + pBij |Φj(0)|

]
.

Next we denote
Mj = max{Lj , Mj}, j = 1,m,

Gij =

N∑

ℓ=1

gij(ℓ), Cij =

N∑

ℓ=1

cij(ℓ), i, j = 1,m,

Bij = max{bij , Bij}, Gij = max{Gij , Cij}, i, j = 1,m.

We introduce the m×m matrices

A = diag

(
Ai

(
1 −Ai

)

1 +NAi

, i = 1,m

)
, B = (BijMjGij)

m
i,j=1 .

Then we introduce the conditions
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H5. min
i=1,m


Ãi −Mi

m∑

j=1

BjiGji


 > 0.

H6. Ai >Mi

m∑

j=1

BjiGji for i = 1,m.

H7. The matrix A−B is an M -matrix [2, 4].

Clearly, condition H6 implies H5 but the converse is not true. Condition H7 means
that the matrix A−B is nonsingular and its inverse has positive entries only.
Our results are formulated as follows:

Theorem 1 Suppose that conditions H1–H5, H7 hold. Then the equation (4) has
at least one N -periodic solution.

Theorem 1 is proved using Mawhin’s continuation theorem [3, p. 40].

Theorem 2 Suppose that conditions H1–H4, H6, H7 hold. Then the N -periodic
solution of (4) is unique and globally exponentially stable.

In fact, let us suppose that x∗(n) = (x∗1(n), x∗2(n), . . . , x∗m(n))T is an N -periodic
solution of equation (4), and x(n) = (x1(n), x2(n), . . . , xm(n))T is any solution of (4)
for n ≥ 0, defined at least for n ≥ −N . Then by introducing an appropriate Lyapunov
functional we derive the estimate

m∑

i=1

|xi(n) − x∗i (n)| ≤ Cλ−n
m∑

i=1

max
s∈I−N

|xi(s) − x∗i (s)|, n ∈ Z
+
0 ,

where C > 0 and λ > 1.
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Mathematics in Data Protection

Stefan Dodunekov

Data protection is an important issue in the global information society. The growth
in the types and number of services on Internet leads to new challenges and new
practical and theoretical problems.
The main idea of the lecture is to demonstrate that almost all branches of mathematics
are involved in data protection.
In Part 1, as an introduction the two aspects of data protection are outlined, namely
reliability and security of data. The basic practical problems, terminology and general
approaches are explained through simple examples.
In Part 2, to support the main idea examples of data protection techniques based
on classical mathematical areas are given. The list includes Arithmetic (Classical
Ciphers), Number Theory (RSA Cryptosystem), Combinatorics (Finite Geometries,
Designs, Hadamard matrices and codes), Linear Algebra (Linear codes), Commuta-
tive Algebra (Cyclic Codes and their generalizations), Algebraic Geometry (Elliptic
Curve Cryptosystem), Probability Theory (Tests for primality), Group Theory (Clas-
sification of Codes), Complexity Theory (Decoding and Cryptanalysis).
As a conclusion we point out two things. First in order to work on Data Protec-
tion problems a solid mathematical background is required. Second, many classical
branches of mathematics which had been considered as a core of the so called pure
mathematics, today are directly applied to solve practical data protection problems.
We end up with two ”open” questions: 1) Find a mathematical subject which is not
connected to Data Protection; 2) What is ”pure mathematics”?
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Approximate Semi-Solutions to Hamilton-Jacobi Equations
and Minimal Time Function

Tzanko Donchev, Vinicio Ŕıos, Peter Wolenski

This paper studies the minimal time function associated with a given closed target
set S ⊆ R

n and a dynamical system governed by a differential inclusion

ẋ(t) ∈ F (x(t)) a.e. t ∈ [0, T̂ ), x(0) = x, (1)

where T̂ > 0 (T̂ = ∞ is possible). The multifunction F : R
n

⇉ R
n is assumed

throughout to satisfy the following standing hypotheses (SH):

� F (·) is upper semicontinuous with nonempty convex compact values.

The minimal time function TS(·) : R
n → [0,∞], defined by

TS(x) := inf {T : ∃x(·) satisfying (1) with x(T ) ∈ S} . (2)

By convention, TS(x) = ∞ when no trajectory with initial point x reaches the set
S, and TS(x) = 0 when x ∈ S. The main purpose of this paper is to show that
the minimal time function is the unique proximal semi-solution of a limiting version
of the Hamilton-Jacobi (HJ) equation satisfying an appropriate boundary condition.
Including discontinuous data precludes the possibility that TS(·) will satisfy the exact
Hamilton-Jacobi inequalities that are associated to certain invariant augmentation of
the original data.
The novelty of the results in this paper lies in the very mild structural assumptions
placed on F that lead to a characterization of the minimal time function. Indeed we
replace the locally Lipschitz condition on F (·) by locally backward sided Lipschitz
condition and upper semi-continuity.
Let

hF (x, ζ) := inf{〈v, ζ〉 : v ∈ F (x)} ∀x, ζ ∈ R
n.

We will use the local other (backward) sided Lipschitz assumption (BSL) on F : For
every compact set K there exists a constant m = m(K) such that

hF (x, x− y) − hF (y, x− y) ≥ m|x− y|2 (3)

for all x, y ∈ R
n. The multifunction F (·) is said to be one sided Lipschitz (OSL) when

−F (·) is BSL.
Consider the following auxiliary control system

ẋ(t) ∈ G(t, x(t)) a.e. t ∈ [τ, τ + T ) x(τ) = x, (4)

Suppose E ⊂ R
n is nonempty, U ⊂ R

n is open, and G : I × R
n

⇉ R
n is a submul-

tifunction of F . A solution x(·) to (4) whose extension x̃(·) ∈ Υ(G,U)(τ, x) satisfies
x̃(t) ∈ E for all t ∈ [τ, τ + Esc(x̃(·);U)) is called viable.
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We say that (E,G) is weakly invariant in U provided that for all (τ, x) ∈ I× (E ∩U),
there exists a viable solution. The system (E,G) is called (strongly) invariant if all
its solutions are viable.
We will callG a submultifunction of F if it satisfiesG(t, x) ⊂ F (x) for all (t, x) ∈ R

n+1

and for each (t, x) ∈ I ×R
n, G(t, x) is nonempty, convex, and compact and it is USC

on I × R
n.

The following theorem devotes the invariance of the system 1 to the weak invariance
of all subsystems.

Theorem 1 (Invariance principle) Let F be locally OSL and satisfy (SH). The
system (E,F ) is invariant in U if and only if for every submultifunction G of F
hG(t, x, ζ) ≤ 0 ∀ζ ∈ NP

E (x), ∀x ∈ E ∩ U , and ∀t ∈ I.

This condition is, however, practically impossible to be checked. So we present the
equivalent form, which is much easy to be verified.
For a given nonzero vector ζ ∈ R

n, y →ζ x signifies the limit of y approaching x along

the vector ζ; that is, y →ζ x if and only if y → x and
y − x

|y − x| →
ζ

|ζ| .

Theorem 2 Suppose F is locally OSL and satisfies (SH). Then the system (E,F ) is
invariant in U if and only if

lim inf
y→ζx

hF (y,−ζ) ≥ 0, (5)

for all x ∈ E ∩ U , and all ζ ∈ NP
E (x).

The following theorem is the main result of the paper.

Theorem 3 Suppose F : R
n

⇉ R
n satisfies (SH) and (3). Then, there exists a

unique l.s.c. function θ : R
n → (−∞,∞] bounded below on R

n and satisfying the
following.
(HJI) For each x /∈ S and ξ ∈ ∂P θ(x), we have

1 + hF (x, ξ) ≤ 0, and 1 + lim inf
y→ξx

hF (y, ξ) ≥ 0. (6)

(LABC) Each x ∈ S satisfies θ(x) = 0 and

1 + lim inf
y→ξx

hF (y, ξ) ≥ 0, (7)

whenever ξ ∈ ∂P θ(x). The unique such function is θ(·) = TS(·).

Here the notation ∂P θ(x) refers to the set of proximal subgradients of the lower
semicontinuous function θ(·); that is, ζ ∈ ∂P θ(x) if and only if there exists σ > 0 and
η > 0 so that

θ(y) ≥ θ(x) + 〈ζ, y − x〉 − σ|y − x|2 ∀ y ∈ x+ ηB.
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On the Adaptive Time-Stepping for Large Scale Parabolic
Problems: Computer Simulation of Heat and Mass Transfer

in Vacuum Freeze-Drying

Krassimir Georgiev, Nikola Kosturski, Svetozar Margenov, Jǐŕı Starý

The work concerns the mathematical modelling and computer simulation of the heat
and mass transfer with the core in solving the time-dependent nonlinear partial dif-
ferential equation of parabolic type.
Instead of an uniform discretization of the considered time interval, an adaptive time
stepping procedure is applied in an effort to optimize the whole simulation.

1 Introduction

Freeze-drying is a special technology of dehydrating frozen materials by sublimation
under high vacuum [5, 4]. One of its possible applications comes from the food
industry, where it can be used for drying certain kinds of food-stuffs, for example
carrots, coffee, yogurt, etc.
A possibile devise realizing such a process consists of mainly two interconnected con-
tainers. One is the food camera intended for the product to be dried and another is
the absorbent camera filled by natural or artificial zeolite granules [1]. The adsorb-
tion cameras could be one or more. The zeolite is a special type of silica-containing
material, with a porous structure, applicable as absorbents and catalysts. Here, they
are used for the sorbtion of water molecules comming through the pipe from the food
camera.
The whole process of drying has three phases. The first one is a preparation of the
source material in the food container, which is then vacuumed. Also during this
phase, the absorbent located in the second container is activated, it means warmed
up, vacuumed and cooled to a room temperature. The second phase is the self-freezing
of the source material surrounded by high vacuum. The last phase is the drying in
conditions of an uniform sublimation of water steam from the source material in the
food container and its disposal in the absorbent. The sublimation is supported by
heaters installed in the food camera.
The mathematical model of the whole process of freeze-drying is described by a system
of time-dependent differential equations, but with the possibility to split processes
in the food container and in the absorbent camera according to the technological
subprocesses involved. Further, we will consider only the process of heat and mass
transfer in the absorbent camera.
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2 Heat and Mass Transfer Problem and its Numer-

ical Treatment

The process of heat and mass transfer in the absorbent camera is described by the
nonlinear partial differential equation of parabolic type,

cρ
∂T

∂t
= LT + f(x, t, T ), x ∈ Ω, t > 0,

where

LT =
d∑

i=1

∂

∂xi

(
k(x, t)

∂T

∂xi

)

and T (x, t) denotes the unknown temperature distribution, k = k(x, t)> 0 the heat
conductivity, c = c(x, t)>0 the heat capacity, ρ > 0 the material density. The function
f(x, t, T ) is responsible for the non-linear process of transfer of water molecules in the
absorption container. By default, d is the given dimension of the space (d = 2) and
Ω ∈ Rd denotes the computational domain.
To the parabolic equation, we assign the initial and boundary conditions in the stan-
dard form,

T (x, 0) = T0(x), x ∈ Ω,

T (x, t) = µ(x, t), x ∈ Γ ≡ ∂Ω, t > 0,

where T0(x) is the initial temperature distribution in the computational domain and
µ(x, t) is the room temperature during the freeze-drying process, which can be con-
trolled by cooling/heating devices.
A discretization by the finite elements in space (Courant linear triangular finite ele-
ments) leads to:

M
du

dt
+Ku = F (t), (1)

where

M =

[∫

Ω

c ρ φi φj dx

]NN

i,j=1

is the corresponding mass matrix,

K =

[∫

Ω

k∇φi∇φj dx

]NN

i,j=1

is the corresponding stiffness matrix and

F =

[∫

Ω

f(x, t, u)φi dx

]NN

i=1
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is the right–hand–side.
After that finite differences in time are applied with the time steps τk = tk − tk−1 at
the time levels tk, k = 1, . . . , N . In case of the uniform time discretization with the
constant time steps τ the following linear system of equations should be solved

(M + τ ϑK)uk =
(
M − τ (1 − ϑ)K

)
uk−1 + τ ϑF k + τ (1 − ϑ)F k−1.

where ϑ ∈ 〈0, 1〉 sets the time scheme.
In order to develop fully robust and stable method we restrict our attention to implicit
methods with ϑ = 1

2 and ϑ = 1, which correspond to the well known Crank-Nicholson
and Backward Euler methods. For the solution of the linear system above, we use the
well-known conjugate gradient method with a modified incomplete Cholesky factor-
ization preconditioner [2, 3].

3 Adaptive time steps

To ensure accuracy and not waste the computational effort, it is important to adapt
the time steps to the behaviour of the solution. In the simplest case, we can test the
time change of the solution and change the time step size, if the variation is too small
or too large.
The suitable adaptive time-stepping procedure is based on a local comparison of the
backward Euler and Crank-Nicholson time steps and controlled with the aid of the
ratio η = ‖T

CN
− T

BE
‖/‖T

BE
‖. To make the procedure cheaper, we solve only the

linear system for the backward Eulersteps and can approximate the solution of the
corresponding linear system for the Crank-Nicholson steps, T̄

CN
≃ T

BE
− r, where

rk =

(
M +

1

2
τkK

)
T k

BE
−
(
M − 1

2
τkK

)
T k−1

BE
− 1

2
τkF k − 1

2
τkF k−1.

The residual r arises from the substitution of T
BE

in the linear system for the Crank-
Nicholson steps. In other words to obtain T̄

CN
, we perform the only Richardson

iteration of the linear system for the Crank-Nicholson steps, whereas the initial ap-
proximation of the solution is set to be T

BE
. And consequently, ηk = ‖rk‖/‖T k

BE
‖.

The described method gives an adaptive time-stepping procedure which was firstly
applied to the mathematical modelling of processes in spent nuclear fuel repositories
[6].
How often to perform the adaptive time steps ? After a number of numerical tests it
was be found that the number of the adaptive time steps should be in the interval [2,
16] with the preference of smaller values and the optimal value of this parameter is 4.

4 Conclusion

The paper concerns the time evolution of the temperature field in the absorbent
camera as well as the transfer of the sublimed water molecules and their retention in
the zeolite granules. The problem, described by the time-dependent nonlinear partial
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differential equation of parabolic type, leads to the repeated solution of linear systems
at different time levels.
In an effort to optimize the computation, the adaptive time stepping procedure was
implemented in the program code. The procedure is based on the local comparison
of Crank-Nicholson and backward Euler time steps.
The described numerical methods were implemented in C++ and the resulting pro-
gram code was tested on a selected real-life problem. The experiments were performed
on a standard PC equipped by Pentium IV/1.5 GHz processor, 256 kB of L2 cache,
256 MB of memory, and running the Scientific Linux 4.5 operating system.
The computational domain is discretized by the linear triangular finite elements with
the aid of the computer mesh generator Triangle [7].
The tests helped to find the suitable parameters and showed the practical usefulness
of the developed solver for such kind of computer simulations.
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Stability of Solitary Waves for the Maxwell-Schrödinger
System

Vladimir Georgiev, George Venkov

The classical Maxwell - Schrödinger system (in Lorentz gauge) has the form

∂ttA− ∆A = J , (1)

∂t,Aψ +
1

2
∆Aψ − V (x)ψ = 0, (2)

∂tA0 +

3∑

k=1

∂xk
Ak = 0, (3)

where ψ = ψ(x, t) is the wave function, A = (A0, A1, A2, A3) is the electromagnetic
potentials of a charged non- relativistic particle of charge e and

∂t,A = ∂t + ieA0, ∆A =

3∑

k=1

∂2
k,A, (4)

∂k,A = ∂xk
+ ieAk, J = (J0, J1, J2, J3), (5)

J0 = 4πe|ψ|2, Jk = 4πe Im(ψ̄∂k,Aψ). (6)

Moreover, the potential V is defined as follows

V (x) = −φ(x)e2Z

|x| , (7)

where φ(x) is smooth function identically 1 for x large enough.
First we consider special solitary type solutions to the system (1), (2), (3) of the form

ψ(x, t) = χ(x)e−iωt/~, x ∈ R3, t ∈ R,

and
A0 = ϕ(x), Aj(x) = 0, j = 1, 2, 3, x ∈ R3,

where ω ∈ R and χ is real valued. Then the system (1), (2), (3) takes the simpler
form

−1

2
∆χ+ eϕχ+ V (x)χ = ωχ, x ∈ R3, (8)

−∆ϕ = 4πeχ2, x ∈ R3, (9)∫

R3

χ2 = N, (10)

where the last equation is due to the probabilistic interpretation of the wave function.
In this note we shall assume the following neutrality relation between N and Z is
satisfied

N = Z. (11)

Our first result guarantees the existence of solitary waves.
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Theorem 1 There exists a sequence of real negative numbers {ωk}k∈N so that ωk → 0
and for any ωk there exists a couple (χk, ϕk) of solutions of (8), (9), (10), such that

χk ∈ S(R3),

∫

R3

|∇ϕk|2 dx <∞.

Moreover χk, ϕk are radially symmetric functions.

A simplified model of Maxwell – Schrödinger system is the Hartree equation

i∂tψ(t, x) = −1

2
∆ψ(t, x) +

(
e2
∫

R3

|ψ(t, y)|2
|x− y| dy + V (x)

)
ψ(t, x), (12)

Turning to the Cauchy problem for the equation (12) , we impose initial data of type

ψ(0, x) = χ(x) + u0(x), (13)

where χ(x) is such that
e−iωtχ(x)

is a solitary wave that is χ(x) is a rapidly decaying smooth function that is a solution
of the nonlinear eigenvalue problem (8), (9), (10).
The existence of nontrivial radial solutions to this problem is constructed in Theorem
1 for the case, when the neutrality condition N = Z is satisfied. The function u0(x)
is assumed to be compactly supported in the Sobolev space Hs(R3), s > 3/2 and its
Hs norm is sufficiently small. We shall look for solution of the Cauchy problem (12)
of type

ψ(t, x) = e−iωtχ(x) + u(t, x). (14)

Consider the bilinear form

Q(v, w)(t, x) =

∫

R3

v(t, y)w(t, y)

|x− y| dy (15)

for any two complex - valued functions v(t, x), w(t, x). The ansatz (14) and the fact
that

e−iωtχ(x)

is a solitary wave imply that u(t, x) will be a solution to the following perturbed
nonlinear Scrödinger problem

i∂tu(t, x) = −1

2
∆u(t, x) + Lχ(u) +Nχ(u), (16)

where

Lχ(u)(t, x) = bW (x)u+ b
(
Q(u, e−itωχ) +Q(e−itωχ, u)

)
e−itωχ, (17)

is the linear perturbation, while

Nχ(u)(t, x) = bQ(u, u)u+ bQ(u, u)e−itωχ+ b
(
Q(u, e−itωχ) +Q(e−itωχ, u)

)
u (18)
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is the nonlinear term. Note that

b = e2, W (x) = Q(χ, χ) − Zφ(x)

|x| =

∫

R3

|u(y)|2
|x− y|dy −

Zφ(x)

|x| (19)

in (17).
Our main stability result is the following.

Theorem 2 Let χ(x) be a smooth rapidly decaying solution to (8), (9), (10). There
exists a small positive number δ > 0 so that for any compactly supported initial data

u0 ∈ Hs(R3), s > 3/2, ‖u0‖Hs ≤ δ

the Cauchy problem for (12) has a global solution

ψ(t, x) = e−iωtχ(x) + u(t, x),

where
u(t, x) ∈ C(Rt;H

s),

and u(t, x) satisfies the dispersive estimate

lim
t→+∞

‖u(t, ·)‖Lp = 0 (20)

for some p, 2 < p < 5 .
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Bifurcation of the Magnetic Flux Static Distributions in
Multileyered Josephson Junctions

Ivan Hristov

In the last decades the propagation of electromagnetic waves in long Josephson Junc-
tions (JJs) has been extensively studied especially in order to develop useful devices
for storage and transmission of information. Stacking the junctions may increase the
usability of these devices. Such structures make it possible to state and study new
physical effects that do not occur in one-layered JJs. A simple scheme of N-layered
JJ is shown on Fig.1, where black layers are insulators with thickness D and white
layers are superconductors with thickness d.

S
V

V

V

V

V

S

S

S 0

1

N-1

N

... ... ... ......

A

Figure 1: N-layered JJ

In this paper we consider the model of JJs based on inductively coupled layers [1]. The
electromagnetic interaction between junctions is represented by a coupling constant
s, given by

s = −λ/(D sinh(d/λ) + 2λ cosh(d/λ)),

where λ is the London penetration depth.
The simplest generalizable case is the case of three-layered junctions because it takes
into account the difference in the behavior of the interior and exterior junctions. The
first and the third junctions are coupled only to one neighboring junction while the
second junction is coupled to its two neighbor junctions below and above. All of
the numerical results, presented below, are for the particular case of three-layered
junctions, but the method of investigation and its program realization are for the
N -layered case.
The existence of Josephson current generates a specific magnetic flux. When the
external current is less then some critical value, the junction layers are in superconduc-
tive regime. The transitions from superconductive to resistive regime are mathemati-
cally interpreted as bifurcation of the static distributions of the magnetic flux under
the change of the parameters.
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The vector of static distributions of the magnetic flux ϕ(x) = (ϕ1(x), ϕ2(x), . . .,
ϕN (x))T satisfies [1, 2] the nonlinear boundary value problem

−ϕ′′ + L(J + Γ) = 0, (1)

ϕ′(±l) = H, (2)

where J = (sinϕ1, sinϕ2, . . . , sinϕN )T is the vector of the Josephson current density,
Γ = γ(1, 1, . . . , 1)T is the vector of the external current density, H = he(1, 1, . . . , 1)T

is the vector of the external magnetic field and 2l is the length of layers. The matrix
L is a matrix of the inductive interaction (−0.5 < s ≤ 0) :

L(N×N) =




1 s 0 . . . 0 0
s 1 s . . . 0 0
. . . . . . . .
0 0 0 . . . 1 s
0 0 0 . . . s 1



.

We investigate numerically the static distributions of the magnetic flux and seek for
the critical values of the parameters he and γ where these distributions fail to exist.
To solve the nonlinear boundary value problem (1), (2) we use an iterative algorithm,
based on the continuous analog of Newton’s method (CAMN). As initial approxi-
mations for the iteration process we take combinations (for the different layers) of
solutions in the one-layered case, he = 0, γ = 0:
– Meissner solutions, denoted by M , of the form:

ϕ(x) = kπ, k = 0,±1,±2, . . . ,

– fluxon (antifluxon) solutions, for which there are exact analytical expressions in the
case of infinite junctions (l = ∞) :

Φ±1(x) ≡ ϕ(x) = 4 arctan(exp (±x)) + 2kπ.

For junctions of finite length objects of type Φ are not fluxons in a strong sense, but
by analogy the same terminology is used.
CANM gives a linearized boundary value problem at each iteration step:

−v′′ + LJ ′v = u′′ − L(J + Γ) (3)

v′(±l) = H − u′(±l), (4)

where u = (u1, u2, u3, . . . , uN )
T

is the approximate solution found at the previous

iteration step, v = (v1, v2, . . . , uN )
T

is the vector of the iteration corrections and J ′

is the matrix diag(cosu1, cosu2, . . . , cosuN ).
The linear boundary value problems (3), (4) are solved by using Galerkin finite element
method [3] and quadratic elements. The matrices of the corresponding linear algebraic
problems are nonsymmetric. They are stored and used in sky− line form. The linear
algebraic problems are solved by using LU -decomposition.
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Figure 4: Solution of type MMM Figure 5: Solution of type Φ1MΦ−1.

To test the accuracy of the realized method we have used the method of Runge by
computing the solution on four embedded meshes. The numerous experiments made
show a super-convergence of order four.
On Fig.2 and Fig.3 the distribution of the internal magnetic field (the values of ϕ′(x))
in the first layer of a three layered junction are graphically shown. The results are
for three different values of the external magnetic field (he equal to zero and to the
two corresponding bifurcation values) when γ = 0, l = 5 and s = −0.3.
In Table 1 and Table 2 the critical (bifurcation) values of the external current at fixed
external magnetic field for solutions of types MMM and Φ1MΦ−1 are shown. The
parameters l and s are fixed. Changing the value of he we get the region of existence
of the corresponding solution on the plane P ≡ (he, γ). We expected a symmetry
of this region with respect to he and γ for solutions of types MMM and Φ1MΦ−1,
and this was confirmed by the numerical results. On Fig.3 and Fig.4 the regions of
existence (he ≥ 0) in the plane P ≡ (he, γ) for the same solutions are shown.
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Table 1: Critical dependence he/γ
for solution of type MMM

Table 2: Critical dependence he/γ
for solution of type Φ1MΦ−1

he γmin γmax

0.0000000 -1.00000010 1.00000010
0.1000000 -0.97592510 0.97592510
0.2000000 -0.91942270 0.91942270
0.3000000 -0.85865810 0.85865810
0.4000000 -0.79101770 0.79101770
0.5000000 -0.71791390 0.71791390
0.6000000 -0.64025470 0.64025470
0.7000000 -0.55869980 0.55869980
0.8000000 -0.47376610 0.47376610
0.9000000 -0.38588190 0.38588190
1.0000000 -0.29541950 0.29541950
1.1000000 -0.20272030 0.20272030
1.2000000 -0.10812600 0.10812600
1.3000000 -0.01213557 0.01213557
1.3100000 -0.00256270 0.00256270
1.3121000 -0.00059028 0.00059028
1.3127100 -0.00004579 0.00004579
1.3127801 -0.00000230 0.00000230

he γmin γmax

0.0000000 -0.02309530 0.02309530
0.1000000 -0.02467210 0.02467210
0.2000000 -0.03085960 0.03085960
0.3000000 -0.04285260 0.04285260
0.4000000 -0.05948620 0.05948620
0.5000000 -0.07976990 0.07976990
0.6000000 -0.10322650 0.10322650
0.7000000 -0.12955660 0.12955660
0.8000000 -0.15852090 0.15852090
0.9000000 -0.18988530 0.18988530
1.0000000 -0.22333920 0.22333920
1.1000000 -0.19487790 0.19487790
1.2000000 -0.10172960 0.10172960
1.3000000 -0.01035830 0.01035830
1.3110000 -0.00110260 0.00110260
1.3121000 -0.00025470 0.00025470
1.3125100 -0.00005260 0.00005260
1.3125310 -0.00000980 0.00000980
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Modelling and Simulation of Multiscale Problems in
Industrial Filtration Processes

Oleg Iliev, Zahra Lakdawala, Arnulf Latz, Peter Popov,
Stefan Rief, Konrad Steiner, Andreas Wiegmann

Introduction. Filtering out solid particles from fluids is essential for many industrial
and environmental applications, such as automotive engines, drinking and waste water
purification, air filtration etc. A filter can be described shortly as a filter box (which
could be of complicated shape) with inlet/s for dirty fluid, and outlet/s for filtrated
fluid. The inlet/s and outlet/s are separated by a filtering medium, which is usually a
single layer or a multilayer porous media. The filtering medium itself is a complicated
porous medium. In our considerations we deal not only with filter media manufactured
from nonwoven technical textiles but also consider a variety of other materials such
as ceramics, zeolites, sand, paper, etc. Optimal shape design for the filter housing,
achieving optimal pressure drop - flow rate ratio, optimal time performance of a filter
etc., require not only the detailed knowledge about the flow field through the filter
but also information of the particles being captured by the filtering medium.
Most research on modeling and simulation of filtration processes is done separately on
different scales, namely the micro- and the macro-scales. On the microscale, one deals
with individual dirt particles and completely resolved geometries of the filter media
[1,2]. On the other hand, macroscale considers complete filter elements, concentration
of particles, and porous media approximations for the filter media [3,4]. Apparently,
the processes on different scales are not independent from each other: the microscale
geometry changes due to the deposited particles and therefore changes the macro-
scopic parameters such as permeability and absorption rate, which further depend
on the micro scale equations. Conversely, the macroscopic velocities and pressure
influence the filtration processes on the microscale.
Earlier, Fraunhofer ITWM has presented algorithms and softwares for simulations
on independent micro- and macro-scales. For microscale, see e.g. [1, 2], and for
simulations on macroscale, see e.g. [3, 4]. Following, we shortly discuss the indepen-
dent macroscale and the microscale models followed by two approaches for multiscale
modelling: a subgrid approach, and an approach for coupling continuous macroscale
modeling with discrete microscale modeling.

Macroscale model. Stokes-Brinkman model (see equations below), or Navier-
Stokes-Brinkman is considered to model macroscale flows in conjunction with filtra-
tion of incompressible fluids:

−∇ · (µeff∇~u) + µK−1~u = ~fB −∇p (1)

∇ · ~u = 0 in Ωp

Here µeff is some effective viscosity, the permeability tensor is denoted by K. In
the pure fluid part K−1 ≡ 0. Brinkman model differs from the Darcy model due
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to the appearing viscous terms in momentum balance (which change the type of the
system and number of equations). These viscous terms allow for proper setting of, for
example, no-slip conditions on the solid walls. Also, they give a more adequate repre-
sentation for the flow in cases of high porosity. More details about the algorithms for
solving these equations, can be found, for example, in [3,4] and in references therein.

Microscale model. The dynamics of particles is determined by solving the equation
of motion for a collection of non interacting particles, which are coupled to the flow,
exposed to the thermal fluctuations of fluid molecules and, additionally, can interact
with the fibres. All these effects can be described by a stochastic differential equation
for the position ~r(t) and the velocity ~u(t) of the particles

d~r

dt
= ~u(t) (2)

d~u = −γ(~u(t) − ~v(~r(t)))dt+ σ ∗ d ~W (t) (3)

〈dWi(t)dWj(t)〉 = δijdt (4)

Here γ is the friction coefficient due to the kinematic viscosity ν, fluid mass density
ρF and particle mass density ρp:

γ =
3

8

ρF

ρpRp
cd ∗ |~u(t) − ~v(~r(t))| (5)

with the drag coefficient cd = f(Rep) being a function of the Reynolds number of the
particle Rep with radius Rp:

Rep = 2Rp
|~u(t) − ~v(~r(t))|

ν
(6)

For further details on the model and for an algorithm for solving the above equations,
we refer to [1,2].

SubGrid approach. A recent development of the numerical solution algorithms
for simulation of flow within filter elements include a subgrid approach. The subgrid
approach is widely used in modeling turbulent flows, aiming to provide information
about finer scale vortices to the current grid discretization where the vortices are unre-
solved. Based on this idea, we use a similar approach to solve laminar incompressible
Navier-Stokes-Brinkman equations in complex domains. When it becomes impossible
to solve a problem on a very fine grid due to memory and CPU time constraints, the
subgrid approach still allows to capture some of the fine grid details even though the
problem is solved on a coarser grid. Numerical upscaling approach is used for this
purpose. The domain is resolved by a fine grid, which captures the geometrical details
but is too large for solving the problem, and by a coarse grid, where the problem can
be solved. A special procedure selects certain coarse cells that contain complicated
fine scale geometry. For example, coarse cells that are completely occupied by fine
fluid cells are not marked, while coarse cells containing a mixture of fluid, solid, and
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porous fine cells, are marked. For all the marked coarse cells, an auxiliary problem
on fine grid is solved locally. The formulation of the problem comes from the homog-
enization theory, where auxiliary cell problems for Stokes problem are solved in order
to calculate Darcy permeability at a macroscale. In this way, new permeabilities for
all the marked coarse cells are calculated, and the Navier-Stokes-Brinkman system of
equations is solved on the coarse scale. The use of such effective permeability tensors
allow us to get more precise results compared to the results obtained by the original
system solved on the coarse grid. The initial tests on the model problems have met
these expectations. A similar approach is used by P.Jenny. However, his approach
solves only for the pressure on the coarse grid, while it solves only for the velocity
on the fine grid. In our case this is not possible due to the size of the industrial
problems we are solving. Moreover, since our main aim is to calculate the pressure
drop through the filter accurately, some details of the velocity are not as important.
It should be noted that for problems where the details of the solution are important,
we plan to modify our approach so that it works as multilevel algorithm with adaptive
local refinement. This would mean that the pressure field on the coarse scale will be
used to locally recover the velocities, and this will be done iteratively with the use of
upscaling procedure.

Coupling continuous macroscale model with discrete microscale model. An
idea for coupled modelling and simulation on the micro- and macro-scales is discussed
here. The approach is based on a fractional time step discretization, with consecu-
tively solving subproblems on the micro- and macro-scales. The macroscale param-
eters, permeability and absorption rate, are consecutively upscaled from solutions of
microscale problems. The macroscopic solution at each time step is downscaled to
provide input velocity and particles distribution for the microscale simulations. The
changes in the microstructure are monitored in selected locations of the filter media
in order to provide proper information for the upscaling procedure.
In this way, the flow rate-pressure drop ratio, the dirt storage capacity, and the size of
the penetrating particles can be analyzed on both: the microscale (the scale at which
separate particles flow in the pore space of the filtering medium), and the macroscale
(the flow through a filter element).
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Figure 1: Shifted control volumes: inner and boundary cells

[3] O.Iliev, V.Laptev, D.Vasileva, Algorithms and software for flow through oil filters.
Filtech Europa, Volume I, pp. I-327 - I-334, October 2003.

[4] M. Dedering, W. Stausberg, O. Iliev, Z. Lakdawala, R. Ciegis, V. Starikovicius, On
new challenges for CFD simulation in filtration, World Filtration Congress, Leipzig,
2008, to appear.

C-22



SALUTE - Grid Application for Quantum Transport
Problems

Emanoul Atanassov, Todor Gurov, Aneta Karaivanova,
Mihail Nedjalkov, Sofiya Ivanovska, Rayna Georgieva

1 Introduction

The computational Grid (or, shortly, the Grid) proved to be very efficient computing
model. Whereas the Web is a service for sharing information over the Internet, the
Grid is a service for sharing computer power and data storage capacity over the
Internet [1]. The Grid goes well beyond simple communication between computers and
aims ultimately to turn the global network of computers into one vast computational
resource. Usage of Grid is especially useful for Monte Carlo applications as there
the amount of similar calculations that has to be done is huge. Here we present
a Grid application developed for solving computationally intensive problems arising
from semiconductor physics. The application is called SALUTE for simplicity which
stands for Stochastic ALgorithms for Ultra-fast Transport in sEmiconductors.

Let us remind that the Monte Carlo Methods (MCMs) are based on the simulation
of stochastic processes whose expected values are equal to computationally interest-
ing quantities. MCMs form the computational foundation for many fields including
transport theory, quantum physics, computational chemistry, finance, etc. Particu-
larly, the MCMs for quantum transport in semiconductors and semiconductor devices
have been actively developed during the last decade. These MC calculations need
large amount of computational power and the reason is as follows: if temporal or
spatial scales become short, the evolution of the semiconductor carriers cannot be
described in terms of the Boltzmann transport and therefore a quantum description
is needed. As a rule the quantum problems are very computationally intensive and
require parallel and Grid implementations. The intrinsically parallel aspect of MC
applications makes them an ideal fit for the grid-computing paradigm.

2 Brief Description of SALUTE

SALUTE integrates a set of Monte Carlo algorithms for simulation of ultra-fast carrier
transport in semiconductors [2, 3]. The physical model describes a femtosecond re-
laxation process of optically excited electrons which interact with phonons in one-band
semiconductor. The interaction with phonons is switched on after a laser pulse creates
an initial electron distribution. Experimentally, such processes can be investigated by
using ultra-fast spectroscopy, where the relaxation of electrons is explored during the
first hundred femtoseconds after the optical excitation. In our model we consider a
low-density regime, where the interaction with phonons dominates the carrier-carrier
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interaction. Two cases are studied using SALUTE: electron evolution in presence
and in absence of electric field. The mathematical model is Wigner equation for
the nanometer and femtosecond transport regime. In the homogeneous case we solve
a version of the Wigner equation called Levinson (with finite lifetime evolution) or
Barker-Ferry equation (with infinite lifetime evolution). Another formulation of the
Wigner equation considers inhomogeneous case when the electron evolution depends
on the energy and space coordinates. At present, SALUTE numerical experiments
use GaAs material parameters.

SALUTE includes various advanced MC, quasi-MC, and hybrid MC algorithms which
use different variance reduction techniques for the considered versions of the integral
operator. The goal is to estimate several important physical quantities. Some numer-
ical results are shown on Figures 1 and 2.

3 Grid Implementation

The SALUTE grid implementation scheme makes heavy use of almost all of the grid
services, available in the SEE-GRID∗ infrastructure for solving important scientific
problem. The SEE-GRID infrastructure integrates computational and storage re-
sources, provided by the partners, into a pilot grid infrastructure. Currently there
are more than 35 clusters with a total of more than 1500 CPUs and more than 40
TB of storage. The peculiarities of the region are that the network connectivity of
many of these clusters is insufficient, which implies the necessity to avoid network-
hungry applications and emphasize computationally intensive applications, that make
efficient use of the available resources. It also imposes the need of fault-tolerant im-
plementations.

The current grid implementation scheme [4] for SALUTE application provides several
important advantages over the older scheme by making use of the newer services and
APIs available in the gLite middleware. It leverages the computing and storage
resources of the SEE-GRID infrastructure. On the other hand, it enables stress-
testing of the infrastructure itself by loading of the computational power, storage and
bandwidth capacity of the infrastructure and making efficient use of its core services.
We have submitted a total of several thousands of jobs, creating a substantial peak
load of the infrastructure. Our grid implementation scheme can provide an example
for other grid applications to make use of the SEE-GRID infrastructure.

∗SEE-GRID2 (South Eastern European GRid enabled e-Infrastructure Development) initiative is
co-funded by the European Commission under the FP6 Research Infrastructures contract # 031775
towards sustainable grid-related activities in the SEE region. More information is available on
http://www.see-grid.eu.
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Figure 1: The Wigner function with an
applied electric field.

Figure 2: Electron density distribution
along the quantum wire after 200 fs evo-
lution time.
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On the Numerical Solution of a Stationary Two-Phase
Venttsel Problem

Natalia Kolkovska

Let Ω be the rectangle (0, 1) × (−1, 1) in R2. We divide Ω into two subdomains,
Ω1 = (0, 1) × (0, 1) and Ω2 = (0, 1) × (−1, 0), and introduce the notations Γ = (0 <
x < 1)×(y = 0), Γi = ∂Ωi\Γ, i = 1, 2 for the parts of their boundaries. We consider
the elliptic interface problem

−∂
2u(i)

∂x2
− ∂

∂y
k(i) ∂u

(i)

∂y
= f (i), r ∈ Ωi, i = 1, 2 (1)

subjected to the boundary condition

u(i)(r) = 0, r ∈ Γi, i = 1, 2 (2)

and the derivative jump condition on the interface Γ

u(1)(r) = u(2)(r) = u(r), r ∈ Γ, (3)

α
∂2u

∂x2
(r) − βu(r) − k(1) ∂u

(1)

∂y
(r) + k(2) ∂u

(2)

∂y
(r) = g(r), r ∈ Γ. (4)

We suppose in the following that α, β and k(i), i = 1, 2 are positive constants.
The model problem (1)-(4) involves a non-standard condition (4) on the interface,
which relates the second order tangential derivative and the jump of the normal
derivatives. The equation (4) is often referred as ’Venttsel’ type condition.
Elliptic problems with Venttsel type conditions set on the outer boundary (one-phase
problems) or on the interface (two-phase problems) are encountered in the water wave
theory [6], [9], in engineering problems of oil wells [4], in electrostatics [7].
The theoretical analysis of such problems is subject of many papers. A survey of
results on the one-phase Venttsel problem can be found in [1] . Results for existence
of a solution in Hőlder or Sobolev spaces for the two-phase problem are established
in [2]-[3]. The numerical treatment of the one-phase problem with Venttsel type
conditions can be found in [5].
In this paper we apply the finite difference method for the numerical solution of (1)-
(4). We prove that the difference between the finite difference solution and the exact
solution is of optimal order in H1 mesh-norm.

1 Preliminaries

As usually, by Hk(Ω) and Hk(Γ) we denote the Sobolev spaces on Ω or on Γ. For the
two subdomains of Ω we introduce the spaces

Hk
Γi(Ωi) =

{
u ∈ Hk(Ωi) : u |Γ(i) = 0

}
, i = 1, 2, k = 1, 2.
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For functions on Ω, whose restrictions on Ωi belong to the above spaces, we set

V 1 =
{
u = (u(1), u(2)) : u(1) ∈ H1

Γ1(Ω1), u(2) ∈ H1
Γ2(Ω2), u(1)

∣∣∣
Γ

= u(2)
∣∣∣
Γ
∈ H1(Γ)

}
,

V 2 =
{
u = (u(1), u(2)) : u(1) ∈ H2

Γ1(Ω1), u(2) ∈ H2
Γ2(Ω2), u(1)

∣∣∣
Γ

= u(2)
∣∣∣
Γ
∈ H2(Γ)

}
.

The space V 1 is equipped with the norm

‖u‖V 1 =
∥∥∥u(1)

∥∥∥
H1(Ω1)

+
∥∥∥u(2)

∥∥∥
H1(Ω2)

+ ‖u‖H1(Γ) .

Concerning the boundary problem (1)-(4), we have the following regularity result.

Lemma 1 Let f (i) ∈ L2(Ω
i), i = 1, 2 and g ∈ H

1
2 (Γ). Then the problem (1)-(4) has

a unique solution u ∈ V 2.

In order to define a weak solution to (1)-(4), we consider the bilinear form

a(u, v) =
∑

i=1,2

∫

Ωi

(
∂u(i)(x, y)

∂x

∂v(i)(x, y)

∂x
+ k(i) ∂u

(i)(x, y)

∂y

∂v(i)(x, y)

∂y

)
dxdy

+

∫

Γ

(
α
∂u(x, 0)

∂x

∂v(x, 0)

∂x
+ βu(x, 0)v(x, 0)

)
dx, u, v ∈ V 1.

Then the weak form of (1)-(4) is as follows.

Find a function u ∈ V 1 such that

a(u, v) =
∑

i=1,2

∫

Ωi

f (i)(x, y)v(i)(x, y)dxdy +

∫

Γ

g(x)v(x)dx ∀v ∈ V 1.

The averaging operators T1, T2, T
+
2 , T

−
2 are defined for functions v from L1. At r =

(x, y) they are:

T1v(r) =

∫ 1

−1

(1 − |s|)v(x+ sh1, y)ds, T2v(r) =

∫ 1

−1

(1 − |s|)v(x, y + sh2)ds,

T+
2 v(r) =

∫ 1

0

(1 − s)v(x, y + sh2)ds, T−
2 v(r) =

∫ 0

−1

(1 + s)v(x, y + sh2)ds.

2 Finite Difference Method

We introduce a uniform mesh ωh in Ω with mesh sizes h = (h1, h2), hi = N−1
i , Ni ∈

N, i = 1, 2 and set ω
(i)
h = ωh ∩ Ωi, γ

(i)
h = ωh

⋂
Γi, i = 1, 2, γh = ωh

⋂
Γ . Thus

ωh = ω
(1)
h ∪ ω(2)

h ∪ γ(1)
h ∪ γ(2)

h ∪ γh. We denote by H̊h the set of discrete functions,

defined on ωh, which vanish on γ
(1)
h ∪ γ(2)

h .

C-27



Let V 1
h be the discrete analog to the space V 1. The notations in the following operators

on discrete functions are taken from [8].
We approximate the problem (1)-(4) with the finite difference scheme

Ahv ≡ A1v(r) +A2v(r) = ϕ(r), r ∈ ω
(1)
h ∪ ω(2)

h ∪ γh,

v(r) = 0, r ∈ γ
(1)
h ∪ γ(2)

h ,

where

A1v(r) = −
{

vxx̄(r), r ∈ ω
(1)
h ∪ ω(2)

h ,
(1 + α

h2
)vxx̄(r), r ∈ γh,

A2v(r) = −





(k(1)vȳ)y(r), r ∈ ω
(1)
h ,

(k(2)vȳ)y(r), r ∈ ω
(2)
h ,

1
h2

(k(1)vy − k(2)vȳ) − β
h2
v(r), r ∈ γh,

ϕ(r) =





T1T2f
(1)(r), r ∈ ω

(1)
h ,

T1T2f
(2)(r), r ∈ ω

(2)
h ,

T1T
+
2 f

(1)(r) + T1T
−
2 f

(2)(r) − 1
h2
T1g(r), r ∈ γh.

Lemma 2 The operators A1, A2 and Ah are self-adjoint and positive definite on H̊h.

As an immediate consequence of the Lemma 2 it follows, that there exists a unique
solution to the difference scheme (5).
The main result presented here is the convergence of the finite difference scheme.

Theorem 1 Let u ∈ V 2 be the solution of (1)-(4) and let v be the solution of the
finite difference method (5). There exists a positive constant C (independent on u, v
and h) such that

‖v − u‖V 1
h

≤ C|h|1 ‖u‖V 2 .

The proof of this theorem is based on a-priori estimates, analysis of the error of
approximation and the Bramble-Hilbert Lemma.
The above estimate of the rate of convergence is consistent with the smoothness of
the exact solution. Let us note, that the rate of convergence is the same as for the
elliptic problem with Dirichlet boundary condition [8].
The result in Theorem 1 can be extended to discontinuous self-adjoint elliptic type
equations with ’Venttsel’ type condition on the interface.
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MIC(0) Preconditioning of 3D FEM Problems on
Unstructured Grids:

Conforming and Nonconforming Elements∗

Nikola Kosturski, Svetozar Margenov

Mesh generation techniques are now widely employed in various scientific and engi-
neering fields that make use of physical models based on partial differential equations.
While there are a lot of works devoted to finite element methods (FEM) and their
applications, it appears that the issues of meshing technologies in this context are less
investigated. Thus, in the best cases, this aspect is briefly mentioned as a technical
point that is possibly non-trivial. In this study, the topics of grid generation and
FEM applications are studied together following their natural synergy.
Let Ω ⊂ IR3 be a bounded domain with boundary ∂Ω = Γ = ΓD ∪ΓN . The following
model elliptic problem

−∆u = f, ΓD ≡ ∂Ω, (1)

with Dirichlet boundary conditions on the whole boundary corresponding to the exact
solution

u(x, y, z) = x3 + y2 + z4 + sin(x− y),

and the related parabolic problem

∂u

∂t
− ∆u = f, ΓD ≡ ∂Ω, (2)

where t ∈ [0, 1], the time-step is τ = 0.01, and the Dirichlet boundary conditions on
the whole boundary correspond to the exact solution

u(x, y, z, t) = x4 + y3 + sin(x− z) + t2

are considered.
FEM discretization on a triangulation Th of the domain Ω reduces the elliptic problem
(1) to the linear system

Kuh = fh, (3)

where K stands for the stiffness matrix.
Crank-Nicholson time stepping is used for the solution of the parabolic problem (2).
At each time step, the following linear system is to be solved

(
M +

τ

2
K
)
un+1

h =
(
M − τ

2
K
)
un

h + τ f
n+ 1

2

h , (4)

where the upper index of the unknown vector indicates the number of the current
time step, and M stands for the mass matrix.

∗This work is partly supported by the Bulgarian Ministry of Science under grant VU-MI 202/2006.
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The implementation of two variants of finite elements defined on Th is studied, namely,
conforming (Courant) and nonconforming (Crouzeix-Raviart) linear finite elements.
The modified incomplete Cholesky factorization MIC(0) [2] is used for the precon-
ditioned conjugate gradient (PCG) [1] solution of the systems (3) and (4). Let us
remind, that the sufficient conditions for existence of a stable MIC(0) factorization of
the symmetric N ×N matrix A = (aij) are

L ≥ 0, Ae ≥ 0, Ae + LT e > 0, (5)

where e = (1, . . . , 1)T and (−L) is the strictly lower triangular part of A. Due to the
positive offdiagonal entries of the stiffness matrix K, the MIC(0) factorization is not
directly applicable to precondition the FEM system. The diagonal compensation is
the simplest procedure to approximate K by an M-matrix K̄, to which the MIC(0)
factorization is applied. This means that the positive offdiagonal entries of K are
vanished, setting the diagonal of K̄, such that the equal row sum condition is fulfilled,
i.e., Ke = K̄e.
The global stiffness matrix reads as K =

∑
e∈Th

Ke, where Ke is the current element
stiffness matrix. The following important geometric interpretation of Ke holds (see,
e.g., in [3])

Ke =
ae

6




∑

1 6=i<j

lij cot θij −l34 cot θ34 −l24 cot θ24 −l23 cot θ23

−l34 cot θ34
∑

2 6=i<j 6=2

lij cot θij −l14 cot θ14 −l13 cot θ13

−l24 cot θ24 −l14 cot θ14
∑

3 6=i<j 6=3

lij cot θij −l12 cot θ12

−l23 cot θ23 −l13 cot θ13 −l12 cot θ12
∑

i<j 6=4

lij cot θij




,

(6)
where lij denotes the length of the edge connecting vertices vi and vj of the tetra-
hedron e, and θij stands for the dihedral angle along that edge. This interpretation
shows that each positive offdiagonal entry in the element stiffness matrix corresponds
to an obtuse dihedral angle in the tetrahedron e. The related positive entry tends to
infinity when the dihedral angle tends to 180 ◦. Now, let us turn on to the case of

Crouzeix-Raviart nonconforming finite elements. It is easily seen that K
(nc)
e = 9K

(c)
e ,

where K
(c)
e and K

(nc)
e stand for the element stiffness matrices corresponding to linear

conforming and nonconforming finite elements, associated with the element e. One
direct conclusion is the applicability of the geometric interpretation (6) to the case of
nonconforming linear tetrahedral elements.
Since the MIC(0) factorization is applied to the auxiliary matrix K̄, the convergence
rate of the MIC(0) PCG solver strongly deteriorates with the raise of dihedral angles
in the FEM mesh.
When the Crank-Nicholson scheme is implemented solving the parabolic problem
(2) we have to get a preconditioner for the matrix M + τ

2K. Then, the diagonal
compensation for K in combination with lumping the mass for M , which are applied
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before the MIC(0) factorization. At this point, an advantage of the nonconforming
Crouzeix-Raviart elements is, that the related mass matrix is always M-matrix, i.e.,
lumping the mass is not required.
We investigate the following three grid generators: NETGEN, TetGen and Gmsh.
The presented qualitative analysis is based on the range of the dihedral angles of the
triangulation of a given domain. It is well known that very small and very large angles
directly affect the accuracy of the FEM approximation. Such kind of strong mesh
anisotropy deteriorates also the condition number of the related stiffness matrix, and
as will be shown later on, the convergence rate of the implemented iterative solution
methods.
The domain we chose for the presented comparison is

Ω = {(x, y, z) | 0.1 ≤ x2 + y2 + z2 ≤ 1, x, y, z ≥ 0} . (7)

Different parameters of the grid generators may affect the quality of the resulting
meshes. Some generated meshes are shown bellow

NETGEN TetGen Gmsh

The obtained results show that NETGEN generally achieves better dihedral angles
than TetGen. Similar dihedral angles are obtained with Gmsh, but due to the con-
siderably larger number of elements/nodes in Gmsh, NETGEN is preffered.
The presented numerical tests illustrate the MIC(0)–PCG convergence rate. A relative
PCG stopping criteria in the form rT

kC
−1rk ≤ ε2rT

0 C
−1r0 is employed. Here rk is

the residual vector at the k-th iteration and C is the MIC(0) preconditioner. We
compare the obtained results in the cases of linear conforming and nonconforming
finite elements.
Both the (1) and (2) are solved on both structured (unit cube) and unstructured
grids. The obtained iteration counts are presented in graphical form bellow
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Elliptic model problem Parabolic model problem
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When parabolic problems are considered, the iteration count is the total number for
all time steps. The solid and dashed lines correspond to the cases of conforming and
nonconforming finite elements. The logarithmic scale more transparently illustrates
the asymptotic behavior of the number of iterations.
The rigorous theory of MIC(0) preconditioning is directly applicable only to the model
elliptic problem in the unit cube when discretized by standard linear conforming finite
elements. The reported number of iterations, in this case, fully confirms the estimate
nit = O(N1/6). The same asymptotic behaviour of the PCG iterations for all remain-
ing problems is observed, including the case of Crouzeix-Raviart nonconforming finite
elements. As we see, the considered algorithms have a well expressed stable behavior
for the unstructured meshes. The next general conclusion is that the iteration count is
smaller for the conforming FEM problems when compared to the results for noncon-
forming FEM systems of the same size. However, the stable convergence rate of the
MIC(0)–PCG solver for Crouzeix-Raviart FEM systems is of a particular importance,
due to the special robustness properties of these nonconforming elements.
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On the Local Attainability of a Closed Set

Mikhail Krastanov

The problem of local attainability with respect to the trajectories of a differential
inclusion is a basic problem of the contemporary control theory. This problem can
not be reduced to the problem of small-time local attainability at every point of the
set. So, it needs a specific study. The problem has been partially studied using mainly
zero order and first order approach (cf. [1, 3, 6, 7, 9, 10, 11]). To state the problem
of small-time local attainability, let us consider the following control system:

ẋ(t) ∈ F (x(t)), (1)

where F : Rn ⇒ Rn is a multifunction with compact and convex values. An abso-
lutely continuous function x(·), satisfying (1) for almost every t from [0, T ], is called
a trajectory of (1) defined on [0, T ]. For a fixed point x and for T > 0, the attainable
set A(x, T ) of (1) from x at time T > 0 is defined as the set of all points that can be
reached in time T from x by means of trajectories of (1).

Definition 1. Let S be a closed subset of Rn. It is said that S is small-time locally
attainable (STLA) with respect to the control system (1) iff for any T > 0 there exists
a neighbourhood Ω of S such that for every point x ∈ Ω there exists an admissible
trajectory of the control system (1) starting from the point x and reaching the set S
in time not greater than T , i.e. A(x, t) ∩ S 6= ∅ for some t ∈ [0, T ].

One of the most common conditions to ensure local attainability of a closed set is the
so called Petrov condition (cf. [8]). Roughly speaking, this condition states that at
every point of a neighbourhood of the target there exists an admissible velocity that
“points” toward the target in a special way. To formulate this condition in a rigorous
way, we follow the notations from the paper [3]: Let S be a compact subset of Rn.
We set

Sr := {y ∈ Rn| dS(y, S) ≤ r},
where

dS(y) := inf {‖y − s‖ | s ∈ S}.
If x is an arbitrary point from Sr \ S, we set

π(x) := {y ∈ S| ‖y − x‖ = dS(x)},

i.e. π(x) is the set of all metric projections of the point x on the set S.
Let us consider the control system (1) under the assumption that F is continuous of
modulus ω near S, i.e.

H(F (x), F (y)) ≤ ω(‖x− y‖), for all x, y near S,
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where H(·, ·) denotes the Hausdorff metric and ω : [0,∞) → [0,∞) is a nondecreasing
continuous function with ω(0) = 0. Let y belong to the boundary ∂S of the set S.
A vector ξ ∈ Rn is called a proximal normal to S at y provided there exists r > 0
so that the point y + rξ has y as the closest point. The set of all proximal normals
at a point y is a cone. This cone is denoted by Np

S(y) (for a detailed treatment of
proximal analysis and some of its applications, see for example the books [2] and [4].
Using these notations, the results of the papers [3, 10] and [11] can be formulated as
follows:

Theorem 1. Suppose that S is a nonempty and compact subset of Rn, and F : Rn ⇒
Rn is a continuous multifunction of modulus ω with compact convex values. Suppose
that there exists δ > 0 so that, whenever y ∈ S and ξ ∈ Np

S(y), there exists v ∈ F (y)
for which

< ξ, v > ≤ −δ‖ξ‖. (2)

Then S is STLA with respect to (1).

Unfortunately, if the inequality (2) is violated at some boundary point y of S (for
example, when all admissible velocities are “tangent” to the closed set S at y), we
can not apply Theorem 2. There are simple examples (cf. [6]) that demonstrates this
phenomenon.
The so called “high-order conditions” for attainability of a closed set are also known.
Usually the “high-order” term is used for conditions involving Lie brackets of the orig-
inal vector fields (generating the corresponding control system) to verify a condition
of the type (2) instead to use admissible velocities. Such kind of conditions ensure
local attainability of a closed set and imply Hölder continuity of the minimal-time
function (cf., for example, [1] for the case of attainability of a point, and [5] and [6]
in the general case).
Recently, a sufficient condition of first order for attainability of a closed set with re-
spect to the trajectories of a smooth nonlinear system is proved in [7]. The proof of
this condition uses control variation of zero and first order and is based on an addi-
tional assumption for regularity of the target. In this condition the positive number
δ in the Petrov’s condition (2) is replaced by a suitable continuous nondecreasing
function µ(·) with µ(ρ) > 0 for ρ > 0.
In the present talk we extend the result of [7] in two directions. First, we do not
impose any regularity assumptions for the set S, and second we use high-order control
variations. For our knowledge, high-order control variations suitable for studying of
the problem of local attainability of a set are defined in [5].
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Polynomial Lotka-Volterra CNN Model: Dynamics and
Complexity

Angela Slavova, Maya Markova

In this paper we shall study the following Lotka-Volterra system which models the
community of three interacting populations:

∣∣∣∣∣∣∣∣∣∣∣

dx1

dt
= x1(r1 − a11x1 − a12x2 + a13x3)

dx2

dt
= x2(r2 − a21x1 − a22x2 + a23x3)

dx3

dt
= x3(r3 + a31x1 + a32x2 − a33x3),

(1)

where xi, i = 1, 2, 3 is the density of the i-th population, ri, aij , i, j = 1, 2, 3 are
positive real coefficients; ri is the intrinsic growth rate of the ith population and the
coefficient aij describes the influence of the jth population upon the ith population
[7]. The signs of aij and aji determine the nature of the interaction between the
populations i and j.
We will apply Cellular Neural Networks (CNN) with the translation invariant polyno-
mial feedback functions for studying Lotka-Volterra system (1). In a recently proposed
VLSI development [12] a first CNN based hardware implementation with polynomial
weight functions has been presented.
The theory of local activity provides a definitive answer to the fundamental question:
What are the values of the cell parameter for which the interconnected system may
exhibit complexity? The answer is given in [5,6] - the necessary condition for a non-
conservative system to exhibit complexity is to have its cell locally active. The theory
which will be presented below and which follows [6] offers a constructive analytical
method for uncovering local activity. In particular, for PCNN model, one can deter-
mine the domain of the cell parameters in order for the cells to be locally active, and
thus potentially capable of exhibiting complexity. This precisely defined parameter
domain is called the edge of chaos [6].
We apply the following constructive algorithm:
1. Map Lotka-Volterra system (1)into the following associated discrete- space version
which we shall call Lotka-Volterra CNN model:

dx1
i

dt
= f1(x1

i , x
2
i , x

3
i ) + r1x1

i = F 1 (2)

dx2
i

dt
= f2(x1

i , x
2
i , x

3
i ) + r2x2

i = F 2

dx3
i

dt
= f3(x1

i , x
2
i , x

3
i ) + r3x3

i = F 3,
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where f1, f2 and f3 are Taylor series expansions of the functions f1, f2 and f3
respectively. In order to model a Lotka-Volterra system represented by the solutions of

(1) using PCNN model (5) the coefficients b
(k)
ll′ have to be determined in a optimization

process [12].
2. Find the equilibrium points of (5). For the Lotka-Volterra CNN model (5), the
equilibrium points are defined as follows. Let us rewrite (5) in the vector form:

dX

dt
= X(R−AX) = F (3)

where X = col(x1
i , x

2
i , x

3
i ), R = (r1, r2, r3), A =




a11 a12 a13

a21 a22 a23

a31 a32 a33


. Then the

equilibrium points Xe are such that

Xe(R−AXe) = 0. (4)

There are at least two equilibrium points: X1
e = (0, 0, 0) and X2

e = RA−1 if A−1

exists.
3. Calculate now the cell coefficients of the Jacobian matrix of (7) about each system
equilibrium point Xj

e , j = 1, 2:

J =




∂f1

∂x1
∂f1

∂x2
∂f1

∂x3

∂f2

∂x1
∂f2

∂x2
∂f2

∂x3

∂f3

∂x1
∂f3

∂x2
∂f3

∂x3


 |(x1,x2,x3)=Xj

e ,j=1,2 (5)

=



f11

e f12
e f13

e

f21
e f22

e f23
e

f31
e f32

e f33
e


 .

4. Calculate the trace Tr(Xj
e ) and the determinant ∆(Xj

e ) of the Jacobian matrix
(8) for each equilibrium point:

Tr(Xj
e ) = f11

e + f22
e + f33

e (6)

∆(Xj
e ) = f11

e f22
e f33

e + f12
e f23

e f31
e +

+f13
e f21

e f31
e − f13

e f22
e f31

e −
−f11

e f23
e f32

e − f12
e f21

e f33
e .

Definition 1 Stable and Locally Active Region SLAR(Xj
e ) at the equilibrium point

Xj
e for Lotka-Volterra CNN model (5) is such that Tr < 0 and ∆ > 0.

We shall consider the equilibrium point Xe = (1, 1, 1) [9]. In this case the above
condition can be written as follows:

Tr(Xe = (1, 1, 1)) = r1 − 2a11 + r2 − (7)

−2a22 + r3 − 2a33 < 0,
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∆(Xe = (1, 1, 1)) = (r1 − 2a11)(r
2 − 2a22)

(r3 − 2a33) −−a12a23a31 − a13a21a32−
−(r1 − 2a11)23a32 − (r2 − 2a22)a13a32−

−(r3 − 2a33)a12a21 > 0

6. Edge of chaos.
In the literature [6] the so called edge of chaos (EC) means a region in the parameter
space of a dynamical system where complex phenomena and information processing
can emerge. We shall try to define more precisely this phenomena till know known
only via empirical examples. Moreover, we shall present an algorithm for determining
the edge of chaos for reaction-diffusion CNN models as the Lotka-Volterra CNN model
(5). Let us set R = 0 in equilibrium equations (7),i.e.:

f1(x1
e, x

2
e, x

3
e) = 0 (8)

f2(x1
e, x

2
e, x

3
e) = 0

f3(x1
e, x

2
e, x

3
e) = 0

For the Lotka-Volterra CNN model (4) we shall consider the equilibrium point
Xe = (1, 1, 1) [9]. Our next step is to calculate the local cell coefficients f11

e , f12
e , f13

e ,
f21

e , f22
e , f23

e , f31
e , f32

e , f33
e from (8) about the equilibrium point Xe. We determine

Local Activity Region and Stable Local Activity Region for the point in the cell pa-
rameter space by (10). We shall identify the edge of chaos domain EC in the cell
parameter space by using the following definition [6]:
Definition 2 A Lotka-Volterra CNN model is said to be operating on the edge of
chaos EC iff there is at least one equilibrium point Xe which is both locally active and
stable at Xe when A−1 exists and R = 0.
The following theorem then hold:
Theorem 1 PCNN model of Lotka-Volterra system (1) is operating in the edge
of chaos regime iff (i) A−1 exists and (ii) 2(a11a23a32 + a22a13a32 + a33a12a21) >
(a11a22a33 + a12a23a31 + a13a21a32). For this parameter values there is at least one
equilibrium point which is both locally active and stable.
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Neural Networks for Solving Sudoku Problems

Valeri Mladenov

1. Introduction. In 1979 the first Sudoku puzzle was introduced by the archi-
tect Howard Garns under the name Number Place [1]. Since neural networks are
constructed in such a way that only binary or bipolar outputs are accepted, Sudoku
puzzles have to be transformed to another representation. Chosen representation is
given in the following subsection. In next subsection the constraints of the Sudoku
puzzle are transformed to the neural representation. For every number k which can
be places at a location in the puzzle (i, j) a neuron exists. Now neurons are denoted
by V (i, j, k), where i the row number, j the column number and k the number to be
placed. From the size of the puzzle it follows that i, j and k can take values in the
range from 1 to 9. The output of the neurons can be interpreted as: if the neuron
fires, the output of V (i, j, k) is 1, then the number k should be placed at location
(i, j). In order to have a good representation of the neurons in Matlab, the neurons
have to be arranged in a vector form. This is chosen in the following way:

Vm(l) = V (i, j, k) , (1)

where l = 92(l − 1) + 9(j − 1) + k. The total number of neurons is: max(l) = l =
92(9 − 1) + 9(9 − 1) + 9 = 729. In Sudoku puzzles exactly one number has to be
placed at every position, having constraints that every number (1-9) can only be
placed once in every: row; column; non-overlapping square subregion of size 3×3. To
simplify notations we will continue with the name subregion for the non-overlapping
square subregions of size 3. The constraints in neuron form are given by the following
equations:

9∑

i=1

V (i, j, k) = 1,∀j, k (2)

9∑

j=1

V (i, j, k) = 1,∀i, k (3)

9∑

k=1

V (i, j, k) = 1,∀i, j (4)

9∑

i∈i′,j∈j′

V (i, j, k) = 1,∀j, k (5)

Equations (2) and (3) make sure that every number k is only placed once in every
column j and row i. Equation (4) has to ensure that only one number k is placed
at a location (i, j). Constraint 3 is taken care of by equation (5) which sums over
subregions, which are defined above. Every number is placed only once in every
subregion. By combining all equations, all constraints of the Sudoku puzzle are given
in a neural form. The total number of constraints is 9 · 9 · 4 = 324.
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1.1. Hopfield network. A continuous Hopfield network is chosen with binary
outputs. The continuous Hopfield network is a single layer network which contains
integrators, binary sigmoid functions and multipliers. In this section the network is
initialized. First the size and architecture of the network is given and finally weights
are calculated. A Hopfield network contains simple neuron models which have a binary
or bipolar output value and the input to output relation of the activation function is
a logsig function, which is described by:

Vi = gi(x) =
1

1 + exp (−ui)
(6)

Designed Hopfield network contains 729 neurons as described above. These neurons
are connected in such a way that constraints are not violated. The network also
contains an input Θ, which has a certain value for the neurons which were already
supposed on by the given puzzle. Last part of the network is biases. These can also
be added to the neurons if it is desirable. A simple Hopfield network is shown in
figure 1.

Fig.1. Architecture of a Hopfield network

This Hopfield network consists of 3 neuron models which are connected to the other
neurons and not connected to themselves. The differential equation of given neuron
model can be described by:

wi =
dui

dt
=

n∑

j=1

WijVj + Θi, i = 1, 2, 3 (7)

with W the interconnection matrix and Θ the input vector. A fixed Hopfield net-
work with no self-connections, Wii = 0, and symmetric weights, Wij = Wji, has the
Lyapunov function:

E = −1

2

∑

i,j

WijViVj −
∑

i

ΘiVi (8)

With help of the gradient an expression for du/dt can be given as function of the
Lyapunov function E(t):

dui

dt
= − ∂E

∂Vi
(9)
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The Lyapunov function can be used as a cost function which has to be minimized.
By rewriting the Sudoku problem in neural form to a Lyapunov function, the initial
weights of the Hopfield network are obtained. The chosen Lyapunov function in equa-
tion (10) is used to maximize the number of neurons which fire, given the constraints
of the Sudoku puzzle.

E = −
∑

i,j,k

V (i, j, k) + α
∑

i,j,k,i′,j′,k′

V (i, j, k).V (i′, j′, k′) (10)

By combining (9) and (10), the following equation for weighting filters can be obtained

wi = I + α.Vi(i
′, j′, k′) (11)

Now the weighting filters are determined for the constraints, only the first part of
formula (10) has to be implemented in a weighting filter. As can be seen from (11)
the weighting consists of only bias terms. So a weighting filter of size [729×1] has to be
created with all constant positive bias terms. When the neural network is implemented
an optimization for best performance has to be made for values of α, bias weighting
and input weighting with respect to the logsig function. If the performance of this
network is not sufficient, then a coprocessor can be used to improve performance.
1.2. Coprocessor. Proposed coprocessor is used to give a probability that a cer-
tain number can be placed at a certain location. With help of this information the
Hopfield network can be initialized to find the right solution. If the Hopfield network
still fails, it is possible to use the coprocessor again, to find new initial inputs for the
Hopfield network. The coprocessor tries to solve Sudoku puzzles as linear program-
ming problem. A simple example on linear programming with inequality constraints
is given by equation (12).

max f(x) = 3x1 + x2 + 2x3 s.t.
r1(x) = 3x1 − 2x2 + 4x3 − 8 ≥ 0; r2(x) = −x1 − 2x2 − x3 + 9 ≥ 0;

r3(x) = −2x1 − 2x2 − x3 + 9 ≥ 0; x1 ≥ 0; x2 ≥ 0; x3 ≥ 0
(12)

The neural network used to find the answer to this problem is a recurrent network with
two layers. A first layer neuron consists of a bias, N multipliers and a poslin-function,
for which holds:

Sm = poslin(rm) =

{
rm for rm > 0
0 for rm ≤ 0

A second layer neuron consists of a bias, M multipliers, an integrator and also a
poslin-function. The differential equation for the integrator is given by:

dxj

dt
= µj

(
bj −

M∑

m=1

Smamj

)
(13)

where µ a growing rate, bj the bias, Sm the output of a first layer poslin-function
and amj the weighting for the j-th variable and the m-th constraint. For the given
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example the differential equations become:

dx1

dt
= µ (3 − k(3S1 − S2 − 2S3)) ;

dx2

dt
= µ (1 − k(−2S1 − 2S2 − S3)) ;

dx3

dt
= µ (2 − k(4S1 − S2)) ;

with k the amount of penalty for constraint violations. An alternative with the same
architecture is obtained by replacing the poslin-function with a threshold-function.
The output of this function can be written as:

Sm = threshold(xm) =

{
0 for xm ≤ 0
1 for xm > 0

(14)

Advantage of this approach is that the value of k is not needed to be very large. A
drawback of this method is that the output in simulation becomes very nervous if the
value for µ is too large. Previous section showed how a linear programming problem
can be solved using a neural network. This neural network can also be developed
for Sudoku puzzles if in the constraints, given by equations (2) to (5), the equal sign
’=’ is replaced by a ’≤’-sign and an optimization function like maxf(x) =

∑
x(l)

is chosen, where x(l) is the probability that neuron V (l) has to fire. With this
approach of solving Sudoku puzzles, the network consists of 729 V neurons which
represent the probability of placing a certain integer at a certain position and 324
constraint neurons which give a positive value if representing constraint is violated.
Every constraint neuron sums over 9 V neurons, in such a way that every constraint
neuron represents one constraint. For the constraint neurons a weighting matrix R
can be constructed which contains all amj elements from the differential equation as
shown in (13). This weighting matrix can be used to check whether a constraint is
violated. Then the differential equation for the coprocessor becomes

dxj

dt
= µ (b− k.R(j, :).S)

Above suggested neural network can be used as coprocessor for the Hopfield network.
Several choices have to be made to let the Hopfield network and the coprocessor work
together.
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Modified Product Cubature Formulae

Geno Nikolov, Vesselin Gushev

In the univariate case, there is a well-developed theory on the error estimation of
the quadrature formulae for integrands from the Sobolev classes of functions. It is
based on the Peano kernel representation of linear functionals, which yields sharp
error bounds for the quadrature remainder. Namely, if a quadrature formula Q,

Q[g] =

n∑

ν=1

aνf(xν), a ≤ x1 < · · · < xn ≤ b,

designed to approximate the definite integral

ℓ[g] :=

b∫

a

g(x) dx,

is exact for all the algebraic polynomials of degree not exceeding r, then for its re-
mainder R[Q; g] := ℓ[g] −Q[g] one has the sharp estimate

|R[Q[g]| ≤ cr,p(Q).‖g(r)‖Lp[a,b],

provided that g(r) belongs to Lp[a, b] (1 ≤ p ≤ ∞). Here, the constant cr,p(Q) is the
Lq[a, b]-norm (p−1 + q−1 = 1) of Kr(Q; t), the r-th Peano kernel of Q. Another useful
property of quadratures is the definiteness. If Q is positive or negative definite of
order r (which is the case exactly when Kr(Q; t) ≥ 0 or Kr(Q; t) ≤ 0 on (a, b)), then
Q[g] furnishes one-sided approximation to ℓ[g] whenever g(r) does not change its sign
in (a, b).
When we consider the problem of calculation of a double integral over the rectangular
region ∆ = {(x, y) ∈ R

2 : a ≤ x ≤ b, c ≤ y ≤ d},

I[f ] :=

∫∫

∆

f(x, y) dxdy,

a natural way for approximation of I[f ] is by a product cubature formula C[f ],

C[f ] = C(Q1, Q2)[f ] :=

n1∑

i=1

n2∑

j=1

cidjf(ti, τj), (1)

where Q1[g] =
∑n1

i=1 cig(ti) and Q2[g] =
∑n2

j=1 djg(τj) are quadrature formulae ap-

proximating ℓ1[g] :=
b∫

a

g(x) dx and ℓ2[g] :=
d∫
c

g(x) dx, respectively.

Some natural questions arise about the magnitude of the error

E[C; f ] := I[f ] − C[f ].
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How small is |E[C; f ]|? Is it possible, as in the univariate case, to estimate |E[C; f ]|
by a certain norm of a single derivative of the integrand, say, of Dr,sf :=

∂r+sf

∂xr∂ys
?

Can we build definite cubature formulae of order (r, s) ?
The answer of the second question is in the negative. Indeed, an estimate of the form
|E[C; f ]| ≤ cr,s(C)‖Dr,sf‖ would mean that the cubature formula C is exact for all
functions from Br,s(∆). Here, Br,s(∆) is the class of blending functions

Br,s(∆) := {f ∈ Cr,s(∆) : Dr,sf = 0},

where

Cr,s(∆) := {f : ∆ → R : Di,jf continuous , 0 ≤ i ≤ r, 0 ≤ j ≤ s}.

Hence, while in the univariate case we deal with algebraic degree of precision, in the
bivariate case we have to deal with the notion of blending degree of precision. And,
in contrast to the univariate case, the linear space of blending functions Br,s(∆) is
of infinite dimension. Therefore, no cubature formula exists, which uses only finite
number of point evaluations and is exact for all f ∈ Br,s(∆).
We show that error estimation of the above mentioned type is still possible, if we
allow our cubature formulae to involve, in addition to the standard data of point
evaluations, some line integrals. For the construction of our cubature formulae we
need some facts about blending interpolation.
Given two sets X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn}, such that a ≤ x1 <
x2 < · · · < xm ≤ b and c ≤ y1 < y2 < · · · < yn ≤ d, we define a blending grid
G = G(X,Y) by

G(X,Y) := {(x, y) ∈ ∆ :

m∏

µ=1

(x− xµ)

n∏

ν=1

(y − yν) = 0}.

For any bivariate function f defined on ∆ there exists a unique Lagrange blending
interpolant Bf = BGf ∈ Bm,n(∆), which satisfies Bf|G(X,Y ) = f|G(X,Y ). It is given
explicitly by

Bf = Lxf + Lyf − LxLyf,

where Lx and Ly are the Lagrange interpolation operators with respect to variables
x and y, defined by the interpolation points X and Y, respectively. Let {lµ}m

µ=1

and {lν}n
ν=1 be the Lagrange fundamental polynomials, defined by lµ(xj) = δµj (j =

1, . . . ,m) and lν(yk) = δνk (k = 1, . . . , n), respectively, with δij being the Kronecker
symbol. Then

Bf(x, y) =

m∑

µ=1

lµ(x)f(xµ, y) +

n∑

ν=1

lν(y)f(x, yν) −
n∑

µ=1

n∑

ν=1

lµ(x)lν(y)f(xµ, yν).

The construction of our cubature formulae is realized through the following scheme.
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We approximate I[f −Bf ] by C[f −Bf ], where C is a product cubature formula of
the customary type, i.e., which involves only point evaluations of the integrand. This
results in a cubature formula S[f ] for approximate calculation of I[f ],

I[f ] ≈ S[f ], S[f ] := C[f ] + I[Bf ] − C[Bf ]. (2)

We call the cubature formulae S obtained through (2) modified product cubature for-
mulae (in short, MPCF). Among the components of S, it is I[Bf ] the one that looks
differently from the conventional cubature formulae. Indeed, by the explicit form of
Bf(x, y) we obtain

I[Bf ] =

m∑

µ=1

bµℓ2[f(xµ, ·)] +

n∑

ν=1

bνℓ1[f(·, yν)]

−
m∑

µ=1

n∑

ν=1

bµbνf(xµ, yν).

(3)

Here, Q′[g] =
m∑

µ=1

bµg(xµ) is the interpolatory quadrature formula for

ℓ1[g] =
b∫

a

g(x) dx, generated by Lx, and Q′′[g] =

n∑

ν=1

bνg(yν) is the interpolatory

quadrature formula for ℓ2[g] =
d∫
c

g(y) dy, generated by Ly.

It turns out that the modified product cubature formulae possess all the useful features
of the quadrature formulae we mentioned above. In particular, their error can be
bounded by the norm of a single partial derivative of the integrand. Not surprisingly,
the Peano kernel of a MPCF S is expressed in terms of the Peano kernels of the
two pairs of quadrature formulae involved in the construction of S: (Q′, Q′′), which
determines the blending interpolation operator B, and (Q1, Q2), which defines the
product cubature formula Q. This connection provides some sufficient conditions
(criteria) for the definiteness of a MPCF. Also, some classes of integrands are specified,
for which a product cubature formula C is inferior to its modified counterpart S.
As it was mentioned above, it is not possible to obtain an error bound for a product
cubature formula C in terms of a certain norm of a single partial derivative of the
integrand. On using the connection between C and S we show that three partial
derivatives of the integrand do the job.
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Optimal Order FEM for Coupled Eigenvalue Problems on
Overlapping Domains∗

Andrey Andreev, Milena Racheva

We present a new finite element approach applied to a nonstandard second order
elliptic eigenvalue problem, defined on two overlapping domains. The purpose is to
derive optimal order error estimates as distinct from [1], where they are suboptimal.
Let Ω1 and Ω2 be overlapping rectangles and Ω be two-component rectangular domain,
i.e. Ω = Ω1 ∪ Ω2 (see Figure 1). Let also Hm(Ωi) be the usual m−th order Sobolev
space on Ωi, i = 1, 2 with a norm ‖ · ‖m,Ωi

.
Consider the following second-order two-dimensional elliptic operators:

L(i) ≡ −
2∑

k,m=1

∂

∂xk

(
a
(i)
km

∂

∂xm

)
+ a

(i)
0 , i = 1, 2,

where a
(i)
km(x) > 0 and a

(i)
0 (x) ≥ 0 are bounded functions on Ωi, i = 1, 2.

The eigenvalue problem is defined by: find (λ, u1, u2) ∈ R×H2(Ω1)×H2(Ω2) which
obey the differential equations

L(i)ui + (−1)iχΩ1∩Ω2
K = λui in Ωi, i = 1, 2, (1)

and the classical Robin/Neumann and Dirichlet boundary conditions

∂ui

∂ν
+ σ(i)ui = 0 on Γ′

i, ui = 0 on Γi, i = 1, 2, (2)

Figure 1: Overlapping rectangular domains

as well as the following nonlocal coupling condition
∫

Ω1∩Ω2

[u1(x) − u2(x)] dx = 0, (3)

∗This work is supported by the Bulgarian Ministry of Science under grant VU-MI 202/2006.
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where σ(i) ≥ 0, χΩ1∩Ω2
denotes the characteristic function of Ω1∩Ω2 and Γ′

i = ∂Ωi\Γi.

We introduce the spaces Vi =
{
vi ∈ H1(Ωi) : vi = 0 on Γi

}
, i = 1, 2, Ṽ = V1 × V2

and thus the closed subspace of Ṽ which incorporates the condition (3) is:

V =

{
v ∈ Ṽ :

∫

Ω1∩Ω2

[v1(x) − v2(x)] dx = 0

}
.

Consider the variational eigenvalue problem:find (λ, u) ∈ R × V such that

a(u, v) = λ(u, v), ∀v ∈ V, (4)

a(u, v) =

2∑

i=1



∫

Ωi




2∑

k,m=1

a
(i)
km

∂ui

∂xk

∂vi

∂xm
+ a

(i)
0 uivi


 dx+

∫

Γ′

i

σ(i)uivi ds


 .

According to the properties of coefficient functions, it is easy to see that a(·, ·) is
bounded, symmetric and strongly coersive on V × V and V is a closed subspace of
H1(Ω1) ×H1(Ω2).
Thus, the problem (4) could be refer to the theory of abstract elliptic eigenvalue
problems in Hilbert space [2] and the following result (see [1], Theorem 6) is valid:

Theorem 1 The problems (1) – (3) and (4) are formally equivalent. Both problems
have a countable infinite set of eigenvalues λl, all being strictly positive and having
finite multiplicity, without a finite accumulation point. The corresponding eigenfunc-
tions ul can be chosen to be a Hilbert basis of V , orthonormal with respect to (·, ·).

Figure 2: (a) - integral value on T ; (b) - vertex-edge conditions.

Let τ
(i)
hi

be families of regular finite element partitions of Ωi, i = 1, 2, which fulfill

standard assumptions. Herein hi, i = 1, 2 are mesh parameters. The partitions τ
(i)
hi

consist of rectangles T
(i)
j .
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We introduce the FE spaces related to the partitions τ
(i)
hi

: for i = 1, 2

X
(i)
hi

=
{
vi ∈ C(Ωi) : vi|

T (i)
∈ Q2(T

(i)) ∀T (i) ∈ τ
(i)
hi

}
, Xh = X

(1)
h1

×X
(2)
h2
,

Xh,0 =
{
v = (v1, v2) ∈ Xh : vi|Γi

= 0, i = 1, 2
}
,

Then, the FE space related to the nonlocal boundary condition (3) is:

Vh =

{
v ∈ Xh,0 :

∫

Ω1∩Ω2

[v1(x) − v2(x)] dx = 0

}
, Vh ⊂ V.

In order to derive optimal error estimates we introduce suitable modified degrees of
freedom and corresponding interpolation operator (cf. [4]). Let the vertices and edges
of any element T be noted by Mk and lk, k = 1, . . . , 4, respectively. For T we choose
its degrees of freedom in such a way that every polynomial p(x) ∈ Q2(T ) is determined

by: the values at Mk; the integral value

∫

T

p(x, y) dx dy; the values at the midpoints

of lk for Case (a) and the integral values

∫

lk

p(s) ds for Case (b), respectively.

According to the degrees of freedom we have chose, we define the interpolation oper-
ator πh : C(Ω1)×C(Ω2) → Xh,0 on the analogy (in a sense) with the usual Lagrange
interpolation operator Πh.
Estimating the difference between both interpolants Πh and πh and using the fact,
that the order of ‖v−Πhv‖m,Ω is an optimal one, we formulate and prove the following
results:

Theorem 2 Let the function v = (v1, v2) belong to V ∩H3(Ω), Ω = Ω1 ∪ Ω2. Then
there exists a constant C = C(Ω) > 0, independent of h, such that

‖v − πhv‖m,Ω ≤ Ch3−m‖v‖3,Ω, m = 0, 1.

Proposition 1 The finite element space Vh ⊂ V satisfies the following approximation
property:

inf
vh∈Vh

{‖v − vh‖0,Ω + h|v − vh|1,Ω} ≤ Ch3‖v‖3,Ω,

‖v −Rhv‖1,Ω ≤ Ch3‖v‖3,Ω, ∀v ∈ V ∩H3(Ω),

where Rh : V → Vh is the elliptic projection operator.

Finally, we consider finite element approximation of the eigenvalue problem: find
(λh, uh) ∈ R × Vh such that

a(uh, vh) = λh(uh, vh) ∀vh ∈ Vh. (5)

Using biquadratic finite elements to solve (5), we get optimal order error estimate:

‖u− uh‖1,Ω ≤ Ch2‖u‖3,Ω,

|λ− λh| ≤ Ch4‖u‖2
3,Ω,

where C = C(Ω) is independent of the mesh parameters.
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On Chamley’s Problem of Optimal Taxation

Mikhail Krastanov, Rossen Rozenov

In an influential article Chamley [1] introduced the problem of optimal taxation in
a dynamic general equilibrium framework. He showed that if the utility function is
separable in consumption and labour, the optimal tax on capital income is zero in
the long run. Frankel [3] considered the case of a general utility function and claimed
that the capital income tax may be positive or negative depending on whether the
sum of the elasticities of marginal utility with respect to consumption and labour is
increasing or decreasing over time (Theorem 1). In the process of derivation of their
results both Chamley and Frankel used informal arguments about the sign of the one
of the co-state variables.
In this paper we take the Chamley problem to a specific example of utility function and
show that the assumption about the sign of the co-state variable for the private assets
equation in the government’s problem is not true in general. Moreover, following the
approach in [3], which is based on necessary conditions only, we demonstrate that the
problem of the agent may not have a solution.
The setup in the general case as presented in [3] is as follows. There is one representa-
tive consumer which maximizes a utility functional subject to a differential equation
describing the dynamics of the private assets. Formally, the consumer solves:

I =

∫ ∞

0

e−ρtu(c(t), l(t))dt→ max (1)

ȧ(t) = r∗(t)a(t) + w∗(t)l(t) − c(t) (2)

a(0) = a0 (3)

lim
t→∞

e−
R t
0

r∗(s)dsa(t) ≥ 0 (4)

Here the controls are the consumption c and the labour input (hours of work). The
functions r∗(t) and w∗(t) represent the after tax returns on assets and labour, respec-
tively, and the consumer takes these functions as given by the government. Private
assets consist of capital k and government bonds b, i.e. a = k+ b. The instantaneous
utility u(c, l) is assumed concave with u′c > 0 and u′l < 0 and ρ is the time preference
parameter. Condition (4) is an additional constraint which is typically imposed by
economists to ensure that the private assets tend to a non-negative quantity as time
goes to infinity. In other words, the agent is not allowed to end up with debt.
The government solves the following problem:

I =

∫ ∞

0

e−ρtu(c∗(t), l∗(t))dt→ max (5)

subject to
ȧ(t) = r(t)a(t) + w(t)l∗(t) − c∗(t) (6)
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k̇(t) = f(k(t), l∗(t)) − c∗(t) − g(t) (7)

k(0) = k0 (8)

a(0) = a0. (9)

The government has control over r and w and takes c∗ and l∗ as given by the solution
of the consumer’s problem. Since the two optimization problems are interrelated, we
are in a situation of a dynamic game and in order to find the solution we have to
adopt an appropriate equilibrium concept. Following the literature, we shall look for
a Stackelberg equilibrium [2]. This means that in addition to (6) – (9) we add as an
additional constraint the co-state equation for the consumer’s problem:

π̇(t) = π(t)(ρ− r∗(t)), (10)

Proposition 1. The following assertions hold true:

(i) Let ξ > 0 be an arbitrary real number, c∗ and l∗ be optimal controls, and a∗ be
the corresponding optimal trajectory for the problem (1)–(4). Then c∗ and l∗ are

optimal controls, and a∗(t)+e
R t
0

r∗(s)dsξ is the corresponding optimal trajectory
for the problem (1)–(4), where the equality (3) is replaced by a(0) = a0 + ξ;

(ii) Let A > 0 be an arbitrary real number, c and l be admissible controls, and a
be the corresponding trajectory for the problem (1)–(4) such that

lim
t→∞

(
e−

R t
0

r∗(s)dsa(t)
)

= A > 0. (11)

If

∫ t

0

r∗(s)ds ≥ ρt for each t > 0, then the controls c and l, and the trajectory

a are not optimal for the problem (1)–(4).

Next, we investigate Chamley’s problem for a concrete example. Let the utility func-

tion be u(c, l) = ln c− l2

2
and the production function be f(k, l) = γ1k+ γ2l for some

γ1 > 0 and γ2 > 0. Using the necessary conditions for the consumer’s problem we can
write the Hamiltonian for the government’s problem in terms of the co-state variable
π as follows:

H2(r, w, a, k, π, λ, µ, ξ) = − lnπ − π2w2

2
+ λ

(
ar + w2π − 1

π

)

+µ

(
γ1k + γ2wπ − 1

π
− g

)
+ ξπ(ρ− r)

¿From the necessary conditions we obtain that µ(t) = π(t) and applying Michel’s
result [4], which provides a relationship between the Hamiltonian function and the
criterion when controls are optimal, we find that
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w2π2
0 =

(ρπ0a0 − 1)(ρ− 2γ1)

ρ
(12)

Since in order for the integral (1) to be convergent it is necessary that ρ < 2γ1,
the last expression implies that ρπ0a0 − 1 < 0. Finally, noting that the value of the
Hamiltonian for the agent’s problem is equal to the one for the government’s problem,
we obtain for t = 0 that

λ0 =
ρπ2

0(γ1(a0 − k0) + g0)

2γ1(ρπ0a0 − 1)
. (13)

Thus, the sign of λ0 will depend on the sign of γ1(a0 − k0) + g0. If the government
starts with sufficient savings the latter expression could be negative and so λ0 will be
positive in contrast with the assertions of Chamley and Frankel.
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Applications of Cellular Neural Networks for Image
Processing

Angela Slavova, Victoria Ivanova

One of the most interesting aspects of the world is that it can be considered
to be made up of patterns. It is characterized by the order of the elements
of which it is made rather than by the intrinsic nature of these elements.

Norbert Wiener

Many phenomena with complex patterns and structures are widely observed in the
nature. For instance, how does the leopard get its spots, or how does the zebra get
its stripes, or how does the fingerprint get its patterns? These phenomena are some
manifestations of a multidisciplinary paradigm called emergence or complexity. They
share a common unifying principle of dynamic arrays, namely, interconnections of a
sufficiently large number of simple dynamic units can exibit extremely complex and
self-organizing behaviors.
The invention, called cellular neural network (CNN), is due to L.Chua and L.Yang in
1988. Many complex computational problems can be formulated as well-defined tasks
where the signal values are placed on a regular geometric 2-D or 3-D grid, and the
direct interactions between signal values are limited within a finite local neighborhood.
CNN is an analog dynamic processor array which reflects just this property: the
processing elements interact directly within a finite local neighborhood. The concept
of CNN is based on some aspects of neurobiology and adapted to integrated circuits.
For example, in the brain, the active medium is provided by a sheet-like array of
massively interconnected excitable neurons whose energy comes from the burning of
glucose with oxygen.In cellular neural networks the active medium is provided by the
local interconnections of active cells, whose building blocks include active nonlinear
devices (e.g., CMOS transistors) powered by dc batteries.
Cellular Neural Networks have very impressive and promising applications in image
processing and pattern recognition. For such applications CNN functions as a two-
dimensional filter. However, unlike the conventional two-dimensional digital filters,
our cellular neural network uses parallel processing of the input image space and de-
livers its output in continuous time. This remarkable feature makes it possible to
process a large-size image in real time. Moreover, the nearest neighbourhood inter-
active property of CNN makes them much more amenable to VLSI implementation.
Chip implementation of Cellular Neural Networks differ by their size and by their
degree of functionality. Some have a fixed template, and 256 cells, whereas others
are limited to about 30 cells, but are electrically controllable. A programmable chip
of 1024 cells is currently implemented. The programmability and the rapidity of the
chip makes the CNN attractive, the nonlinearity, as we will see, allows to obtain a
nonlinear signal processing, but these advanteges are counterbalanced by the need of
a large silicon area per cell and a quite large power consumption.
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Stimulating applications of CNNs have in fact been developed into a wide range of
disciplines, ranging from classical and sophisticated image filtering, to biological sig-
nal processing solution of nonlinear partial differential equations, physical systems
and nonlinear phenomena modelling, generation of nonlinear and chaotic dynamics,
associative memories, neurophysiology, robotics, etc. Recently new spatio-temporal
based processing strategies able to mimic processing in the retina have been con-
structed. Similarly to a retina, the cellular processor array consists of a large number
of identical analog processing elements. Like in the retina, these elements have local
(usually nearest neighbour) interconnections, to make the implementation feasible.
The interconnection weight pattern in space invariance means that the network has
only a few free parameters. The processor can process either grayscale or binary val-
ued images. Based on the structure and funcionality of the processing elements, and
the interconnection and weighting, a large number of various cellular network types
can be implemented.
Due to the fact that CNNs can constitute analog primitives to represent complex
dynamics in space-time a number of mechatronic structures were developed. Their
locomation was driven by CNN based circuits, like those able to drive bioinspired
walking machines, endowed with a large number of joints.
After the introduction of the CNN paradigm, CNN Technology got a boost when
the analogic cellular computer architecture, the CNN Universal Machine has been
invented. The most successful chips embedded in a computational infrastucture pro-
vided the framework for analogic cellular software development. The industrial ap-
plications rely on the available Aladdin system, for which more information can be
found on the web site:
www.analogic-computers.com.
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Price Dynamics in a Strategic Model of Trade between Two
Regions

Iordan Iordanov, Stoyan Stoyanov, Andrey Vassilev

The present work develops a model of trade between two regions in which, depend-
ing on the relation among output, financial resources and transportation costs, the
adjustment of prices towards a steady state is studied. We assume that there is
one type of traded good and local producers can supply only a fixed amount of this
traded good, which cannot be stored for future consumption. As usual, prices change
to balance supply and demand. In the chosen setup, the evolution of prices according
to an exogenous rule is studied, starting from pre-specified initial conditions. More
specifically, whenever there are unsold quantities left, the price is decreased propor-
tionally and when there are local financial resources unspent, the price is increased
proportionally. This allows us to abstract away from producer behaviour and focus
exclusively on consumers’ decisions. The representative consumers in the two regions
seek to maximize their per-period utility in a strategic situation arising from the
need to compete for scarce resources. We utilize the concept of Nash equilibrium to
characterize optimal behaviour in the game theoretic interaction.
We consider the consumption decisions of two economic agents occupying distinct
spatial locations, called region I and II, respectively. The consumer in region I
(or, shortly, consumer I) exogenously receives money income Y1 > 0 in each period.
Similarly, the consumer in region II (consumer II) receives money income Y2 > 0. For
each period t, in region i, i = 1, 2, a fixed quantity qi > 0 of a certain good is supplied
at a price pi,t. The consumers place orders for the desired quantities in each region,
observing their budget constraints and incurring symmetric transportation costs ρ > 0
per unit of shipment from the “foreign” region. Each consumer attempts to maximize
their total consumption for the current period. Consumers can be considered myopic
in that they do not optimize their consumption over a specified time horizon but their
decisions are confined only to the current period.
In cases when total orders for the respective region exceed the quantity available,
the following distribution rule is applied: first, the order of the local consumer is
executed to the extent possible and then the remaining quantity, if any, is allocated
to the consumer from the other region. It is clear then that the choice of orders to be
placed has a strategic element to it, since the actual quantity received by the consumer
depends on the choices made by the counterpart in the other region. The agents are
assumed to have complete knowledge of all the relevant aspects of the situation under
discussion.
More formally, for each period t we model the above situation as a static noncoopera-
tive game of complete information. Denote by α and β the orders placed by consumer
I in region I and II, respectively. In an analogous manner, γ and δ stand for the
orders of consumer II in regions I and II, all orders obviously being nonnegative
quantities. In period t consumer I’s strategy space S1 is determined by the budget
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constraint and the nonnegativity restrictions on the orders:

S1 = {(α, β) ∈ R
2|αp1,t + β(p2,t + ρ) ≤ Y1, α, β ≥ 0}. (1)

Consumer II’s strategy space in period t is

S2 = {(γ, δ) ∈ R
2|γ(p1,t + ρ) + δp2,t ≤ Y2, γ, δ ≥ 0}. (2)

We adopt the shorthand p′1,t := p1,t+ρ and p′2,t := p2,t+ρ. We also omit the subscript
t whenever it is evident from the context or irrelevant.
The payoff function for consumer I is given by

P1(α, β, γ, δ) = min(α, q1) + min(β, q2 − min(δ, q2)) ≡
≡min(α, q1) + min(β, max(0, q2 − δ))

(3)

and that for consumer II by

P2(α, β, γ, δ) = min(γ, q1 − min(α, q1)) + min(δ, q2) ≡
≡min(δ, q2) + min(γ, max(0, q1 − α)).

(4)

Any unspent fraction of the current-period income is assumed to perish and conse-
quently the accumulation of stocks of savings is not allowed in the model. Similarly,
the goods available each period cannot be stored for future consumption. Let qcons

i

denote the total amount consumed in region i and Y res
i stand for the part of the

region i’s income not spent in the other region. In other words, qcons
1 := α0 + γ0,

qcons
2 := β0 + δ0, Y

res
1,t := Y1 − p′2,tβ0 and Y res

2,t := Y2 − p′1,tγ0.
There are two mutually exclusive situations leading to an adjustment in prices. First,
if the quantity available in the respective region has not been entirely consumed,
prices are adjusted downwards. In discrete time this is captured by the equation

pi,t − pi,t+1

pi,t
=
qi − qcons

i,t

qi
or pi,t+1qi = pi,tq

cons
i,t . (5)

Clearly, if qcons
i = 0, then pi,t+1 = 0. Second, if Y res

i is not entirely exhausted in
absorbing local supply, which can be expressed in value terms as piqi, then the price
pi,t is adjusted upwards to pi,t+1 to ensure residual income exhaustion:

pi,t+1 − pi,t

pi,t
=
Y res

i,t − pi,tqi

pi,tqi
or pi,t+1qi = Y res

i,t . (6)

The counterparts of the above price adjustment rules are also specified in continuous
time. We formally prove the claim that the two situations leading to price adjustment
cannot occur simultaneously. As usual, we consider prices in a steady state (price
equilibrium) if the rules given by equations (5) and (6) do not lead to a change in
prices.
We show that there exists a Nash equilibrium for the basic static game. Moreover,
the Nash equilibria for the different parameterizations of the model are computed
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explicitly by finding the best-reply correspondences for the two players, forming a
system of equations and solving it for the respective Nash equilibrium. Because of
the presence of many parameters the analysis decomposes into the study of a number
of separate cases. The best-reply correspondences have a fairly complex structure
and different cases have to be considered to obtain the Nash equilibria. Economically
justifiable supplementary rules are introduced to select Nash equilibria whenever these
are not unique and to ensure existence in cases when a price is zero.
The paper provides a complete classification of the various types of Nash equilibria
occurring and the corresponding dynamics of prices. The different cases arising in the
computation of the Nash equilibria lead to a natural partition of the set of possible
incomes into zones, which is useful for analyzing the discrete-time case. The types
of Nash equilibria are unique for each zone up to a relationship between prices and
transportation costs. As prices change the partition changes, leading to different
Nash equilibria. The resulting price dynamics in discrete time can be very different
depending on the zone.
For instance, in zone III, defined as

Y1

q1
≥ p1,0,

Y2

q2
≥ p2,0 (7)

there is a unique Nash equilibrium given by (q1, 0, 0, q2) and after at most one (upward)
price adjustment an equilibrium point with positive prices is reached.
As an example of a more complicated situation, in Zone II-2, defined as





Y1 < p1,0q1, p2,0q2 ≤ Y2,

q2 >
1

p2,0

[
Y2 − p′1,0

(
q1 − Y1

p1,0

)]

Y1

p1,0
+ Y2

p′

1,0
≥ q1,

(8)

we find several types of Nash equilibria. The corresponding price adjustment pro-
cesses can lead to regular or degenerate (with one price equal to zero) price equilibria.
The dynamics of prices in zone II-2 are quite diverse, in some cases with only one ad-
justment step needed to reach equilibrium, in other cases with an infinite adjustment
process under which prices tend to a limit equilibrium point, and in yet others with
a finite number of adjustment steps in one regime, after which a switch to a different
regime takes place.
Thus, depending on the parameters of the model, the types of price dynamics can
range from simple to quite complex. Complex price dynamics are usually obtained
when transportation costs are “important” as compared to prices and incomes. In
some cases degenerate equilibria with a zero price arise.
In the continuous-time case, the phase space is partitioned in a way analogous to the
discrete-time case. The equilibrium points of the price system lie on two hyperbolae
and are shown to be only Lyapunov stable. No degenerate equilibria arise for dynamics
in continuous time.
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On a Local Semirefinement Multigrid Algorithm for
Convection-Diffusion Problems

Daniela Vasileva

A multigrid (MG) algorithm with local semirefinement (LSR) is presented for the
solution of convection-diffusion problems. The method is based on the discontinuous
Galerkin (DG) discretisation, which can conveniently handle grid adaptation. Rect-
angular finite elements are used and during the process of adaptation they may be
refined in the x, y or in both (x and y) directions. The algorithm is presented here for
2D problems, but it can be generalized for 3D. In order to achieve optimal efficiency,
the recursive mesh adaptation is combined with a MG solver.

DG discretisation. We consider the linear boundary value problem:

−ε∆u+ ∇ · (bu) + cu = f in Ω ⊂ R
2, u(x, y) = u0(x, y) on Γ = ∂Ω, (1)

where ε > 0 is a parameter, the coefficients b(x, y) = (b1(x, y), b2(x, y)) ∈ (C1(Ω))2,
c(x, y) ≥ 0, c(x, y) ∈ L∞(Ω) and the right-hand side f(x, y) ∈ L2(Ω). We assume
that Ω allows a regular partitioning Ωh = {Ωe | ∪e Ωe = Ω, Ωi ∩Ωj = ∅, i 6= j}, into
equally sized rectangular cells Ωe. As weak form for (1) we use Baumann-Oden’s [1, 2]
DG formulation and the space Sh = {∑e φe, φe ∈ P3(Ωe), Ωe ∈ Ωh} of piecevise
cubic polynomials on the partitioning Ωh is used in the discretisation (for more details
see [3, 4, 5, 6]). The discretisation yields a linear system Lhuh = fh, where the matrix
Lh has a diagonal block structure with blocks of size 16 × 16. We order the basic
functions point-wise (for details see [3, 4, 5]) and the obtained linear system is iterated
using the block Jacobi method with underrelaxation (ω = 0.5).

MG algorithm. A detailed description of a ”standard” MG approach and the cor-
responding smoothing analysis in the case of DG methods with constant coefficients
may be found in [3, 4, 5]. Here we combine the DG discretisation with a semicoars-
ening MG technique (see [7] and references therein). The Sawtooth MG and full
approximation storage (FAS) algorithms [8, 9] are implemented. Sawtooth MG iter-
ation ensures path-independent restrictions (see [7] for details) and FAS provides a
way for local refinement (LR). The grid structure consists of the finest grid Ωmn and
all coarser (with k ≤ m and l ≤ n) semicoarsened grids Ωkl (see Fig.1). The number
of cells on the finest grid is 2m × 2n, and the total number of cells on all grids is
(2m+1 − 1) × (2n+1 − 1) ≈ 4 × 2m × 2n, i.e., 3 times more than in the standard MG.
A description of one semicoarsening MG iteration for the discrete system Lklukl = fkl

on the grid Ωkl with level = k + l is given below:

1. rkl = fkl − Lklukl, f̃kl = fkl;
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2. Repeat
for all k + l = level

if k > 0 then rk−1,l = R̄k−1,l
kl rkl, uk−1,l = Rk−1,l

kl ukl, ūk−1,l = uk−1,l,

f̃k−1,l = Lk−1,lūk−1,l + rk−1,l;

if l > 0 then rk,l−1 = R̄k,l−1
kl rkl, uk,l−1 = Rk,l−1

kl ukl, ūk,l−1 = uk,l−1,

f̃k,l−1 = Lk,l−1ūk,l−1 + rk,l−1;
level −−;
until level = 0;

3. Solve L00u00 = f̃00; c00 = u00 − ū00;
4. Repeat
level + +;
for all k + l = level

if k > 0 then ckl = P k−1,l
kl ck−1,l;

else ckl = 0;
if l > 0 then ckl + = P k,l−1

kl ck,l−1;

if k, l > 0 then ckl − = P k−1,l−1
kl ck−1,l−1;

ukl + = ckl;
Perform ν relaxations on Lklukl = f̃kl;
ckl = ukl − ūkl;

until level = m+ n;

-� -�

-� -�

-� -�

6?

6?

6?

6?

6?

6?

R R

R R

Figure 1: Grid structure

Restrictions and prolongations are defined according to [3, 4, 5]: Let Skl be
the space of piecewise cubic polynomials on Ωkl. Then the natural prolongation
P kl

k+1,l : Skl → Sk+1,l on Ωk+1,l preserves the coarse grid functions on the fine grid.

The restriction operator for the residues, R̄kl
k+1,l : Sk+1,l → Skl is the adjoint of P kl

k+1,l

and the Galerkin relation exists between the discretisation on the coarse and fine grid
Lkl = R̄kl

k+1,l Lk+1,l P
kl
k+1,l. Another restriction Rkl

k+1,l is used for the solution, which
preserves the function values and the derivatives at the coarse cell vertices. It is a
left-inverse of the prolongation, i.e., Rkl

k+1,l P
kl
k+1,l = Ikl.

The LSR-MG algorithm is a generalization of a LR-MG algorithm [10, 11, 12]. On
the first stage the equation is discretised and solved on the global coarsest grid Ω00. In
later stages, some unrefined cells on existing grids are selected for x, y or xy-refinement
and divided into smaller cells. The solution in the new cells is interpolated from the
previous grids and several relaxation sweeps (MG Sawtooth cycles) are performed.
The restrictions are performed where both children cells really exist. Outside the
refined region on Ωk+1,l we may define a virtual solution uk+1,l = P kl

k+1,l ukl, and

as rkl = R̄kl
k+1,l

(
fk+1,l − Lk+1,l P

kl
k+1,l ukl

)
= R̄kl

k+1,l fk+1,l − Lkl ukl, then f̃kl =

Lkl ukl + rkl = R̄kl
k+1,l fk+1,l ≈ fkl, i.e., the right-hand side f̃kl on the coarser grid

Ωkl may be defined as in the standard LR-MG algorithm.

The internal boundaries. A cell on Ωk+1,l may have no neighbours on the same
grid at some of its faces, although these faces are not on the boundary ∂Ω. Thus for
the discretisation on Ωk+1,l auxiliary cells are used at the internal boundaries.
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The solution values are derived by in-
terpolation from coarser grids. But,
unlike the standard LR-MG, some
coarse cells, used in this interpolation,
may have children on another finer
grid, i.e., the solution there may be
further improved.
An example of a locally semirefined
grid and the corresponding grid struc-
ture for MG semicoarsening is given
in Fig.2. The finest cells are marked
with ”•”, the fathers, used in MG
sweeps, are marked with ”o”, and the
auxiliary cells are marked with ”+”.

-�

-� -�

-� -�

6?

6?

6?

6?

6?

R

R R

Figure 2: A semirefined grid and

the LSR-MG structure

Examples. In the examples Ω = [0, 1]2 and the initial grid has 1 cell. 7 stages of x,
y or xy LSR are done. In each stage 10 MG sweeps with 2 post-smoothing iterations
are performed.

Example 1. We consider the 2D equation ε∆u+(x−0.5)ux+(y−0.5)uy = 0, ε =
0.0002, with Dirichlet boundary conditions, corresponding to an exact 1D solution
u(x, y) = erf((x−0.5)/

√
2ε). The solution and the finest grids in the cases of standard

LR and of LSR are plotted in Fig.3. The C-norm of the error is one and the same in
both cases, but the number of cells N on the finest grid and the number NN of all
cells in the MG structure is much less for the LSR-MG case.
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Figure 3: The solution, standard LR and LSR for Example 1

Example 2. The following problem is considered ε∆u− xux − yuy − 2u = f(x, y),
ε = 0.01, where f(x, y) and the Dirichlet boundary conditions correspond to the exact
solution u(x, y) = −xy(1 − exp((x − 1)/ε)(1 − exp((y − 1)/ε). The solution and
the finest grids in the cases of LR and LSR are plotted in Fig.4. The C-norm of
the error is one and the same in both cases, the computing resources (memory and
CPU time) are less in the LSR-MG case. Also, the solution converges faster (i.e., less
MG sweeps may be performed) and some computations (especially restrictions and
prolongations) are cheaper for LSR-MG.

Conclusions. LSR-MG may be successfully used for resolution of boundary and
interior layers. The comparison with standard LR-MG shows that significantly less
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Figure 4: The solution, LR and LSR for Example 2

resources may be used for layers, (almost) parallel to the x or y axis. But in the
”worst” cases (layers diagonal to the axes) approximately three times more compu-
tations may be performed.

Notes about a possible adaptation criterion. We plan to use an adaptation
criterion, based on the comparison of the discrete solution on the finest grid and its
restrictions to the next (in the x and y directions) grids (details for LR-MG may be
found in [6]). In the LSR-MG case, the grid adaptation may be performed as:
1. All cells of Ω00 are refined in the x and y direction at least once;
2. Let Ωe ∈ Ωkl, k+l > 1, be an unrefined cell and F x(Ωe) and F y(Ωe) be its x and

y fathers. Let rx
kl := ‖ukl−Rk−1,l

kl ukl‖C(F x(Ωe)), ry
kl := ‖ukl−Rk,l−1

kl ukl‖C(F y(Ωe)),
Q = q(1 + q)/(1 − q)2, where q depends on the local regularity of the solution (for
details see [6]), and tol be a desired tolerance. If q ≥ 1 the cell is always refined
in both directions. Otherwise if rx

kl Q > tol, the cell is refined in the x direction.
Correspondingly, if ry

kl Q > tol, the cell is refined in the y direction.

Acknowledgments. D. Vasileva thanks Prof. P.W. Hemker (CWI) for proposing the
idea for LSR development and for the many fruitful discussions about MG for DG.
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On the Numerical Integration of Systems with
Deterministic Uncertainties∗

Vladimir M. Veliov

The framework of deterministic (set-membership) uncertainties is a complementary
tool to the stochastic one, which is useful when no reliable statistical information for
the uncertainties is available, while reasonable bounds for the magnitude of the un-
certainties are known. In the latter case the deterministic approach has the advantage
to give guaranteed results, although some times rather conservative.
A basic tool for deterministic modeling of uncertain processes is the Aumann integral
of a set-valued mapping F : [0, T ] ⇒ Rn:

∫ T

0

F (t) dt =

{∫ T

0

f(t) dt : f ∈ L1(0, T ), f(t) ∈ F (t)

}
.

The approximation of such integrals by quadrature formulae is an issue to which a lot
of investigations are devoted, and which is troubled by the following facts (excluding
“non-generic cases”): (i) no reasonable Tailor expansions for set-valued maps exist;
(ii) the usual way of estimating the global error of linear quadrature formulae with
step h by summing the local errors does not give a better error estimate than O(h),
no matter what quadrature formula is used and how “nice” is the set valued map.
The author has established in a series of papers the so-called “non-accumulation
effect”, which in the case of an Aumann integral can be formulated as follows: for
linear composite quadrature formulae with step h, that are exact for linear functions,
the global error estimate is of order O(h2) under rather general conditions for F ,
although the local error at every integration step may also be of order O(h2). That
is, the local errors do not “accumulate”.
Extensions of the non-accumulation effect to more general cases include the so-called
affine multi-systems (affine control systems, or systems with affine uncertainties):

ẋ = f0(x) +G(x)u(t), x(0) = x0, x(t) ∈ Rn, u(t) ∈ U ⊂ Rr,

where U is a convex and compact set. The reachable set of this multi-system, R(T ),
is defined as the set of all points in Rn which are reached by a trajectory of the above
equation corresponding to some measurable function u with values in U .
Let us consider a single-step discretization scheme with a step length h = T/N for
the above equation, where u is assumed to have the constant value uk ∈ U in the k-th
interval of discretization [tk, tk+1]:

xk+1 = Fh(xk, uk), k = 0, . . . N − 1.

Similarly as above one can define the reachable set RN (T ) = {xN} for the last discrete
time inclusion, letting uk take all possible values in U .

∗This research was supported by the Austrian Science Foundation (FWF) under grant P18161.
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Under natural differentiability and growth conditions for f0 and G = [g1 . . . gr], and

under the more restrictive condition that [gi, gj ] := ∂gi

∂x gj − ∂gj

∂x gi = 0, i, j =
1, . . . , r, the theorem (roughly) formulated below holds.

Theorem 3 (Veliov, 1997) Assume that the discretization scheme has a third order
local error when applied to equations with sufficiently smooth right-hand sides. Then
there exists a constant C such that for every differentiable function l : Rn 7→ R with
locally bounded (by Ml) and Lipschitz continuous (with a constant Ll) derivative it
holds that ∣∣∣∣ inf

x∈R(T )
l(x) − inf

xN∈RN (T )
l(xN )

∣∣∣∣ ≤ C(Ml + Ll)h
2.

This theorem also exhibits the non-accumulation effect, since one can see in trivial
examples that the local error of the discretization scheme applied to the underlying
set-dynamics Xk+1 = Fh(Xk, U), k = 0, . . . N − 1, is of order O(h2) – the same as
the global one, expressed in the terms of all functionals l satisfying the assumptions
of the theorem.
A number of applications of the non-accumulation effect are known, most of them for
numerical approximations of control systems, but also some qualitative ones. Below
we present some ongoing work on time-discretization of switched systems, which are in
the focus of many recent investigations due to their applications in control of electric
circuits and other technical systems with various modes of operation, but also in
economics.
The simplest nontrivial problem that arises for switched systems in the context of
reachability is formulated below.
Let two n×n matrices A1, A2 be given, and let the following dynamics be considered:

ẋ = A1x, or ẋ = A2x, x(0) = x0.

A trajectory, x(t), is an absolutely continuous function satisfying for a.e t either the
first or the second linear differential equation. The reachable set by k − 1 switches is

R(T ; k) = {eAik
τk . . . eAi2

τ2eAi1
τ1x0 : τs > 0,

k∑

s=1

τs = T},

and the (limit) reachable set is

R(T ) = cl ∪k R(T ; k).

In 2007 Margaliot showed by an example with matrices A1 and A2 of dimension 4
and order of nilpotency equal to 3 that R(T ; k) 6= R(T ) for every k (contrary to a
conjecture formulated by Gurvits in 1995). Thus no finite number of switchings is
enough to cover the whole reachable set. This fact implies the following problem for
practical implementation of the considered switched system.
Let a time-step h = T/N be given, let the reachable set Rh(T ) be defined similarly
as R(T ;N), but with switches allowed only at moments ti = ih, i = 1, . . . , N − 1.
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If the claim that R(T ; k) = R(T ) were true for a finite k, than it would have been
easy to prove the following estimation for the Hausdorff distance between R(T ) and
Rh(T ) ⊂ R(T ):

H(Rh(T ), R(T )) ≤ Ckh.

However, this is not the case as the example of Margaliot has shown. In general, one
can prove using a result of Gramel (2003) that

H(Rh(T ), R(T )) ≤ C
√
h

where C depends only on ‖Ai‖.

Conjecture 1: For every two matrices A1 and A2 it holds that

H(Rh(T ), R(T )) ≤ Ch,

where C depends only on A1 and A2.
The switching system considered above allows the following control formulation:

ẋ = (1 − u(t))A1x+ u(t)A2x, x(0) = x0, u(t) ∈ {0, 1}.

The reachable set, R(T ) of this system is the same as the one defined above. It also
coincides with the reachable set of the relaxed system

ẋ = (1 − u(t))A1x+ u(t)A2x, x(0) = x0, u(t) ∈ [0, 1],

where the control function u(t) can take all values in [0, 1], in contrast to the switched
system, where u(t) ∈ {0, 1}.
Following a Sharon and Margaliot (2007), we consider the reachable set, R̂(T ; k), of
the relaxed system, generated by using only piece-wise constant u(t) with no more
than k − 1 jumps. Sharon and Margaliot (2007) showed that R̂(T ; 5) = R(T ) holds
for matrices with an order of nilpotency not exceeding 3. If R̂(T ; k) = R(T ) for some
k it is easy to prove that

H(R̂h(T )), R̂(T )) ≤ Ckh2,

where C depends only on A1 and A2. However, Margaliot (2007) gave an example
(using the Fuller phenomenon) with n = 7 and order of nilpotency equal to 5, in
which R̂(T ; k)) 6= R̂(T ) for any k.
It is easy to show that in the general case the estimation

H(R̂h(T )), R̂(T )) ≤ Ch

holds true with C depending only on A1 and A2. However, it seems that the approx-
imation is of higher order:
Conjecture 2:

H(R̂h(T ), R(T )) ≤ Ch1.25,
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where C depends only on ‖Ai‖.
There is a good reason to believe that the above two conjectures are true, namely,
that we have proofs, which however, need to be carefully checked before stating the
conjectures as theorems. However, we have no reasons to claim that the latter es-
timation is exact. The proofs use the results and ideas presented in the first part
above. We stress that both “conjectures” present further manifestations of the effect
of non-accumulation of errors, since in both cases the summation of the local errors
gives lower order estimations than the ones that actually hold.
The error analysis of the above switching system may be of interest for ensuring
consistency of the time-discretization steps in cases where the system is incorporated
in a more complex structure. However, the main value of these results is delivered by
the proofs, which give hints for efficient numerical approximations.
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Formulation, Analysis and Numerical Solution of Parabolic
Interface Problems on Disjoint Intervals

Boško S. Jovanović, Lubin G. Vulkov, etc.

Interface problems appear in variety of applications. Here we discuss the following
initial boundary-value problem (IBVP): find functions u1(x, t), u2(x, t), that satisfy
the parabolic equations, [7]

∂u1

∂t
− ∂

∂x

(
p1(x)

∂u1

∂x

)
+ q1(x)u1 = f1(x, t), x ∈ Ω1 ≡ (a, b), t > 0, (1)

∂u2

∂t
− ∂

∂x

(
p2(x)

∂u2

∂x

)
+ q2(x)u2 = f2(x, t), x ∈ Ω2 ≡ (c, d), t > 0, (2)

where −∞ < a < b < c < d < +∞, and the internal boundary (or nonlocal interface
jump) conditions

p1(b)
∂u1(b, t)

∂x
= −α1u1(b, t) + β1u2(c, t) + γ1(t), (3)

−p2(c)
∂u2(c, t)

∂x
= −α2u2(c, t) + β2u1(b, t) + γ2(t). (4)

These two conditions have the form of Dirichlet-Robin (DR) mixed boundary condi-
tions, see [1], [5] and the review of Givoli [3]. DR conditions have been incorporated
in a finite element formulation in order to eliminate an infinite domain [3], a singular
domain [3], or a substructure [3] from computational domain. Finally, in order to
complete the IBVP we pose simplest external boundary conditions and initial condi-
tions

u1(a, t) = 0, u2(c, t) = 0; u1(x, 0) = u10(x), u2(x, 0) = u20(x). (5)

Throughout the paper we assume that, for i = 1, 2, the data satisfy the usual regu-
larity and ellipticity conditions

pi(x), qi(x) ∈ L∞(Ωi); 0 < p0i ≤ pi(x), 0 ≤ qi(x) a.e. in Ωi, i = 1, 2. (6)

Consider the product space L = L2(Ω1) × L2(Ω2), endowed with the inner product
and associated norm

(u, v)L = β2(u1, v1)L2(Ω1) + β1(u2, v2)L2(Ω2), ‖v‖L = (v, v)
1/2
L ,

We also introduce the product space endowed with the inner product

(u, v)H1 = β2

[
(u1, v1)L2(Ω1) +

(
du1

dx ,
dv1

dx

)

L2(Ω1)

]

+β1

[
(u2, v2)L2(Ω2) +

(
du2

dx ,
dv2

dx

)

L2(Ω2)

]

C-68



and associated norm. We also use the energy inner product and norm

[u, v] = β2[u1, v1]1 + β1[u2, v2]2, [ui, vi]i =

∫

Ωi

(
pi
dui

dx

dvi

dx
+ qiuivi

)
dx, i = 1, 2.,

Let us introduce the cylinders QiT = {(x, t)| ∈ Ωi, 0 < t < T}, i = 1, 2 and the
bilinear form

A(v, w) ≡ [v, w]β2α1v1(b)w1(b) + β1α2v2(c)w2(c) − β1β2

[
v1(b)w2(c) + v2(c)w1(b)

]
.

Theorem 1 Assume f = (f1, f2) ∈ L2(0, T ;L) , u0 = (u10, u20) ∈ L and that assume
that

αi > 0, βi > 0, i = 1, 2 and β1β2 ≤ α1α2. (7)

Then the IBVp has a unique solution u = (u1, u2) ∈ H1,0 ≡ L2(0, T ;H1) which
satisfies the following weak formulation:

−β2

∫

Q1T

u1
∂v1
∂t

dxdt− β1

∫

Q2T

u2
∂v2
∂t

dxdt+

∫ T

0

A(u(·, t), v(·, t))dt

= β2

∫

Ω1

u10(x)v1(x, 0)dx+ β1

∫

Ω2

u20(x)v2(x, 0)dx+ β2

∫

Q1T

f1(x, t)v1dxdt

+β1

∫

Q2T

f2(x, t)v2dxdt+ β2

∫ T

0

γ1(t)v1(b, t)dt+ β1

∫ T

0

γ2(t)v2(c, t)dt,

∀ v = (v1, v2) ∈ H1,1 ≡ L2(0, T ;H1) ∩H1(0, T ;L), vi(x, T ) = 0 a.e. in Ωi.

Considering the heat conduction problem, the temperature of a body can not be
negative if the temperature was nonnegative in the initial state and the boundary of
the body. This property is called nonnegativity preservation (NP). In this section we
analyze the NP for problem (1)-(8). For some T > 0 let us consider the inequalities

∂ui/∂t− Liui ≥ 0 in QiT
, i = 1, 2., and (8)

l1(u1, u2) ≥ 0, l2(u1, u2) ≥ 0, 0 < t < T. (9)

On the base of the general theory [2] we proved (NP) in [7] .
Theorem 2 Let ui(x, t), i = 1, 2, be in Holder class and satisfy (8) and (9) weakly.
If ui(x, 0) ≥ 0 then ui(x, t) ≥ 0 a.e. in QiT .

Theorem 3. Let the assumptions (6), (7) hold and ui0 ∈ L2(Ωi), fi0, fi1 ∈ L2(Qi),
fi2 ∈ L2(Ri), γi ∈ H−1/4(0, T ), i = 1, 2. Then the IBVP (1)-(7) has a unique weak
solution u = (u1, u2) ∈ H1,1/2 and a priori estimate holds

‖u‖2
H1,1/2 ≤ C

∑2
i=1 β3−i

(
‖ui0‖2

L2(Ωi)
+ ‖fi0‖2

L2(Qi)

+‖fi1‖2
L2(Qi)

+ ‖fi2‖2
L2(Ri)

+ ‖γi‖2
H−1/4(0,T )

)
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Let ω̄1,h1
be an uniform mesh in Ω̄1 with the step-size h1 = (b1 − a1)/n1, ω1,h1

=
ω̄1,h1

∩Ω1, ω
−
1,h1

= ω1,h1
∪ {a1}, ω+

1,h1
= ω1,h1

∪ {b1}. Analogously we define uniform

mesh ω̄2,h2
in Ω̄2 with the step-size h2 = (b2 − a2)/n2 and its submeshes ω2,h2

=
ω̄2,h2

∩ Ω2, ω
−
2,h2

= ω2,h2
∪ {a2}, ω+

2,h2
= ω2,h2

∪ {b2}. Finally, we introduce uniform

mesh ω̄τ in [0, T ] with the step-size τ = T/n and set ωτ = ω̄τ ∩ (0, T ), ω−
τ = ωτ ∪{0},

ω+
τ = ωτ∪{T}. From now on, we will assume that ui belongs toH3,3/2(Qi), while pi ∈
H2(Ωi) and qi ∈ H1(Ωi). Consequently, fi ∈ H1,1/2(Qi) and may be discontinuous
function. That is way we approximate IBVP (1)-(6) with the following implicit FDS
with averaged input data:

v1,t̄ − (p̄1v1,x̄)x + q̄1v1 = f̄1, x ∈ ω1,h1
, t ∈ ω+

τ , (10)

v1,t̄(b1, t) +
2

h1

[
p̄1(b1)v1,x̄(b1, t) + α1v1(b1, t) − β1v2(a2, t)

]

+q̄1(b1)v1(b1, t) = f̄1(b1, t) +
2

h1
γ̄1(t), t ∈ ω+

τ ,
(11)

v2,t̄ − (p̄2v2,x̄)x + q̄2v2 = f̄2, x ∈ ω2,h2
, t ∈ ω+

τ , (12)

v2,t̄(a2, t) −
2

h2

[
p̄2(a2 + h2)v2,x(a2, t) − α2v2(a2, t) + β2v1(b1, t)

]

+q̄2(a2)v2(a2, t) = f̄2(a2, t) −
2

h2
γ̄2(t), t ∈ ω+

τ ,
(13)

v1(a1, t) = 0, v2(b2, t) = 0, t ∈ ω+
τ , (14)

vi(x, 0) = ui0(x), x ∈ ω̄i,hi
, (15)

where

p̄i(x) =
1

2
[pi(x) + pi(x− hi)], q̄i(x) = T 2

xqi(x), x ∈ ωi,hi
, i = 1, 2,

q̄1(b1) = T 2−
x q1(b1), q̄2(a2) = T 2+

x q2(a2), f̄i(x, t) = T 2
xT

−
t fi(x, t), t ∈ ω+

τ , i = 1, 2,

f̄1(b1, t) = T 2−
x T−

t f1(b1, t), f̄2(a2, t) = T 2+
x T−

t f2(a2, t), γ̄i(t) = γi(t),

Finally, the next theorem is the main result of [8].
Theorem 4. Let pi ∈ H2(Ωi), qi ∈ H1(Ωi), γi ∈ H1(0, T ), i = 1, 2, and let
assumptions (6) and (7) hold. Let also the solution of IBVP (1)-(7) belongs to the
space H3,3/2. Then the solution v of FDS (10)-(15) converges to the solution u of

IBVP (1)-(7) in H
1,1/2
h,τ and the following convergence rate estimate holds true:

‖u− v‖
H

1,1/2
h,τ

≤ C(h2
√

log 1/τ + τ)
(
1 + max

i
‖pi‖H2 + max

i
‖qi‖H1

)

×
(
‖u‖H3,3/2 + ‖γ‖H1(0,T )

)
.

Remark 1. For u ∈ Hs,s/2, 1.5 < s < 3, using Bramble-Hilbert lemma and technique
similar to those in [4], [6] , one can obtain convergence rateO(hs−1

√
log 1/h) assuming

τ ≍ h2.

Linear and nonlinear elliptic problems on disjoint domains are discussed in [8], [9] .
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Parallel PCG Algorithms for Voxel Elasticity Problems∗

Svetozar Margenov, Yavor Vutov

Two parallel iterative solvers for large-scale linear systems related to µFEM simulation
are presented. The problems solved represent the strongly heterogeneous structure of
real bone specimens or a geocomposite material. The voxel data are obtained by a
high resolution computer tomography.
We consider the weak formulation of the linear elasticity problem in the form: find
u ∈ [H1

E(Ω)]3 = {v ∈ [H1(Ω)]3 : vΓD
= uS} such that

∫

Ω

[2µε(u) : ε(v) + λdivudivv]dΩ =

∫

Ω

f tvdΩ +

∫

ΓN

gtvdΓ, (1)

∀v ∈ [H1
0 (Ω)]3 = {v = [H1(Ω)]3 : vΓD

= 0}, with the positive constants λ and µ of
Lamé, the symmetric strains

ε(u) := 0.5(∇u + (∇u)t),

the volume forces f , and the boundary tractions g, ΓN ∪ ΓD = ∂Ω, |ΓD| 6= ∅. The

Lamé coefficients are given by λ =
νE

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
, where E stands

for the modulus of elasticity, and ν ∈ (0, 1
2 ) is the Poisson ratio.

To obtain a stable saddle-point system one usually uses a mixed formulation for u

and divu. By the choice of piece-wise constant finite elements for the dual variable,
it can be eliminated at the macroelement level, and thereafter we get a symmetric
positive definite FEM system in primal unknowns (displacement). This approach is
known as reduced and selective integration (RSI) technique, see [2]. The discretization
of (1) using nonconforming rotated trilinear elements of Rannacher-Turek [4] leads to
the coupled system of linear equations



K11 K12 K13

K21 K22 K23

K31 K32 K33






u1
h

u2
h

u3
h


 =




f1
h

f2
h

f3
h


 . (2)

Here the stiffness matrix K is written in block form corresponding to a separate dis-
placements components ordering of the vector of nodal unknowns. Since K is sparse,
symmetric and positive definite, we use the PCG algorithm to solve the system (2).
Crucial for its performance is the preconditioning technique used. Here we focus on
two preconditioners based on the isotropic variant of the displacement decomposi-
tion (DD)[5]. We write the DD auxiliary matrix in the form

CDD =



A

A
A


 (3)

∗This work is partly supported by the Bulgarian Ministry of Science under grant VU-MI 202/2006.
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where A is the stiffness matrix corresponding to the bilinear form

a(uh, vh) =
∑

e∈Ωh

∫

e

E

(
3∑

i=1

∂uh

∂xi

∂vh

∂xi

)
de. (4)

Such approach is motivated by the second Korn’s inequality, which holds for the RSI
FEM discretization under consideration. This means that the estimate

κ(C−1
DDK) = O((1 − 2ν)−1)

holds uniformly with respect to the mesh size parameter in the FEM discretization.
The first of the studied preconditioners is obtained by parallel MIC(0) factorization
of the blocks in (3). As an alternative, inner PCG iterations with BoomerAMG
preconditioner for A are used to approximate the DD block-diagonal matrix (3).
BoomerAMG is a parallel algebraic multigrid implementation from the package Hypre,
developed in LLNL, Livermore. For a description of the algorithms used and their
settings, see [3] and the references therein.
Table 1 presents the time T in seconds, the number of iterations It (the outer ones
for the AMG code), varying the preconditioners, the problem sizes and the platforms
for a model problem representing vertically loaded brick. The computer platforms
C1, C2 and C3 are described in [3].

Table 1: Parallel Tests I

C1 C2 C3
MIC(0) AMG MIC(0) AMG MIC(0) AMG

n N p T [s] It T [s] It T [s] It T [s] It T [s] It T [s] It
64 2 396 160 1 136.6 115 150.1 9 83.7 115 84.0 9 83.9 115 115.1 9

128 19 021 824 8 202.0 163 195.6 10 172.1 163 229.8 10 127.8 163 152.6 10
256 151 584 768 64 355.6 230 261.4 10 464.1 230 430.0 10 328.2 230 307.1 10

In a good agreement with the theory, the number of iterations for MIC(0) increases
as O(

√
n), while the AMG iterations stay about the same. For the smallest problem

(N=2 396 160) MIC(0) clearly outperforms the AMG code. For the medium size (N=
19 021 824) the times are rather similar. However, for the largest problem (N=151
584 768) the advantage of AMG is well expressed.
The bone microstructure is a typical example of strongly heterogeneous media. In the
presented tests, the computational domain is a composition of solid and fluid phases.
The CT image is extracted from the dataset [1]. The voxel size is 37µm. Each voxel
corresponds to a macroelement from the RSI FEM discretization. The bone specimen
is placed between two plates (see Fig. 1). The thickness of the plates is 1 voxel. The
position of the bottom plate is fixed (homogeneous Dirichlet boundary conditions),
and a force of ||g|| = 1 is uniformly distributed on the top one. This setting simulates
a vertically loaded bone specimen.
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Figure 1: Structure of the solid phase: 32× 32× 32 - left, 64× 64× 64 - middle, and
128 × 128 × 128 - right.

The considered test problems are given by the following parameters: Ep = 10, Es = 1,
Ef = ζ ∈ {0.1, 0.01, 0.001}, ν = 0.3. Here, Ep is the elasticity modulus of the two
plates, Es stands for a scaled elasticity modulus of the solid phase, while Ef introduces
varying coefficient jumps between solid and fluid phases.
The results are presented in Table 2.

Table 2: Parallel Tests II

ζ = 0.1 ζ = 0.01 ζ = 0.001
MIC(0) AMG MIC(0) AMG MIC(0) AMG

n p T [s] It T [s] It T [s] It T [s] It T [s] It T [s] It
64 1 239.3 330 374.9 27 348.3 505 757.9 57 588.6 823 1040.5 78

128 8 833.2 708 681.0 25 975.5 830 1501.3 60 2166.7 1850 2908.9 107
256 64 2393.8 1237 945.4 25 3495.7 1831 2114.4 57 6025.8 3150 5520.1 114

The considered algorithms were successfully applied to another test problem. The
voxel data represents a coal-polyurethane geocomposite (see Fig. 2 left). The domain
is cubic – 75x75x75mm, but the scan is non-uniform in all directions – 35x110x110
voxels. The mechanical properties used were: Coal – ν = 0.25, E = 4000MPa;
Polyurethane – ν ∈ [0.1, 0.25], E ∈ [200, 2100]MPa. The setting used was the same –
vertically loaded specimen. On the right on Fig. 2 are shown vertical displacements.

The general conclusion is that the studied codes provide a stable toolkit for computer
simulation of the bone microstructure. Both approaches have their advantages de-
pending on the size of the FEM systems and the level of heterogeneity of the bone
specimens. The achieved parallel scalability well corresponds to the connectivity of
the considered problems.
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Figure 2: Left: coal-polyurethane geocomposite brick; right: vertical displacements.
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