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Blood cells production and regulation

Haematopoietic pluripotent stem cells (HSCs) in bone marrow give
birth to the three blood cell types, because of their
■ rapid migratory activity and ability to ”home” to their niche in the

bone marrow;
■ high self-renewal and differentiation capacity , responsible for the

production and regulation of the three blood cell types.

Growth factors or Colony Stimulating Factors (CSF) – specific proteins
that stimulate the production and maturation of each blood cell type.

Blast cells – blood cells that have not yet matured.

Blood cell type Function Growth factors

Erythrocyte Transport oxygen Erythropoietin
to tissues

Leukocyte Fight infections G-CSF, M-CSF, GM-CSF,
Interleukins

Thrombocyte Control bleeding Thrombopoietin
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Blood pathologies

Various hematological diseases (including leukaemia) are characterized by
abnormal production of particular blood cells (matured or blast).

Main stages in the therapy of blood diseases:

TBI: Total body irradiation (TBI) and chemotherapy – kill the "tumour" cells, but also
the healthy ones.

BMT: Bone marrow transplantation (BMT) – stem cells of a donor (collected under
special conditions) are put in the peripheral blood.

After BMT, HSCs have to:

1. find their way to the stem cell niche in the bone marrow; and

2. selfrenew and differentiate to regenerate the patient’s blood system.

Adequate computer models would help medical doctors to
■ understand better the HSCs migration and differentiation processes;
■ design nature experiments for validation of hypotheses;
■ predict the effect of various treatment options for specific blood diseases;
■ shorten the period in which the patient is missing their effective immune system.
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HSCs mobilization, homing and lodging

A. Wilson, A. Trumpp, Bone-marrow haematopoietic-stem-cell niches, Nature
Reviews Immunology, Vol.6, (2006), 93–106.
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Model of HSCs’ chemotactic movement
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Involved data

Unknowns:

s(t, x) – concentration of stem cells in Ω
a(t, x) – concentration of chemoattractant
b(t, x) – concentration of stem cells bound to stroma
cells at the boundary part Γ1

s(t, x) ≥ 0, a(t, x) ≥ 0, b(t, x) ≥ 0

Parameters:

ε – random motility coefficient of HSCs
χ(a) – chemotactic sensitivity function
Da – diffusion coefficient of chemoattractant
γ – consumption rate-constant for SDF-1
c(x) – concentration of stroma cells on Γ1

β(t, b) – proportionality function in the production
rate of chemoattractant

Ω

Γ1

2

ν

Γ

stroma cells

no flux

Ω ∈ R2

∂Ω = Γ1 ∪ Γ2

Γ1 ∩ Γ2 = ∅

A. Kettemann, M. Neuss-Radu, Derivation and analysis of a system modeling
the chemotactic movement of hematopoietic stem cells, Journal of
Mathematical Biology, 56, (2008), 579-610.
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The model






∂ts = ∇ · (ε∇s − s∇χ(a)) , in (0, T ) × Ω

∂ta = Da∆a − γas , in (0, T ) × Ω

−(ε∂νs − sχ′(a)∂νa) =

{

c1s − c2b , on (0, T ) × Γ1

0 , on (0, T ) × Γ2

Da∂νa =

{

β(t, b)c(x) , on (0, T ) × Γ1

0 , on (0, T ) × Γ2

∂tb = c1s − c2b , on (0, T ) × Γ1 and b = 0, on (0, T ) × Γ2

s(0) = s0, a(0) = a0 in Ω, and b(0) = b0 on Γ1

Existence of unique solution is ensured by

c ∈ H
1

2 (∂Ω), β ∈ C1(R × R, R), χ ∈ C2(R)

0 ≤ c(x) ≤ c̄, x ∈ Γ1 and c ≡ 0, x ∈ Γ2

β(0, b0) = 0, 0 ≤ β(t, b) ≤ M ,

∣

∣

∣

∣

∂β

∂b
(t, b)

∣

∣

∣

∣

≤ Ms,

∣

∣

∣

∣

∂β

∂t
(t, b)

∣

∣

∣

∣

≤ Mt

χ ∈ {χ ∈ C2(R)|0 ≤ χ(a), 0 ≤ χ′(a) ≤ Cχ, |χ
′′

(a)| ≤ C′
χ, a ∈ R}
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Numerical solution
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Finite volume method

Ut + f(U)x + g(U)y = Λ(Uxx + Uyy) + R(U)

U = (s, a, p, q)T , f(U) = (sχp, 0, γas, 0)T , g(U) = (sχq, 0, 0, γas)T

p = ax, q = ay, Λ = diag(ε, Da, Da, Da), R(U) = (0,−γas, 0, 0)T

λf
i , λ

g
i – eigenvalues of

∂f

∂U
and

∂g

∂U

xα = α∆x, yβ = β∆y, Cj,k := [xj− 1

2

, xj+ 1

2

] × [yk− 1

2

, yk+ 1

2

]

Ūj,k(t) =
1

∆x∆y

∫∫

Cj,k

U(x, y, t)dxdy – unknowns of the discrete system

Piecewise linear reconstruction Ũ for U obtained at each time step:

Ũ(x, y) := Ūj,k + (Ux)j,k(x − xj) + (Uy)j,k(y − yk), (x, y) ∈ Cj,k

should be conservative, nonoscilatory and positivity preserving.

A. Chertock, A. Kurganov, A second-order positivity preserving central-upwind
scheme for chemotaxis and haptotaxis models, Numer. Math. (2008) 111:
169-205.
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Semi-discrete scheme

d

dt
Ūj,k = −

Hx
j+ 1

2
,k
− Hx

j− 1

2
,k

∆x
−

H
y

j,k+ 1

2

− H
y

j,k− 1

2

∆y

+ Λ

[

Ūj+1,k − 2Ūj,k + Ūj−1,k

(∆x)2
+

Ūj,k+1 − 2Ūj,k + Ūj,k−1

(∆y)2

]

+ R̄j,k

Hx
j+ 1

2
,k

=
a+

j+ 1

2
,k
f(UE

j,k) − a−

j+ 1

2
,k
f(UW

j+1,k)

a+
j+ 1

2
,k
− a−

j+ 1

2
,k

+
a+

j+ 1

2
,k

a−

j+ 1

2
,k

a+
j+ 1

2
,k
− a−

j+ 1

2
,k

[

UW
j+1,k − UE

j,k

]

H
y

j,k+ 1

2

=
b+
j,k+ 1

2

g(UN
j,k) − b−

j,k+ 1

2

g(US
j,k+1)

b+
j,k+ 1

2

− b−
j,k+ 1

2

+
b+
j,k+ 1

2

b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

[

US
j,k+1 − UN

j,k

]

a±

j+ 1

2
,k

, b±
j,k+ 1

2

– computed from λf
i , λ

g
i for UE

j,k, UW
j+1,k, UN

j,k, US
j,k+1

R̄j,k =
1

∆x∆y

∫∫

Cj,k

R(U(x, y, t))dxdy – computed using midpoint rule
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Semi-discrete scheme – cont.

UE
j,k := Ũ(xj+ 1

2

− 0, yk) = Ūj,k +
∆x

2
(Ux)j,k

UW
j,k := Ũ(xj− 1

2

+ 0, yk) = Ūj,k −
∆x

2
(Ux)j,k

UN
j,k := Ũ(xj , yk+ 1

2

− 0) = Ūj,k +
∆y

2
(Uy)j,k

US
j,k := Ũ(xj , yk− 1

2

+ 0) = Ūj,k −
∆y

2
(Uy)j,k

jkC

W
E E

W

N

S

N

S

∆x x

y

y

y

j x

k

(k+1)

(j−1) ∆

∆(k−1)

(j+1)∆

∆

∆

(Ux)j,k = minmod
(

Θ
Ūj,k − Ūj−1,k

∆x
,
Ūj+1,k − Ūj−1,k

2∆x
, Θ

Ūj+1,k − Ūj,k

∆x

)

(Uy)j,k = minmod
(

Θ
Ūj,k − Ūj,k−1

∆y
,
Ūj,k+1 − Ūj,k−1

2∆y
, Θ

Ūj,k+1 − Ūj,k

∆y

)

minmod(z1, z2, . . . ) :=











minj{zj}, if zj > 0 ∀j,

maxj{zj}, if zj < 0 ∀j,

0, otherwise
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Time integration

λ :=
∆t

∆x
, µ :=

∆t

∆y
, a := max

j,k
{max{a+

j+ 1

2
,k

,−a
−

j+ 1

2
,k
}}, b := max

j,k
{max{b+

j,k+ 1

2

,−b
−

j,k+ 1

2

}}

■ Explicit Euler ∆t ≤ min(∆x
8a

, ∆y
8b

, c), c := (∆x)2(∆y)2

4((∆x)2+(∆y)2)

Ūj,k(t + ∆t) = Ūj,k(t) − λ
“

H
x

j+ 1

2
,k

(t) − H
x

j− 1

2
,k

(t)
”

− µ
“

H
y

j,k+ 1

2

(t) − H
y

j,k− 1

2

(t)
”

+ ∆tΛ
Ūj+1,k(t) − 2Ūj,k(t) + Ūj−1,k(t)

(∆x)2

+ ∆tΛ
Ūj,k+1(t) − 2Ūj,k(t) + Ūj,k−1(t)

(∆y)2
+ ∆tR̄j,k(t)

■ IMEX Scheme ∆t ≤ min(∆x
4a

, ∆y
4b

)

Ūj,k(t + ∆t) = Ūj,k(t) − λ
“

H
x

j+ 1

2
,k

(t) − H
x

j− 1

2
,k

(t)
”

− µ
“

H
y

j,k+ 1

2

(t) − H
y

j,k− 1

2

(t)
”

+ ∆tΛ
Ūj+1,k(t + ∆t) − 2Ūj,k(t + ∆t) + Ūj−1,k(t + ∆t)

(∆x)2

+ ∆tΛ
Ūj,k+1(t + ∆t) − 2Ūj,k(t + ∆t) + Ūj,k−1(t + ∆t)

(∆y)2
+ ∆tR̄j,k(t + ∆t)
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Algorithm – Explicit Euler case

∆x = 1
N+1 , ∆y = 1

M+1 , Ω = (0, 1)2

K = Λ( 1
∆x2 Λx ⊗ IM + 1

∆y2 Λy ⊗ IN ), Λx = Λy = tridiag(1,−2, 1)

for each time step {
solve ODE on Γ1

for each cell Cj,k {
compute U

E,W,N,S
j,k (t) – require minmod evaluation with

Ūj,k(t), Ūj±1,k(t), Ūj,k±1(t)

λf
1, λf

K , λ
g
1 λ

g
K – require U

E,N
j,k , UW

j+1,k, US
j,k+1

a±

j± 1

2
,k

(t), b±
j,k± 1

2

(t), a(t), b(t), c, ∆t

Hx
j± 1

2
,k

(t), H
y

j,k± 1

2

(t) – including BC where needed

R̄j,k(t)

}
V (t) = ∆tKŪ(t)

FR(t) = Ū(t) − λHx(t) − µHy(t) + ∆tR̄(t)

update Ū(t + ∆t) = V (t) + FR(t)

}
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Algorithm – IMEX case

∆x = 1
N+1 , ∆y = 1

M+1 , Ω = (0, 1)2

K = Λ( 1
∆x2 Λx ⊗ IM + 1

∆y2 Λy ⊗ IN ), Λx = Λy = tridiag(1,−2, 1)

for each time step {
solve ODE on Γ1

for each cell Cj,k {
compute U

E,W,N,S
j,k (t) – require minmod evaluation with

Ūj,k(t), Ūj±1,k(t), Ūj,k±1(t)

λf
1, λf

K , λ
g
1 λ

g
K – require U

E,N
j,k , UW

j+1,k, US
j,k+1

a±

j± 1

2
,k

(t), b±
j,k± 1

2

(t), a(t), b(t), ∆t

Hx
j± 1

2
,k

(t), H
y

j,k± 1

2

(t) – including BC where needed

R̄j,k(t)

}
FR(t) = Ū(t) − λHx(t) − µHy(t) + ∆tR̄(t)

solve (I − ∆tK)Ū(t + ∆t) = FR(t)

}
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Parallel algorithms
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Data partitioning – possibilities

P processors; N ∗ M cells (unknowns)

How to distribute data among processors?

I way: Strips – horizontal or vertical; Γ1 is either in a single processor
or distributed among them.
II way: Rectangular blocks – Γ1 is distributed among part of the
processors.

Each processor deals with part of the cells if P ≤ N ∗ M .
If P > N ∗ M additional distribution of the computations for each cell.

How to deal with the cells on the "interfaces" between processors?
■ Duplicate data from a line with cells between the neighbours;
■ Associate nodes (j,k) with one of the processors;
■ Associate cells (j,k) with one of the processors.
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Data partitioning – the domain



Motivation

Model of HSCs’ movement

Numerical solution

Parallel algorithms

● Data partitioning

● Computations and

communications
● Some comments

● Numerical tests

Concluding remarks

Gergana Bencheva, PMAA’10, June 30 - July 2, 2010, Basel, Switzerland Parallel Algorithms for Solution of a Chemotaxis System in Haematology - p. 20/24

Computations and communications

Computations are distributed equally among processors;

Communications for each time step – local and global as follows (only
steps with communications are listed):

for each time step {
for each cell Cj,k {

for U
E,W,N,S
j,k (t) – local communications

a±

j± 1

2
,k

(t), b±
j,k± 1

2

(t) – local communications

a(t), b(t), ∆t – global reduction communications
Hx

j± 1

2
,k

(t), H
y

j,k± 1

2

(t) – local communications

}
V (t) = ∆tKŪ(t) – local communications (EE)
(I − ∆tK)Ū(t + ∆t) = FR(t) – depend on the solver (IMEX)

}
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Some comments

EE: Smaller time step, conditionally stable, but no need to solve a
system

IMEX: Better for stiff problems, but for non-linear reaction and diffusion
terms requires Newton iteration

Data distribution: processors which are neighbours in the algorithm,
may not be physical neihbours.
Communications:
■ Part of the data needed for V (EE) and

solution of the system (IMEX) may
already be transferred on the previous
steps (for each cell)

■ Order of processing of cells - crucial for
the local communications (data from 4
neighbouring cells E,W,N,S)
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Numerical tests

Test data: Ω = (0, 1.5) × (0, 1), Γ1 = {x1 = 1.5}, ∆t = 0.1

c(x2) = 0.01(1 + 0.2 sin(5πx2)), β(t, b) = V (t)β∗(b) with

V (t) =

{

4t2(3 − 4t) for t ≤ 0.5

1 for t > 0.5

}

and β∗(b) =
0.005

0.005 + b2

χ(a) = 10a χ(a) = log (a)

ε = 0.0015, Da = 2, γ = 0.1, c1 = 0.3, c2 = 0.5

a0 = 0, b0 = 0 and

s0(x1, x2) =

8

<

:

(1 + cos(5π(x1 − 0.4)))sin(πx2), for 0.2 ≤ x1 ≤ 0.6

0 otherwise

C/MPI implementation of the methods.
Tests to be performed on IBM Blue Gene P and GRID Sites.

Ongoing work:
■ debugging of the computer programs (case of horizontal strip partitioning);

■ implementation of EE, IMEX with the different data partitioning options.
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Concluding remarks
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Concluding remarks
■ Further steps

◆ Parallel algorithms
■ Runge Kutta schemes;
■ Detailed comparative analysis of the parallel algorithms;
■ Modifications for non-linear diffusion case.

◆ Chemotactic movement:
■ Ranges for parameters where the model works or fails?
■ Experimental/clinical data for calibration of the model?
■ Sensitivity analysis and parameter estimation.
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