On the Numerical Solution of a Chemotaxis System in Haematology

Gergana Bencheva

Institute for Information and Communication Technologies, Bulgarian Academy of Sciences

Acad. G. Bontchev Str. Bl. 25A, 1113 Sofia, Bulgaria

http://www.bas.bg/clpp/

gery@parallel.bas.bg

Contents

Motivation

Model of HSCs' movement

Numerical solution

Concluding remarks

- Motivation
- Model of HSCs' chemotactic movement
- Numerical solution
- Concluding remarks

Motivation

- Haematopoiesis
- Blood pathologies
- HSCs migration

Model of HSCs' movement

Numerical solution

Concluding remarks

Motivation

Blood cells production and regulation

Motivation

Haematopoiesis

- Blood pathologies
- HSCs migration

Model of HSCs' movement

Numerical solution

Concluding remarks

Haematopoietic pluripotent stem cells (HSCs) in bone marrow give birth to the three blood cell types, because of their

- rapid migratory activity and ability to "home" to their niche in the bone marrow;
- high self-renewal and differentiation capacity, responsible for the production and regulation of the three blood cell types.

Growth factors or Colony Stimulating Factors (CSF) – specific proteins that stimulate the production and maturation of each blood cell type. Blast cells – blood cells that have not yet matured.

Blood cell type	Function	Growth factors
Erythrocyte	Transport oxygen	Erythropoietin
	to tissues	
Leukocyte	Fight infections	G-CSF, M-CSF, GM-CSF,
		Interleukins
Thrombocyte	Control bleeding	Thrombopoietin

Blood pathologies

Various hematological diseases (including leukaemia) are characterized by abnormal production of particular blood cells (matured or blast).

Main stages in the therapy of blood diseases:

- **TBI:** Total body irradiation (TBI) and chemotherapy kill the "tumour" cells, but also the healthy ones.
- **BMT:** Bone marrow transplantation (BMT) stem cells of a donor (collected under special conditions) are put in the peripheral blood.

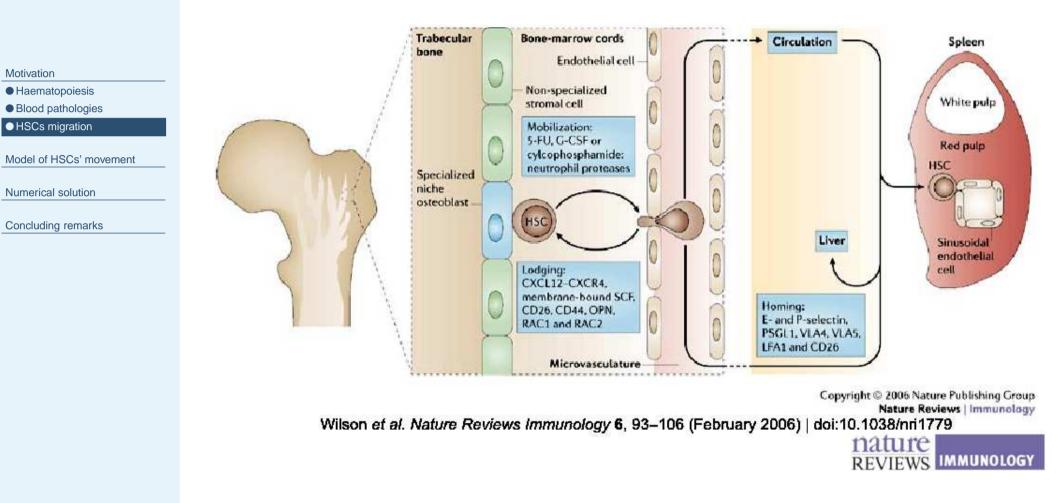
After BMT, HSCs have to:

- 1. find their way to the stem cell niche in the bone marrow; and
- 2. selfrenew and differentiate to regenerate the patient's blood system.

Adequate computer models would help medical doctors to

- understand better the HSCs migration and differentiation processes;
- design nature experiments for validation of hypotheses;
- predict the effect of various treatment options for specific blood diseases;
- shorten the period in which the patient is missing their effective immune system.

HSCs mobilization, homing and lodging



A. Wilson, A. Trumpp, Bone-marrow haematopoietic-stem-cell niches, Nature Reviews Immunology, Vol.6, (2006), 93–106.

Motivation

Model of HSCs' movement

Involved data

The model

Numerical solution

Concluding remarks

Model of HSCs' chemotactic movement

Involved data

Unknowns:

Motivation

Model of HSCs' movement

Involved data
The model

Numerical solution

Concluding remarks

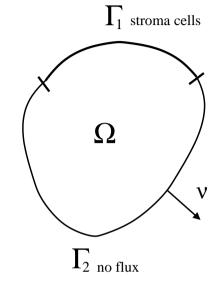
s(t,x) – concentration of stem cells in Ω a(t,x) – concentration of chemoattractant b(t,x) – concentration of stem cells bound to stroma

cells at the boundary part Γ_1

 $s(t,x)\geq 0,\;a(t,x)\geq 0,\;b(t,x)\geq 0$

Parameters:

 ε – random motility coefficient of HSCs $\chi(a)$ – chemotactic sensitivity function D_a – diffusion coefficient of chemoattractant γ – consumption rate-constant for SDF-1 c(x) – concentration of stroma cells on Γ_1 $\beta(t,b)$ – proportionality function in the production rate of chemoattractant



$$\begin{split} \Omega \in R^2 \\ \partial \Omega = \Gamma_1 \cup \Gamma_2 \\ \Gamma_1 \cap \Gamma_2 = \emptyset \end{split}$$

A. Kettemann, M. Neuss-Radu, Derivation and analysis of a system modeling the chemotactic movement of hematopoietic stem cells, Journal of Mathematical Biology, 56, (2008), 579-610.

The model

Motivation

Model of HSCs' movement

Involved dataThe model

Numerical solution

Concluding remarks

$$\begin{cases} \partial_t s = \nabla \cdot (\varepsilon \nabla s - s \nabla \chi(a)), & \text{in } (0, T) \times \Omega \\ \partial_t a = D_a \Delta a - \gamma a s, & \text{in } (0, T) \times \Omega \\ -(\varepsilon \partial_\nu s - s \chi'(a) \partial_\nu a) = \begin{cases} c_1 s - c_2 b, & \text{on } (0, T) \times \Gamma_1 \\ 0, & \text{on } (0, T) \times \Gamma_2 \\ \\ D_a \partial_\nu a = \begin{cases} \beta(t, b) c(x), & \text{on } (0, T) \times \Gamma_1 \\ 0, & \text{on } (0, T) \times \Gamma_2 \\ \\ \partial_t b = c_1 s - c_2 b, & \text{on } (0, T) \times \Gamma_1 \text{ and } b = 0, & \text{on } (0, T) \times \Gamma_2 \\ \\ s(0) = s_0, & a(0) = a_0 \text{ in } \Omega, \text{ and } b(0) = b_0 \text{ on } \Gamma_1 \end{cases} \\ \\ \text{Existence of unique solution is ensured by} \\ c \in H^{\frac{1}{2}}(\partial\Omega), \beta \in C^1(R \times R, R), \chi \in C^2(R) \\ 0 \le c(x) \le \overline{c}, x \in \Gamma_1 \text{ and } c \equiv 0, x \in \Gamma_2 \\ \beta(0, b_0) = 0, & 0 \le \beta(t, b) \le M, \left| \frac{\partial \beta}{\partial b}(t, b) \right| \le M_s, \left| \frac{\partial \beta}{\partial t}(t, b) \right| \le M_t \\ \chi \in \{\chi \in C^2(R) | 0 \le \chi(a), 0 \le \chi'(a) \le C_\chi, |\chi''(a)| \le C'_\chi, a \in R \} \end{cases}$$

Motivation

Model of HSCs' movement

Numerical solution

• Finite volume method

• Semi-discrete scheme

• Time integration

Numerical tests

Concluding remarks

Numerical solution

Finite volume method

Motivation

Model of HSCs' movement

Numerical solution

Finite volume method

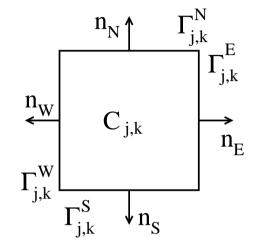
Semi-discrete scheme

Time integration

Numerical tests

Concluding remarks

 $\begin{aligned} \frac{d\mathbf{U}}{dt} + div\mathbf{F}(\mathbf{U}) &= \mathbf{R}(\mathbf{U}), \\ \mathbf{U}(\mathbf{x}, \mathbf{0}) &= \mathbf{U}_{\mathbf{0}}, \\ \frac{\partial \mathbf{F}}{\partial \mathbf{n}} &= h(U, \mathbf{x}, t), \mathbf{x} \in \partial \mathbf{\Omega} \\ \mathbf{F}(\mathbf{U}) &= \mathbf{F}_{c}(\mathbf{U}) + \mathbf{F}_{d}(\mathbf{U}) \end{aligned}$



$$\begin{split} \bar{\Omega} &= [0,A] \times [0,B], \ A,B > 0, \quad \Delta x = \frac{A}{N_x}, \ \Delta y = \frac{B}{N_y}, \ \mathbf{x} = (x,y) \\ \Omega &= \cup C_{j,k}, \ C_{j,k} := [x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}}] \times [y_{k-\frac{1}{2}}, y_{k+\frac{1}{2}}] \\ j &= 1, \dots, N_x, \ k = 1, \dots, N_y \\ x_{\frac{1}{2}} &= 0, \ x_{N_x + \frac{1}{2}} = A, \ x_{j+\frac{1}{2}} = x_{j-\frac{1}{2}} + \Delta x \\ y_{\frac{1}{2}} &= 0, \ y_{N_y + \frac{1}{2}} = B, \ y_{k+\frac{1}{2}} = y_{k-\frac{1}{2}} + \Delta y \\ \partial C_{j,k} &= \Gamma_{j,k}^E \cup \Gamma_{j,k}^W \cup \Gamma_{j,k}^N \cup \Gamma_{j,k}^S \end{split}$$

Finite volume method

Motivation

Model of HSCs' movement

Numerical solution

- Finite volume method
- Semi-discrete scheme
- Time integration
- Numerical tests

Concluding remarks

 $\mathbf{U}_t + \mathbf{f}(\mathbf{U})_x + \mathbf{g}(\mathbf{U})_y = \nabla \cdot (\Lambda \nabla \mathbf{U}) + \mathbf{R}(\mathbf{U})$

 $\mathbf{U} = (s, a, p, q)^T, \quad \mathbf{f}(\mathbf{U}) = (s\chi p, 0, \gamma as, 0)^T, \quad \mathbf{g}(\mathbf{U}) = (s\chi q, 0, 0, \gamma as)^T$ $p = a_x, \ q = a_y, \quad \Lambda = diag(\varepsilon, D_a, D_a, D_a), \quad \mathbf{R}(\mathbf{U}) = (0, -\gamma as, 0, 0)^T$ $\lambda_i^{\mathbf{f}}, \lambda_i^{\mathbf{g}} - \text{eigenvalues of } \frac{\partial \mathbf{f}}{\partial \mathbf{U}} \text{ and } \frac{\partial \mathbf{g}}{\partial \mathbf{U}}$

 $\bar{\mathbf{U}}_{j,k}(t) = \frac{1}{\Delta x \Delta y} \iint_{C_{j,k}} U(x, y, t) dx dy$ – unknowns of the discrete system

Piecewise linear reconstruction $\tilde{\mathbf{U}}$ for \mathbf{U} obtained at each time step:

 $\tilde{\mathbf{U}}(x,y) := \bar{\mathbf{U}}_{j,k} + (\mathbf{U}_x)_{j,k}(x-x_j) + (\mathbf{U}_y)_{j,k}(y-y_k), \ (x,y) \in C_{j,k}$ should be conservative, nonoscilatory and positivity preserving.

A. Chertock, A. Kurganov, A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models, Numer. Math. (2008) 111: 169-205.

Semi-discrete scheme

Motivation

Model of HSCs' movement

Numerical solution

Finite volume method

Semi-discrete scheme

• Time integration

Numerical tests

Concluding remarks

$$\begin{split} \iint_{C_{j,k}} \mathbf{U}_t \, dx dy + \iint_{C_{j,k}} div(\mathbf{F}_c + \mathbf{F}_d) \, dx dy &= \iint_{C_{j,k}} \mathbf{R} \, dx dy \,, \\ \frac{d}{dt} \bar{\mathbf{U}}_{j,k}(t) + \frac{1}{\Delta x \Delta y} \int_{\partial C_{j,k}} (\mathbf{F}_c + \mathbf{F}_d) \cdot \mathbf{n} \, d\gamma &= \bar{\mathbf{R}}_{j,k} \,, \\ I_{j,k}^c &= \int_{\partial C_{j,k}} \mathbf{F}_c \cdot \mathbf{n} \, d\gamma \, \text{ and } I_{j,k}^d = \int_{\partial C_{j,k}} \mathbf{F}_d \cdot \mathbf{n} \, d\gamma \\ I_{j,k}^c + I_{j,k}^d &= \int_{\Gamma_{j,k}^E} (\mathbf{F}_c + \mathbf{F}_d) \cdot \mathbf{n}_E \, d\gamma + \int_{\Gamma_{j,k}^W} (\mathbf{F}_c + \mathbf{F}_d) \cdot \mathbf{n}_W \, d\gamma \\ &+ \int_{\Gamma_{j,k}^N} (\mathbf{F}_c + \mathbf{F}_d) \cdot \mathbf{n}_N \, d\gamma + \int_{\Gamma_{j,k}^S} (\mathbf{F}_c + \mathbf{F}_d) \cdot \mathbf{n}_S \, d\gamma \,, \end{split}$$

For $\Gamma_{j,k} \in \partial \Omega$ integrals are computed from b.c. using midpoint rule

Semi-discrete scheme – cont.

Motivation

Model of HSCs' movement

Numerical solution

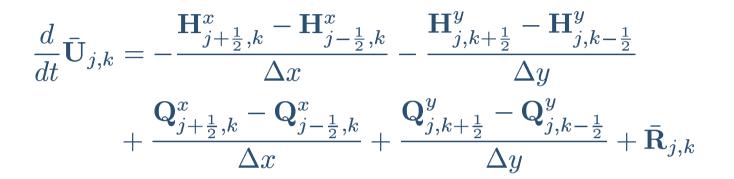
Finite volume method

Semi-discrete scheme

Time integration

Numerical tests

Concluding remarks



Terms with $\mathbf{H}^{x,y}$ come from approximation of $I_{j,k}^c$ Terms with $\mathbf{Q}^{x,y}$ come from approximation of $I_{j,k}^d$

$$\mathbf{Q}_{j+\frac{1}{2},k}^{x} = \frac{\Lambda}{\Delta x} (\bar{\mathbf{U}}_{j+1,k} - \bar{\mathbf{U}}_{j,k}), \\ \mathbf{Q}_{j-\frac{1}{2},k}^{x} = \frac{\Lambda}{\Delta x} (\bar{\mathbf{U}}_{j,k} - \bar{\mathbf{U}}_{j-1,k}) \\ \mathbf{Q}_{j,k+\frac{1}{2}}^{y} = \frac{\Lambda}{\Delta y} (\bar{\mathbf{U}}_{j,k+1} - \bar{\mathbf{U}}_{j,k}), \\ \mathbf{Q}_{j,k-\frac{1}{2}}^{y} = \frac{\Lambda}{\Delta y} (\bar{\mathbf{U}}_{j,k} - \bar{\mathbf{U}}_{j,k-1})$$

Semi-discrete scheme – cont.

 $\frac{d}{dt}\bar{\mathbf{U}}_{j,k} = -\frac{\mathbf{H}_{j+\frac{1}{2},k}^{x} - \mathbf{H}_{j-\frac{1}{2},k}^{x}}{\Delta x} - \frac{\mathbf{H}_{j,k+\frac{1}{2}}^{y} - \mathbf{H}_{j,k-\frac{1}{2}}^{y}}{\Delta y} + \Lambda \left[\frac{\bar{\mathbf{U}}_{j+1,k} - 2\bar{\mathbf{U}}_{j,k} + \bar{\mathbf{U}}_{j-1,k}}{(\Delta x)^{2}} + \frac{\bar{\mathbf{U}}_{j,k+1} - 2\bar{\mathbf{U}}_{j,k} + \bar{\mathbf{U}}_{j,k-1}}{(\Delta y)^{2}}\right] + \bar{\mathbf{R}}_{j,k}$

$$\begin{split} \mathbf{H}_{j+\frac{1}{2},k}^{x} &= \frac{a_{j+\frac{1}{2},k}^{+} \mathbf{f}(\mathbf{U}_{j,k}^{E}) - a_{j+\frac{1}{2},k}^{-} \mathbf{f}(\mathbf{U}_{j+1,k}^{W})}{a_{j+\frac{1}{2},k}^{+} - a_{j+\frac{1}{2},k}^{-}} + \frac{a_{j+\frac{1}{2},k}^{+} a_{j+\frac{1}{2},k}^{-} a_{j+\frac{1}{2},k}^{-}}{a_{j+\frac{1}{2},k}^{+} - a_{j+\frac{1}{2},k}^{-}} \left[\mathbf{U}_{j+1,k}^{W} - \mathbf{U}_{j,k}^{E} \right] \\ \mathbf{H}_{j,k+\frac{1}{2}}^{y} &= \frac{b_{j,k+\frac{1}{2}}^{+} \mathbf{g}(\mathbf{U}_{j,k}^{N}) - b_{j,k+\frac{1}{2}}^{-} \mathbf{g}(\mathbf{U}_{j,k+1}^{S})}{b_{j,k+\frac{1}{2}}^{+} - b_{j,k+\frac{1}{2}}^{-}} + \frac{b_{j,k+\frac{1}{2}}^{+} b_{j,k+\frac{1}{2}}^{-}}{b_{j,k+\frac{1}{2}}^{-} - b_{j,k+\frac{1}{2}}^{-}} \left[\mathbf{U}_{j,k+1}^{S} - \mathbf{U}_{j,k}^{N} \right] \end{split}$$

 $a_{j+\frac{1}{2},k}^{\pm}, b_{j,k+\frac{1}{2}}^{\pm} - \text{computed from } \lambda_{i}^{\mathbf{f}}, \lambda_{i}^{\mathbf{g}} \text{ for } \mathbf{U}_{j,k}^{E}, \mathbf{U}_{j+1,k}^{W}, \mathbf{U}_{j,k}^{N}, \mathbf{U}_{j,k+1}^{S}$ $\bar{\mathbf{R}}_{j,k} = \frac{1}{\Delta x \Delta y} \iint_{C_{j,k}} R(U(x, y, t)) dx dy - \text{computed using midpoint rule}$

Semi-discrete scheme – cont.

$$\begin{split} \mathbf{U}_{j,k}^{E} &:= \tilde{\mathbf{U}}(x_{j+\frac{1}{2}} - 0, y_{k}) = \bar{\mathbf{U}}_{j,k} + \frac{\Delta x}{2} (\mathbf{U}_{x})_{j,k} \\ \mathbf{U}_{j,k}^{W} &:= \tilde{\mathbf{U}}(x_{j-\frac{1}{2}} + 0, y_{k}) = \bar{\mathbf{U}}_{j,k} - \frac{\Delta x}{2} (\mathbf{U}_{x})_{j,k} \\ \mathbf{U}_{j,k}^{N} &:= \tilde{\mathbf{U}}(x_{j}, y_{k+\frac{1}{2}} - 0) = \bar{\mathbf{U}}_{j,k} + \frac{\Delta y}{2} (\mathbf{U}_{y})_{j,k} \\ \mathbf{U}_{j,k}^{S} &:= \tilde{\mathbf{U}}(x_{j}, y_{k-\frac{1}{2}} + 0) = \bar{\mathbf{U}}_{j,k} - \frac{\Delta y}{2} (\mathbf{U}_{y})_{j,k} \\ (\mathbf{U}_{x})_{j,k} &= \min \left(\Theta \frac{\bar{\mathbf{U}}_{j,k} - \bar{\mathbf{U}}_{j-1,k}}{\Delta x}, \frac{\bar{\mathbf{U}}_{j+1,k} - \bar{\mathbf{U}}_{j-1,k}}{2\Delta x}, \Theta \frac{\bar{\mathbf{U}}_{j+1,k} - \bar{\mathbf{U}}_{j,k}}{\Delta x} \right) \\ (\mathbf{U}_{y})_{j,k} &= \min \left(\Theta \frac{\bar{\mathbf{U}}_{j,k} - \bar{\mathbf{U}}_{j,k-1}}{\Delta y}, \frac{\bar{\mathbf{U}}_{j,k+1} - \bar{\mathbf{U}}_{j,k-1}}{2\Delta y}, \Theta \frac{\bar{\mathbf{U}}_{j,k+1} - \bar{\mathbf{U}}_{j,k}}{\Delta y} \right) \end{split}$$

$$\mathsf{minmod}(z_1, z_2, \dots) := \begin{cases} \min_j \{z_j\}, & \text{if } z_j > 0 \quad \forall j, \\ \max_j \{z_j\}, & \text{if } z_j < 0 \quad \forall j, \\ 0, & \text{otherwise} \end{cases}$$

Time integration

$$\lambda := \frac{\Delta t}{\Delta x}, \ \mu := \frac{\Delta t}{\Delta y}, \ a := \max_{j,k} \{ \max\{a_{j+\frac{1}{2},k}^+, -a_{j+\frac{1}{2},k}^-\} \}, \ b := \max_{j,k} \{ \max\{b_{j,k+\frac{1}{2}}^+, -b_{j,k+\frac{1}{2}}^-\} \}$$

$$\blacksquare \text{ Explicit Euler } \Delta t \le \min(\frac{\Delta x}{8a}, \frac{\Delta y}{8b}, c), \ c := \frac{(\Delta x)^2 (\Delta y)^2}{4((\Delta x)^2 + (\Delta y)^2)}$$

$$\bar{\mathbf{U}}_{j,k}(t + \Delta t) = \bar{\mathbf{U}}_{j,k}(t) - \lambda \left(H_{j+\frac{1}{2},k}^{x}(t) - H_{j-\frac{1}{2},k}^{x}(t) \right) - \mu \left(H_{j,k+\frac{1}{2}}^{y}(t) - H_{j,k-\frac{1}{2}}^{y}(t) \right) + \Delta t \Lambda \frac{\bar{\mathbf{U}}_{j+1,k}(t) - 2\bar{\mathbf{U}}_{j,k}(t) + \bar{\mathbf{U}}_{j-1,k}(t)}{(\Delta x)^{2}} + \Delta t \Lambda \frac{\bar{\mathbf{U}}_{j,k+1}(t) - 2\bar{\mathbf{U}}_{j,k}(t) + \bar{\mathbf{U}}_{j,k-1}(t)}{(\Delta y)^{2}} + \Delta t \bar{\mathbf{R}}_{j,k}(t)$$

• IMEX Scheme $\Delta t \leq \min(\frac{\Delta x}{4a}, \frac{\Delta y}{4b})$

1

$$\begin{split} \bar{\mathbf{U}}_{j,k}(t+\Delta t) &= \bar{\mathbf{U}}_{j,k}(t) - \lambda \left(H_{j+\frac{1}{2},k}^x(t) - H_{j-\frac{1}{2},k}^x(t) \right) - \mu \left(H_{j,k+\frac{1}{2}}^y(t) - H_{j,k-\frac{1}{2}}^y(t) \right) \\ &+ \Delta t \Lambda \frac{\bar{\mathbf{U}}_{j+1,k}(t+\Delta t) - 2\bar{\mathbf{U}}_{j,k}(t+\Delta t) + \bar{\mathbf{U}}_{j-1,k}(t+\Delta t)}{(\Delta x)^2} \\ &+ \Delta t \Lambda \frac{\bar{\mathbf{U}}_{j,k+1}(t+\Delta t) - 2\bar{\mathbf{U}}_{j,k}(t+\Delta t) + \bar{\mathbf{U}}_{j,k-1}(t+\Delta t)}{(\Delta y)^2} + \Delta t \bar{\mathbf{R}}_{j,k}(t+\Delta t) \end{split}$$

Numerical tests

Motivation

Model of HSCs' movement

Numerical solution

• Finite volume method

• Semi-discrete scheme

Time integrationNumerical tests

Concluding remarks

$$\begin{aligned} \textbf{Test data: } \Omega &= (0, 1.5) \times (0, 1), \ \Gamma_1 = \{x_1 = 1.5\}, \ \Delta t = 0.1 \\ c(x_2) &= 0.01(1 + 0.2\sin(5\pi x_2)), \ \beta(t, b) = V(t)\beta^*(b) \text{ with} \\ V(t) &= \begin{cases} 4t^2(3 - 4t) & \text{for } t \leq 0.5 \\ 1 & \text{for } t > 0.5 \end{cases} \text{ and } \beta^*(b) = \frac{0.005}{0.005 + b^2} \\ \chi(a) &= 10a \quad \chi(a) = \log(a) \\ \varepsilon &= 0.0015, D_a = 2, \gamma = 0.1, c_1 = 0.3, c_2 = 0.5 \\ a_0 &= 0, b_0 = 0 \text{ and} \end{cases} \\ s_0(x_1, x_2) &= \begin{cases} (1 + \cos(5\pi(x_1 - 0.4)))sin(\pi x_2), & \text{for } 0.2 \leq x_1 \leq 0.6 \\ 0 & \text{otherwise} \end{cases} \end{aligned}$$

Classical approach

Motivation

Model of HSCs' movement

Numerical solution

• Finite volume method

Semi-discrete scheme

Time integrationNumerical tests

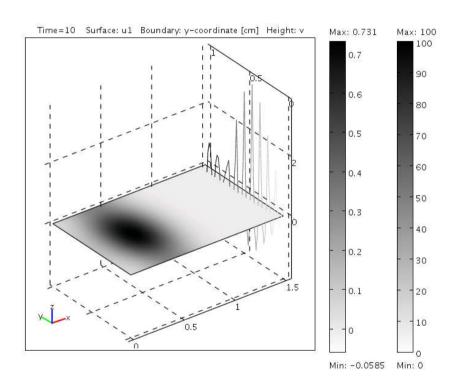
Concluding remarks

COMSOL Multiphysics (http://www.comsol.com)

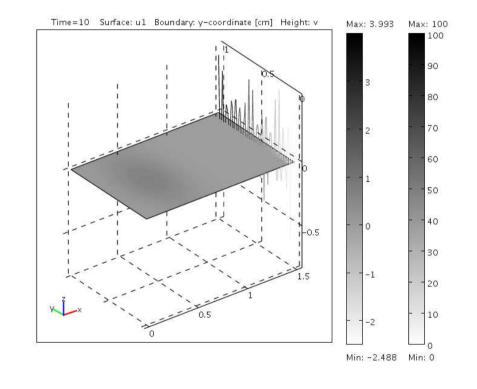
- PDE mode system of 2 PDEs + ODE on the boundary;
- Finite Element Method nonuniform mesh for space discretization;
- BDF for time integration;
- Automatic choice of nonlinear solver;
- Implicit Euler + PARDISO or GMRES/ILU for solution of linearised system.

Model data – solution s(t, x) and b(t, x), T = 10.

GMRES/ILU



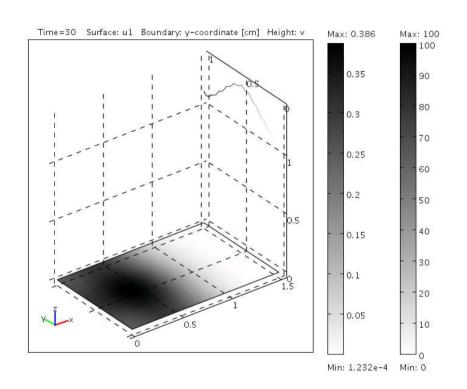
dof = 1723



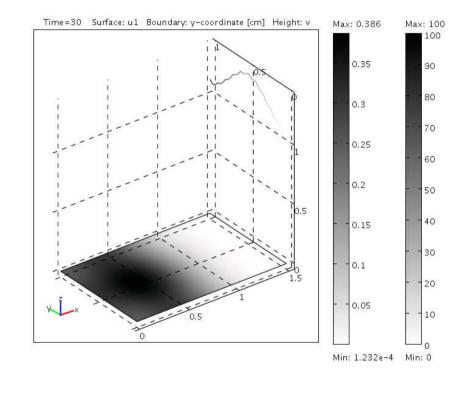
dof=6643

Model data – solution s(t, x) and b(t, x), T = 30.

GMRES/ILU

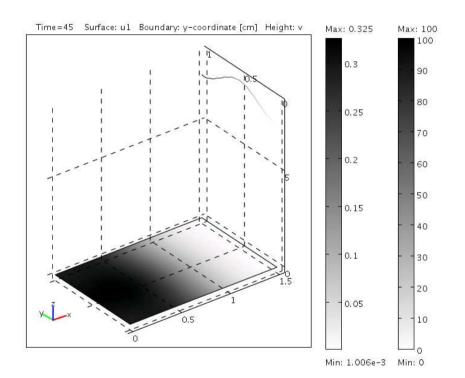


$$\chi = 10a$$

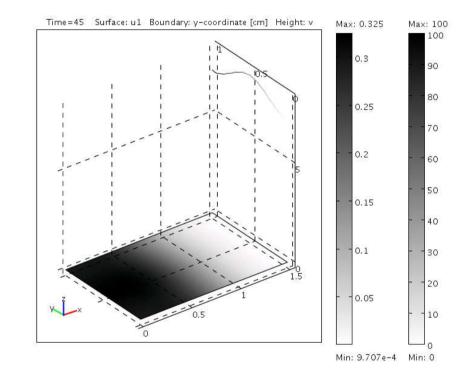


 $\chi = log(a)$

Model data – solution s(t, x) and b(t, x), T = 45.



GMRES/ILU



PARDISO

Motivation

Model of HSCs' movement

Numerical solution

Concluding remarks

Concluding remarks

Concluding remarks

- Ongoing work development and debugging of own software
- Further steps
 - Chemotactic movement:
 - Ranges for parameters where the model works or fails?
 - Experimental/clinical data for calibration of the model?
 - Sensitivity analysis and parameter estimation.
 - Parallel algorithms
 - Comparative analysis of two approaches for parallel mplementation;
 - Modifications for non-linear diffusion case.
- Acknowledgements
 - The study is motivated by recently initiated cooperation between DSC at IPP-BAS and the group of Dr. M. Guenova from Laboratory of Haematopathology and Immunology, National Specialized Hospital for Active Treatment of Haematological Diseases, Bulgaria.
 - Discussion with Dr. Maria Neuss-Radu was held during my HPC-EUROPA++ funded visit in HLRS and IANS, Stuttgart.
 - This work is supported in part by the Bulgarian NSF grants DO 02-214/2008, DO 02-147/2008.

Thank you for your attention!