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1. Motivation

Haematopoietic pluripotent stem cells (HSCs) in bone marrow give
birth to the three blood cell types, because of their

• rapid migratory activity and ability to ”home” to their niche in the
bone marrow; HSCs migrate in vitro and in vivo following the gradient
of a chemotactic factor SDF-1 (stromal cell-derived factor-1) produced by
stroma cells;

• high self-renewal and differentiation capacity , responsible for the pro-
duction and regulation of the three blood cell types.

Various hematological diseases (including leukaemia) are characterized by ab-
normal production of particular blood cells.

Main stages in the therapy of blood diseases:

TBI: Total body irradiation (TBI) and chemotherapy – kill the ”tumour”
cells, but also the healthy ones.

BMT: Bone marrow transplantation (BMT) – stem cells of a donor (collected
under special conditions) are put in the peripheral blood.

After BMT, HSCs have to:

1. find their way to the stem cell niche in the bone marrow; and

2. selfrenew and differentiate to regenerate the patient’s blood system.

Adequate computer models would help medical doctors to

• understand better the HSCs migration and differentiation processes;

• design nature experiments for validation of hypotheses;

• predict the effect of various treatment options for specific blood diseases;

• shorten the period in which the patient is missing their effective immune
system.

2. HSCs Migration Model
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Ω ∈ R2, ∂Ω = Γ1 ∪ Γ2
Γ1 ∩ Γ2 = ∅

Unknowns:
s(t, x) concentration of stem cells in Ω
a(t, x) concentration of chemoattractant
b(t, x) concentration of stem cells bound to

stroma cells at the boundary part Γ1

s(t, x) ≥ 0, a(t, x) ≥ 0, b(t, x) ≥ 0

Parameters:
ε random motility coefficient of HSCs
χ(a) chemotactic sensitivity function
Da diffusion coefficient of chemoattractant
γ consumption rate-constant for SDF-1
c(x) concentration of stroma cells on Γ1
β(t, b) proportionality function in the

production rate of chemoattractant

Chemotaxis equations:
{

∂ts = ∇ · (ε∇s − s∇χ(a)) , in (0, T ) × Ω

∂ta = Da∆a − γas , in (0, T ) × Ω

Random and directional migration of HSCs

Diffusion of chemoattractant and its consumption due to binding.

Boundary conditions:

−(ε∂νs − sχ′(a)∂νa) =

{

c1s − c2b , on (0, T ) × Γ1
0 , on (0, T ) × Γ2

Attachment and detachment of HSCs at Γ1.

Da∂νa =

{

β(t, b)c(x) , on (0, T ) × Γ1
0 , on (0, T ) × Γ2

Production of chemoattractant by the stroma cells.

∂tb = c1s − c2b , on (0, T ) × Γ1 Evolution of the bound stem cells due to
b = 0, on (0, T ) × Γ2 attachment and detachment of HSCs at Γ1.

Initial conditions: s(0) = s0, a(0) = a0 in Ω, and b(0) = b0 on Γ1

Existence of unique solution is ensured by c ∈ H
1

2(∂Ω), β ∈ C1(R × R, R), χ ∈ C2(R),

0 ≤ c(x) ≤ c̄, x ∈ Γ1 and c ≡ 0, x ∈ Γ2, β(0, b0) = 0, 0 ≤ β(t, b) ≤ M ,
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χ ∈ {χ ∈ C2(R)|0 ≤ χ(a), 0 ≤ χ′(a) ≤ Cχ, |χ
′′
(a)| ≤ C ′

χ, a ∈ R}
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3. Use of COMSOL Multiphysics

• PDE mode – system of 2 PDEs in coefficient form with an ODE in weak form on the boundary;

• Finite Element Method – nonuniform mesh for space discretization; triangular finite elements with
linear quadratic shape functions

• Backward Differentiation Formula (BDF) for time integration;

• Automatic choice of nonlinear solver;

• Solution of linearized system – Implicit Euler + direct PARDISO method or iterative GMRES
method with ILU preconditioner.

http://www.comsol.com and documentation distributed together with the package

4. Test Data

Ω = (0, 1.5) × (0, 1), Γ1 = {x1 = 1.5}, ∆t = 0.1

Parameters in chemotaxis system: ε = 0.0015, Da = 2, γ = 0.1, χ(a) = 10a, χ(a) = log (a)

Parameters in boundary conditions: c1 = 0.3, c2 = 0.5, c(x2) = 0.01(1 + 0.2 sin(5πx2)),

β(t, b) = V (t)β∗(b) with V (t) =

{

4t2(3 − 4t) for t ≤ 0.5
1 for t > 0.5

}

and β∗(b) =
0.005

0.005 + b2

Initial conditions:

a0 = 0, b0 = 0 and s0(x1, x2) =

{

(1 + cos(5π(x1 − 0.4)))sin(πx2), for 0.2 ≤ x1 ≤ 0.6
0 otherwise

5. Results from Computer Simulation

The solution is compared for t ∈ [0, 100] and

• two sizes of the mesh, which result to 1723 and 6643 degrees of freedom (dof) respectively;

• two solvers – direct PARDISO and iterative GMRES with ILU preconditioner; and

• two choices of the chemotactic sensitivity function χ: χ = 10a and χ = log(a).

Solution s(t, x) and b(t, x),
T = 10, GMRES/ILU

dof = 1723

dof=6643

Solution s(t, x) and b(t, x),
T = 30, GMRES/ILU

χ = 10a

χ = log(a)

Solution s(t, x) and b(t, x),
T = 45.

GMRES/ILU

PARDISO

Solution T = 100,
GMRES/ILU.

s(t, x) and b(t, x)

a(t, x) and b(t, x)

6. Discussion and Conclusions

Observations:
• On the finer mesh – more uniform distribution of s and larger ranges for

the change of b;

• The solution with the two choices of χ does not differ quantitatively and
qualitatively from each other;

• Slight differences in the lower bounds for the change of populations and
their distribution with direct and iterative solvers;

• Oscillations and negative values for b for smaller times for all methods;

• Obtained solution here is different from the one presented in [KNR], and
respectively from the experiment in vitro.

Possible reasons:
• Numerical instabilities of the used methods (stabilization techniques like

artificial diffusion are not available in PDE mode);

• Different mesh sizes and solvers used by the authors of the model [KNR].

Ongoing work:
• Study the features of the modules providing stabilization techniques – Con-

vection and Diffusion, Heat Transfer, Chemical Engineering;

• Modify in appropriate way the model implementation using them.

Further steps:
• Numerical tests with the new implementation – analysis of the properties

of the solvers and of the model;

• Sensitivity analysis and parameter estimation.
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