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PREFACE

This book contains papers presented during the International Conference on ”Numeri-
cal Methods for Scientific Computations and Advanced Applications” (NMSCAA’18),
May 31–May 31, 2018, Hissar, Bulgaria. The conference is organized by the Institute
of Information and Communication Technologies, Bulgarian Academy of Sciences in
cooperation with Society for Industrial and Applied Mathematics (SIAM), techni-
cally co-sponsored by IEEE PS Computer Society Chapter (IEEE) and financially
co-sponsored by the National Science Fund of Bulgaria, Ministry of Education and
Science undewr Project DPMNF 01/51.

The Conference Specific topics of interest are as follows: (a) Multiscale and multi-
physics problems; (b)Robust preconditioning; (c) Monte Carlo methods; (d) Opti-
mization and control systems; (e) Scalable parallel algorithms; (f) Advanced comput-
ing for innovations; (g) In silico investigations of biological molecules and complexes.
The list of the plenary invited speakers includes:

• Owe Axelsson (Institute of Geonics, ASCR, Czech Republic);

• Raytcho Lazarov (TA&MU, College Station, USA);

• Zahari Zlatev (Aarhus University, Denmark);

• Istvan Farago (Eotvos Lorand University, Budapest, Hungary);

• Radim Blaheta (Institute of Geonics, CAS, Ostrava, Czech Republic);

• Svetozar Margenov (IICT–BAS, Sofia, Bulgaria); and

• Ivan Dimov (IICT–BAS, Sofia, Bulgaria).

The Scientific Computing is one of the most prominent examples of a interdisci-
plinary area involving mathematics, computer science, engineering, physics, chem-
istry, medicine etc. The tools of Scientific Computing are usually based on mathe-
matical models and corresponding computer codes that are used to perform virtual
experiments to obtain new data or to better understand existing experimental results.
Numerical Analysis is one of the crucial elements of Scientific Computing. It de-
velops and analyzes numerical methods for discretization of continuous models and
their subsequent solution, as well as for approximation of discrete data, such as: data
interpolation and extrapolation, methods for solving linear and non-linear systems
of algebraic equations (direct and iterative solution methods, preconditioning, mul-
tilevel and multigrid methods, etc.), methods for solving systems of ordinary and
partial differential equations, methods for solving integral equations, and optimiza-
tion problems.
Next to Numerical methods and the scientific computations are the Advanced Ap-
plications – the implementation of the developed numerical methods into computer



codes and their customization for the numerous computing systems and for solving a
number of real life problems.

Krassimir Georgiev
May 2018
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Part A

Short Communications/Extended
abstracts1

1Arranged alphabetically according to the family name of the first author.





Solving Large-Scale Eigenvalue Problems in
Amorphous Materials

G. Accaputo, P. Arbenz, P. Derlet

In strongly amorphous materials, such as structural glasses, sound has anomalous dis-
persion properties which are characterized by the Ioffe–Regel limit, and the universal
phenomenon of the Boson peak. Molecular dynamics simulations are able to produce
structural glasses in which the stable position of each atom is precisely known. Given
such a computer generated atomic configuration, the corresponding vibrational prop-
erties can be investigated by solving an eigenvalue problem involving the Hessian of
the potential energy landscape associated with material cohesion.
The Hessian obtained from a large scale molecular dynamics simulation of a model
metallic structural glass involving millions to billions of atoms is to be constructed
and partially diagonalized to obtain the significant portion of the long-wavelength
vibrational eigenmodes [3]. These eigenmodes will be analyzed to investigate the
relationship between atomic-scale structure and the onset of the Boson peak regime.
In order to calculate the vibrational frequencies, we have to solve the real symmetric
eigenvalue problem

Hq = λq, (1)

where H is the given Cartesian Hessian that contains the second derivatives of the
total electronic energy with respect to nuclear Cartesian coordinates. The presented
simulation involves approximately 1.5 ·106 atoms leading to a matrix H of size about
4.5 · 106. We are interested in the 100 to 1000 eigenvalues λk and associated eigen-
vectors qk of (1) that are closest to the Boson peak.
The shift-and-invert Lanczos (SI-Lanczos) algorithm is the method of choice for com-
puting interior eigenvalues and corresponding eigenvectors of a symmetric or Her-
mitian matrix H close to some target τ . However, the SI-Lanczos algorithm needs
the factorization of H − τI which is not feasible here for its excessive memory re-
quirements. For such cases, the Jacobi–Davidson methods have been developed [11].
To be efficient, they however need an effective preconditioner to solve the so-called
correction equation, which usually entails its factorization. In an earlier study [8], we
were not able to identify such preconditioners for (1).
In this work we investigate a technique, known as spectral filtering, for solving eigen-
value problems that obviates factorizations altogether [10, 7] Spectral filtering is com-
bined in practice with Krylov space methods [4, 9] and subspace iteration [13, 5].
In order for the technique to be applicable the extremal eigenvalues λmin(H) and
λmax(H) of H, or, at least, some decent bounds must be known. To compute the
eigenvalues in the interval [ξ, η] ⊂ [λmin, λmax], a polynomial ρ ∈ Pd is constructed
such that The desired polynomial ρ could be an approximation of the characteristic
function χ[ξ,η] associated with the interval [ξ, η]. If ρ(H) multiplies a vector, (most)
of the unwanted eigenvector components are suppressed. Therefore, ρ is called a poly-
nomial filter. The degree of ρ depends on the width of the interval [ξ, η], on the width
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ε of the margins, and the strength of the filter. The degree increases if η − ξ and/or
ε shrink. In our experiments we use polynomial degrees d as high as O(1000). A
consequence is that increasing parallelism by slicing the interval [ξ, η] is not scalable.
Interval slicing may however be necessary for memory reasons.
After a brief review of the technique of polynomial filtering we suggest a filter that
should be useful for filtering in connection with the subspace iteration method. We in-
vestigate the filters’ properties by means of some synthetic eigenvalue problems. Based
on these findings we investigate a model of amorphous solid consisting of 1’372’000
atoms corresponding to a H of size 4’116’000.
Our eigensolvers is implemented with the Trilinos software framework [1]. Trili-
nos [6, 12] is a collection of open-source software libraries, called packages, for the
development of scientific applications. Anasazi [2] is a package that offers a collection
of algorithms for solving large-scale eigenvalue problems. We employ Anasazi’s block
Krylov–Schur eigensolver with thick restarts. The subspace iteration we implemented
it ourselves, based on Trilinos Epetra data structures. The large scale computations
have been carried out on the Euler cluster of ETH Zürich2.
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Study of Scalability and Energy Efficiency of QMC
Algorithms on Hybrid HPC Systems

E. Atanassov, T. Gurov, M. Durchova, S. Ivanovska,
A. Karaivanova

1 Introduction

In this work we study the scalability issues and the energy efficiency of some of the
typical QMC algorithms for hybrid HPC systems. Depending on the features of the
algorithms and the selected sequences, we investigate the optimal setup of MPI pro-
cesses and OpenMP threads from point of view of speed and energy efficiency. The
positive impact from using the vector instructions of the Intel Xeon Phi accelerators
is demonstrated compared with CPUs and with automatic vectorization by the com-
piler. This research is motivated by our experience with the supercomputer Avitohol
at IICT-BAS [6] which total performance is 412 TFlops, but 90% comes from the
accelerators.
The Xeon Phi coprocessors combine efficient vector floating point computations with
familiar operational and development environment. It is already known that to obtain
good performance on MIC architecture, algorithms have to be vectorized to exploit
the vector engine of the processor. On such specialised equipment like the Xeon
Phi, the importance of memory accesses for the overall performance increases due to
the presence of a large number of computational cores. The different parallelisation
models entail different trade-off considerations between use of more memory or making
more computations. The hybrid OpenMP+MPI programming is more complicated,
but potentially is the most advantageous, especially when high numbers of cores and
servers are utilized [8]. The increased weight of energy cost justifies our focus on
developing energy efficient algorithms. In this work, we present our parallelisation
strategies and representative case studies (low discrepancy sequence generation and
solving multidimensional integrals). Numerical and timing results are shown and
discussed.

2 Scalability and Timing Results

During our investigation, we compared generation codes for the Halton [1] and Sobol
sequences [5], obtained via using the auto-vectorization features of the Intel compiler
and hand-tuned vectorized codes, as it is shown on Fig. 1. For the Sobol sequence
the auto-vectorization resulted in approximately two times better performance, while
for the Halton sequence there was a negligible difference. This can be explained
by the higher complexity of the Halton sequences definition. Nevertheless, in both
cases the vectorization by hand lead to several times better performance. In the
case of the Halton sequences, this was achieved via substantial reorganization of the
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Figure 1: Timing results for Sobol and Halton sequences using three porting methods

operations. The hand-tuned Sobol generation code was even faster than the standard
Intel implementation of the Mersenne twister pseudorandom number generator in the
MKL [7].
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Figure 2: Scalability results (Sobol sequence) for three variations of the algorithm (auto-
vectorized, vectorized by hand, without vectorization)

The Intel Xeon Phi coprocessor has 244 hardware threads, which means that the
available 61 physical cores can be used with up to 4x hyper-threading. Our results
show that the use of 244 threads can give substantial performance benefit versus the
use of only 61 threads. That is why we recommend users to utilize as many threads
as possible when using our generation routines. On Fig. 2 one can see the timing
results of the various ways of generating the Sobol sequences (the results for Halton
are similar).
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3 Study of Energy Efficiency

The energy use of the generators was investigated, while also varying the number of
hardware threads of the Intel Xeon Phi co-processor. One can see that the use of more
hardware threads leads to higher energy usage (see [2], [3], [4]). That is why there is
a thread-off between the time-to-completion and price of energy that will determine
which number of threads is optimal. It appears that in many cases 122 threads will
be the optimal number to use ( see Fig. 3 and Fig. 4 ).
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Figure 3: Halton sequence energy usage of the algorithm with three optimizations (auto-
vectorized, vectorized by hand, without vectorization)
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Figure 4: Sobol sequence energy usage of the algorithm with three optimizations (auto-
vectorized, vectorized by hand, without vectorization)
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4 Conclusion

We developed and compared vectorized variants of generation routines for the Sobol
and Halton low-discrepancy sequences for the Intel Xeon Phi accelerators implemen-
tation. With necessary expertise (and time) the researchers might develop highly
optimized algorithms which maximize the benefits of using the accelerators. In the
case of use of hyperthreading we observe sizeable benefit from using the larger number
of threads, which should be weighted against increase energy consumption.
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Optimality Properties of a Square Block Matrix
Preconditioner with Applications

O. Axelsson

Dedicated to Krassimir Georgiev, Deputy Director, Institute of Information and Com-
munication Technologies, BAS, Sofia, Bulgaria, as a reminder of a very long lasting
friendship.

Two-by-two block matrices with block rows A, −B>, and B, A, arise in a number of
important applications, such as when solving complex valued matrix systems in real
valued form, in optimal control problems for PDEs with various kind of state station-
ary or time dependent equations, such as Poisson, convection diffusion, Stokes [2], and
Maxwell [4] and in wave propagation and structural dynamics and many more. Since
the discretized problems have a large scale, iterative solution methods must be used
and then preferably with a preconditioner with optimal properties. The first part of
this paper presents such a preconditioner which depends on a parameter. Assuming
that A and the sum of the B-matrices are symmetric and positive semidefinite and A
and B have disjoint nullspaces, the optimal value of the parameter is derived for two
versions of an iterative refinement method and for the application of the precondi-
tioner with Chebychev or conjugate gradient methods as acceleration methods. The
resulting eigenvalue bounds are very tight and the rate of convergence factor for each
iteration step (after rounding), takes a value between 0.333 and 0.172 for the differ-
ent methods. This holds uniformly with respect to all classes of the above problems
and for various problem and method parameters. The iterative refinement methods
including the Chebyshev method do not require computations of inner products as
the CG type methods do, which can save much communication overhead and elapsed
computer times on massively parallel computer platforms. The preconditioner re-
quires two solutions of a matrix system with a fixed linear combination of the block
row matrices for which efficient iterative solution methods exist. The methods out-
perform other published methods for the above classes of problems. In the second
part of the paper, application of the methods for an optimal control problem with a
PDE of parabolic type and an eddy current electromagnetic problem are presented.
In the electromagnetic problem the electrical field is used as control of the magnetic
solution to take a desired shape.
Let the preconditioner be defined by the following parameter version of the PRESB
method method, see [2], with matrices of order n×n, where previously we have chosen
α = 1,

C =

[
A −BT
B α2A+ α(B +BT )

]
. (1)

A solution method based on Schur complements involve actions of A−1, which must
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be avoided as A can be singular. We show now how this can be done. Consider then

C
[
x
y

]
=

[
f
g

]
(2)

where we multiply the first equation by α and add the second equation, to form{
(αA+B)(x+ αy) = αf

B(x+ αy) + α(αA+BT )y = g
.

This shows that, besides some vector operators and a matrix vector multiplication
with B, its solution requires just one solution with H = αA+B and one with HT .
To find eigenvalues of C−1A, consider now the generalized eigenvalue problem,

λC
[
x
y

]
= A

[
x
y

]
, ‖x‖+ ‖y‖ 6= 0. (3)

This can be rewritten as

(1− λ) C
[
x
y

]
=

[
0

((α2 − 1)A+ α(B +BT ))y

]
.

Since
(1− λ)(Ax−BT y) = 0

it follows that λ = 1 if Ax 6= BT y. Hence the multiplicity of the unit eigenvalue is at
least n. If Ax = BT y, it follows that

1

1 + α2
≤ λ ≤ 1

α2
for α ≤ 1,

1

1 + α2
≤ λ ≤ 1 for α ≥ 1.

Hence the spectral condition number

κ(C−1A) ≤ 1 +
1

α2
for α ≤ 1 and κ(C−1A) = 1 + α2 for α ≥ 1,

which are both minimized and takes value 2 for α = 1. It follows that the spectral
condition number bound for the preconditioned PRESB method where α = 1, see
[2, 3], can not be improved by use of such perturbations. It is further seen that the
preconditioned matrix has the block form

C−1A =

[
I F
0 I − E

]
,

where E = H−TAH−1G, G = (α2 − 1)A + α(B + BT ). Since H−TAH−1G has
a complete eigenvector space it follows that E is a normal matrix and hence, that
the preconditioned conjugate gradient method in exact arithmetic gives the minimal
polynomial, i.e. best polynomial approximation of the solution. Hence no breakdown
of the iterations can occur.
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Consider now a defect-correction method with an iterative refinement parameter τ >
0, to solve a linear system Ax = b, with by use of the preconditioner,

C(xk+1 − xk) = τ(b−Axk), k = 0, 1, · · · , x0 given.

Hence
ek+1 = (1− τ)ek + τC−1Rek, k = 0, 1, · · · .

where ek = x̂− xk and R = C − A.
The eigenvalues µ(C−1R) are contained in the intervals,

α2

α2 + 1
≥ µ(C−1R) ≥ α2 − 1

α2
, for α ≤ 1,

so the convergence factor is minimized for τ = 2α2(α2+1)
2α2+1 and the rate of convergence

factor becomes

1− τ

α2 + 1
= 1− 2α2

2α2 + 1
=

1

2α2 + 1
,

which, since α ≤ 1, is minimized for α = 1. The optimal value of τ is then τ = 4
3 and

‖ek+1‖ ≤ 1
3‖e

k‖, k = 0, 1, · · · .
The iterative refinement method can be seen as an Euler forward time-stepping
method with time-step τ to solve

C dx(t)

dt
= b−Ax(t), t > 0, x(0) = x0.

Clearly we can repeat this method using two or more different time-steps. For two
consecutive time-steps with τ1 > 0, τ2 > 0, we get{

Cxk+1/2 = (1− τ1)Cxk + τ1Rx
k

Cxk+1 = (1− τ2)Cxk+1/2 + τ2Rx
k+1/2.

Hence

xk+1 = (1− τ2)(1− τ1)xk + ((1− τ2)τ1 + τ2(1− τ1))C−1Rxk + τ1τ2(C−1R)2xk

or
xk+1 = Q2x

k, k = 0, 1, · · ·

where

Q2 = (1− τ2)(1− τ1)I + (τ1 + τ2 − 2τ1τ2)C−1R+ τ1τ2(C−1R)2 =

= I − (τ1 + τ2)(I − C−1R) + τ1τ2(I − C−1R)2.

As is wellknown, this is minimized if Q2 equals the normalized second degree Cheby-
shev polynomial

Qk = Tk

(
a+ b− 2ξ

b− a

)/
Tk

(
b+ a

b− a

)
, (k = 2)
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where a, b are the eigenvalue bounds and

Tk+1(ξ) = 2ξTk(ξ)− Tk−1(ξ), k = 1, 2, · · · , T0(ξ) = 1, T1(ξ) = ξ.

Hence T2(ξ) = 2ξ2 − 1. In our problem, the eigenvalue bounds are a = 1
α2+1 , b = 1

α2 ,

i.e., a = 1
2 , b = 1 for the optimal value α = 1, so

Q2 =
2
(
a+b−2ξ
b−a

)2

− 1

2
(
a+b
b−a

)2

− 1
=

17− 48ξ + 32ξ2

17
,

that is, τ1 + τ2 = 48
17 , τ1τ2 = 32

17 , and τi = 4
17 (6±

√
2), i = 1, 2. Further

‖Q2‖ =
1

T2

(
b+a
b−a

) =
1

2 · 9− 1
=

1

17
.

Since this method involves two iteration steps it corresponds to an average convergence
factor 1√

17
≈ 0, 241 per iteration step. Extending the method with more iterative

refinement steps with k different time steps corresponds to the recursion

xk+1 = Qkx
k, k = 0, 1, · · ·

where the optimal matrix polynomial Qk is the Chebyshev polynomial.

In this way we approach the rate of convergence factor
√

2−1√
2+1

= 1
(
√

2+1)2
' 0, 173

which holds for the preconditioned Chebyshev iteration method.
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Fast Computation of Exact Solutions to the Heat
and Stokes’ Equations on the Half-Line Obtained by

Fokas’ Transform

M. Beceanu, M. Lachaab

A new method has been recently introduced by Fokas (Fokas, 2002 [3]; Fokas et al.,
2009 [4]) for solving a large class of PDEs. This method, however, raises a problem:
the solutions of the PDEs are given as contour integrals on an unbounded contour
in the complex plane that need to be evaluated numerically. To evaluate these inte-
grals, Flyer–Fokas (2008, [2]), and Papatheodorou–Kandili (2009, [5]) deformed and
parametrized the contour of integration and used the simple trapezoid rule without
analyzing the error.
In this paper, we obtain exact expressions for the solutions of the heat equation and
Stokes’ equation of the first kind in terms of elementary functions, the imaginary error
function, and the incomplete Airy function. For the heat equation with zero initial
condition and sine boundary condition, the solution is given by:

q(x, t) =
e−

x2

4t

2
Re
[
e−z

2
1
(
i+ erfi(−z1)

)
+ e−z

2
2
(
i+ erfi(−z2)

)]
,

where

z1 = −
√
λt

2
+ i
( x

2
√
t
−
√
λt

2

)
, z2 =

√
λt

2
+ i
( x

2
√
t

+

√
λt

2

)
.

And for general boundary data g0(t), the solution is given by:

q(x, t) =
e−

x2

4t

√
2π

∫ ∞
0

Re
[
e−z

2
1
(
i+ erfi(−z1)

)
+ e−z

2
2
(
i+ erfi(−z2)

)]
ĝs0(λ) dλ,

where ĝs0 is the sine transform of g0:

ĝs0(λ) =
2

π

∫ ∞
0

g0(t) sin(λt) dt.

For the Stokes’ equation, the solution is given by:

q(x, t) =
1

2

(
sin(λt+ λ

1
3x) + e−(

√
3

2 + i
2 )λ

1
3 x sin(λt)

)
+

1

4

(
2∑
j=1

ei(
α̃3
j
3 +x̃α̃j)

(
i− fx̃(α̃j)

Cx̃

)

−
4∑
j=3

ei(
α̃3
j
3 +x̃α̃j)

fx̃(α̃j)

Cx̃
+

6∑
j=5

ei(
α̃3
j
3 +x̃α̃j)

(
2i− fx̃(α̃j)

Cx̃

))
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where: fx(k) =
∫ +i∞
k

e−i(
t3

3 +tx)dt, Cx =
∫ +∞

0
e−

t3

3 +txdt, x̃ = ( 1
3t )

1
3x, and α̃j =

(3t)
1
3αj .

The above solutions lend themselves well to numerical computations, since there exist
fast and highly accurate methods for computing the imaginary error function and the
incomplete Airy function. For example, the imaginary error function is a standard
function in MATLAB, where it is estimated with 10−20 accuracy by means of Padé
approximants (Cody, 1969 [1]). Also, the above solutions extend to the lateral bound-
aries without convergence issues, allow for an easy analysis of the estimation error,
and are much faster than those obtained by other methods.
In addition, we derive an asymptotic expansion for the solution of the heat equation
with precise bounds for the error term, which allows one to compute the solution with
arbitrarily high precision. The solution to the heat equation admits the following
asymptotic expansion:

q(x, t) =

e−x
√

λ
2 sin

(
λt− x

√
λ
2

)
+ u(x, t), x� t

√
2λ

u(x, t), x� t
√

2λ,

where

u(x, t) = −e
− x24t

2
√
π

N−1∑
n=0

Re
( (2n− 1)!!

2n+1z2n+1
1

+
(2n− 1)!!

2n+1z2n+1
2

)
+Q′2N

and the error Q′2N is bounded by

|Q′2N | <
2e−

x2

4t

√
t(2N − 1)!!

max
(
λt, x

2

4t

)N |x− t√2λ|
√
π
.
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Artificial Neural Network Activation Function
Optimization with Genetic Algorithms

I. Blagoev, J. Sevova, K. Kolev

Abstract

Artificial Neural Networks (ANNs) are widely used in the last few decades.
They have application in many different areas as financial forecasting [1, 7, 11],
board and puzzle games [4, 6, 8], image processing, object classification [2],
computer networks [9, 10] and many others. The most popular ANNs are repre-
sented as directed weighted graph in which signals are traveling from the input
to the output. Each node (neuron) in these models have an activation function
according which the node signal is emitted. The most popular activation func-
tions are the sigmoid function and the hyperbolic tangent function [12, 5]. In
this study evolutionary algorithms are employed in order to search for activa-
tion function alternatives. The function itself is represented as mathematical
expression as the used in the genetic programming (GP).

Keywords: artificial neural networks, activation function, genetic algo-
rithms, genetic programming

1 Introduction

The main purpose of neuron’s the activation function is to limit the strength of the
emitted signal. The most common way of input signal collection is by sum of the
signals multiplied by weight of the connections (Eq. 1).

yj =
∑
i=1

xi ∗ wij (1)

Collecting the signals in such way is very dependant of the size in the previous layer of
neurons. Also the values of the weights varietes a lot and the result of the Eq. 1 can
reach highg negative or positive values. Both problems are solved with normalization
by usage of a neuron activation function.

zj =
1

1 + e−yj
(2)

zj =
e2yj − 1

e2yj + 1
(3)

The most used functions are the sigmoid function (Eq. 2) and the hyperbolic tangent
function (Eq. 3). List of less common used activation functions can be found at [14].
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2 Activation Function Optimization

The idea used in Radial Basis Function (RBF) ANNs for parameters optimization
with Genetic Algorithms (GAs) [3] can be extended to optimization of the activation
function itself. The goal in such optimization is to find activation function expres-
sion which will reduce ANN training time without lost of ANN operation accuracy.
Implementing ANN solutions with the Encog Machine Learning Framework allows
usage of alternative activation functions [12]. The expression of the alternative ac-
tivation function can be easily represented with mXparser math expression library.
The expression is stored and evaluated as text string. Activation function expressions
as strings perfectly fit to the concept of the GP. Each string is represented as string
chromosome and Apache Genetic Algorithms Framework is used for the chromosome
evaluations. Initial GA population consists of valid randomly generated mathemati-
cal expressions. Single cut crossover is used and the random cut point is always on
mathematical operator. As mutation random replacement with randomly selected
mathematical operator is used. For fitness evaluate each expression is loaded in ANN
neurons and total ANN efficiency is calculated. The total error for the neural network
is used as fitness value.

3 Conclusions

Investigations in the direction of searching for alternative activation functions can
achieve interesting results, which may change the way in which ANNs are used. As
further research it can be interesting the experiments with activation function to
proceed in combination with permutational algorithms as it was described in [13].
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Preconditioners for Simultion of Flow in Rigid and
Deformable Porous Media

R. Blaheta, O. Axelsson, T. Luber, J. Kruzik, J. Stary

1 Introduction and Considered Problems

The fluid flow in porous media appears in many applications dealing with geomaterials,
biomaterials etc. In the case of fully saturated rigid porous media, the flow prob-
lem can be formulated by using the pressure in fluid p = p(x, t), the fluid velocity
v = v(x, t) and the following two equations

k−1v +∇p = 0,
div(v) +cpp

∂
∂tp = s,

where the first equation represents the Darcy law, which relates the velocity to the
pressure gradient, and the second equation comes from the mass conservation of the
fluid. These equations are valid in Ω × T , where Ω ⊂ Rd is a space domain and T
is a time interval. The equations should be complemented by proper boundary and
initial conditions. The coefficient k represents permeability, cpp storativity depending
on fluid and matrix compressibility, s is a source term.
In the case of porous media, which undergo elastic deformations of the matrix, the
poroelasticity problem can be described by using the displacement u = u(x, t) as an
additionally state variable. The system of equations is then as follows

−div(C : ε(u)) +α∇p = f,
K−1v +∇p = 0,

α ∂
∂tdiv(u) +div(v) +cpp

∂
∂tp = s.

The first equation is now the Navier- Lamè equation, C is the elasticity tensor, σeff =
C : ε(u) is the effective stress, σ = σeff +α∇p is the total stress, α is the Biot-Willis
coefficient.
The described problems can be formulated variationally in spaces

(
H1(Ω)

)d
for u =

u(·, t), H(div, Ω) for v = v(·, t) and L2(Ω) for p = p(·, t). The space discretiza-
tion then used a triple of finite element spaces Uh × Vh × Ph. The frequently used
triple couples continuous piecewise linear elements for u, the Raviart-Thomas ele-
ments for v and piecewise constant elements for p. This space discretization provided
a differential-algebraic system and its discretization with the backward Euler method
leads to the solution of systems in each time step with size τ . Using the row scaling
with (1, τ, τ), the systems can be written in a scaled symmetric block form, where the
blocks correspond to individual variables. They get the following form

Ap =

[
M BT

B −C

]
, Ape =

 A BTu
M BT

Bu B −C

 .
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Note that we can assume that the factor τ is included in M and B, i.e. τ−1M is
a positive definite velocity mass matrix, τ−1B is a matrix representing the diver-
gence of velocity, C is a positive definite pressure mass matrix, which is diagonal
for discretization of pressure by piecewise constant finite elements, A is the elesticity
stiffness matrix and Bu represents divergence of displacement. The systems with the
matrices Ap and Ape can be solved iteratively by the Krylov space methods, and due
to the symmetry, we can use e.g. the MINRES method.
The aim of this contribution is to introduce and analyse efficient block type precon-
ditioners for systems with matrices Ap and Ape, overview the work already done by
the authors and outline some new investigations and extensions.

2 Natural Block Diagonal Preconditioners

Let us consider block diagonal preconditioners with the same structure as the matrices
Ap and Ape. Taking advantage of easy inverse of diagonal C, we can consider the
symmetric, positive definite preconditioners (see e.g. [3, 2])

Pp =

[
MC

C

]
, Ppe =

 AC
MC

C

 ,
where MC = M +BTC−1B and AC = A+BTuC

−1Bu are Schur complements.
The algebraic analysis of the preconditioners can use the following theorems.

Theorem 1. Let

A =

[
A11 AT21

A21 −A22

]
, P =

[
S

A22

]
,

where A11 and A22 are symmetric positive definite, S = A11 + AT21A
−1
22 A21 is Schur

complement. Then

σ(P−1A) ⊂

〈
−1−

√
5

2
,−1

〉
∪

〈
−1 +

√
5

2
, 1

〉
.

Remark. The proof of Theorem 1 can be found e.g. in [6]. Theorem 1 can be
also generalized for S being only spectraly equivalent to the Schur complement A11 +
AT21A

−1
22 A21.

Theorem 2. Let A and P be as above, but S being only spectraly equivalent to the
Schur complement,

ξ0S ≤ A11 +AT21A
−1
22 A21 ≤ ξ1S.

Then

σ(P−1A) ⊂
〈
−1

2
− 1

2

√
1 + 4ξ1, −1

〉
∪
〈
−1

2
+

1

2

√
1 + 4ξ0, ξ1

〉
.
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Theorem 1 can be directly applied to the analysis of the preconditioner Pp and the
preconditioner Ppe+,

Ppe+ =

 AC ST21

S21 MC

C

 ,
where S21 = BC−1Bu.

Theorem 3. Let 0 ≤ γ < 1 be a strengthened Cauchy-Schwarz inequality constant,
i.e.

vTS21u ≤ γ
√
uTACu

√
vTMCv ∀u ∈ Rnu ≡ uh ∈ Uh, v ∈ Rnv ≡ vh ∈ Vh.

Then there is a spectral equivalence

(1− γ)

[
AC

MC

]
≤
[
AC ST21

S21 MC

]
≤ (1 + γ)

[
AC

MC

]
.

If cel is a positive constant such that

cel ‖div(uh)‖2L2
≤ 〈Au, u〉 ∀u ∈ Rnu ≡ uh ∈ Uh,

then γ2 ≤ (1 + cppcel)
−1

. For isotropic elasticity with Lamè constants λ and µ,
cel = λ.

The challenging point of the implementation of the block diagonal preconditioners
is the solution of the symmetric positive definite Schur complement systems with
matrices MC and AC . Note that for piecewise constant finite elements matrices for
pressure, these matrices are sparse and can be assembled in the standard element-by-
element manner. This enables to use direct as well as many types of preconditioned
iterative methods for the solution. For MC , we suggested to use CG with additive
Schwarz preconditioner in [7] and showed that even highly parallelizable one-level
Schwarz method can be efficient for parameters corresponding to hardly permeable
porous media.

3 Conclusions and Extensions

The considered preconditioners can be also efficiently used for more accurate dis-
cretizations. The application for higher order Radau discretization in time is con-
sidered in [5], more parallelizable versions of such preconditioning are introduced in
[4]. The considered triple of finite elements can suffer from locking and therefore the
use of nonconforming discretization for elasticity part was suggested recently, e.g. in
[8, 9]. We shall discuss the use of block diagonal preconditioner for this extension.
Another extension is for models related to poroelasticity as e.g. Biot-Barenblatt dou-
ble permeability (see [6]). The preconditioner can be also used for nonlinear models,
e.g. for not fully saturated flow described by the Richards equation.
Beside symmetric positive definite block diagonal preconditioners, it is possible to
consider block diagonal indefinite and triangular preconditioners in combination with
GMRES. Such preconditioners were investigated e.g. in [1, 2].
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A Monolithic Scheme for a Fluid-Poroelastic
Structure Interaction Problem

A. Cesmelioglu

The interaction of an incompressible Newtonian fluid with a poroelastic material takes
place in important multiphysics problems arising in various applications. For example,
blood flow is affected by the porous and deformable nature of the arterial wall and
understanding how blood flows in arteries through simulations may be beneficial in
biomedical engineering. The model we use is the one in [1, 2]. In this talk, we present
a monolithic scheme based on the finite element method and its analysis assuming
that the boundary and interface are fixed.
We use the time-dependent incompressible Stokes equations to model the fluid flow
in Ωf :

ρfut − 2νf ∇ ·D(u) +∇p = ff in Ωf × (0, T ) ,

∇ · u = 0 in Ωf × (0, T ) ,

where u denotes the velocity vector of the fluid, p denotes the pressure of the fluid,
ρf denotes the density of the fluid, νf denotes the constant fluid viscosity, and ff
denotes the body force acting on the fluid. The strain rate tensor D(u) is defined by
D(u) = 1

2

(
∇u + (∇u)T

)
and the Cauchy stress tensor is given by σf = 2νfD(u)−pI.

To model the poroelastic material in Ωp we use the Biot equations:

ρsηtt − 2νs∇ ·D(η)− λs∇(∇ · η) + α∇φ = fs in Ωp × (0, T ) ,

(s0φt + α∇ · ηt)−∇ ·K∇φ = fp in Ωp × (0, T ) ,

where η is the displacement of the structure, φ is the pore pressure of the fluid, fp is
the source/sink term and fs is the body force. The parameters νs and λs denote the
Lamé constants for the solid skeleton. The density of the saturated medium and the
hydraulic conductivity are denoted by ρs and K, respectively. The total stress tensor
for the poroelastic structure is given by: σp = 2νsD(η)+λs(∇·η)I−αφI, We assume
that K is a symmetric positive definite tensor such that there exists Kmin,Kmax > 0
satisfying

Kminξ · ξ ≤ ξ ·Kξ ≤ Kmaxξ · ξ ∀ξ ∈ Ω̄p.

These equations are coupled via appropriate interface conditions on the interface
ΓI separating Ωf and Ωp including continuity for the normal flux, balance of normal
stresses, balance of normal components of the stress in the fluid phase and the Beavers-
Joseph-Saffman condition which states that the tangential component of the velocity
is proportional to the shear stress:

u · nΓ = (ηt −K∇φ) · nΓ ,

σfnΓ = σpnΓ ,

nΓ · σfnΓ = −φ ,
nΓ · σftΓ = −β(u− ηt) · tlΓ , 1 ≤ l ≤ d− 1, d = 2, 3.
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The system is assumed to be at rest initially and simple boundary conditions are
chosen. This problem is a coupled system of mixed hyperbolic-parabolic type and
inherits all the difficulties mathematically and numerically involved in the standard
fluid-structure interaction and fluid-porous media flow coupling problems.
We first reduce this second order in time problem to first order by introducing an
additional variable ζ = ηt. We present a weak formulation whose analysis can be
done as in [3] and based on this weak formulation, we derive a monolithic scheme
using the backward Euler method to discretize in time and the finite element method
to discretize in space. For the discretization in Ωf , we use finite element spaces that
satisfy the inf-sup condition. We denote by Xh

f , Qhf , Xh
p , Xh

p and Qhp the finite element
spaces to approximate u, p, η, ζ, φ, respectively.
Let N ∈ N and ∆t = T/N be the time step size. Define ti = i∆t, i = 0, . . . , N and

D∆tg
n := gn−gn−1

∆t . Then the scheme is as follows: First we find (u0
h,η

0
h, ζ

0
h, φ

0
h) ∈

Xh
f ×Xh

p ×Xh
p ×Qhp by interpolating the initial conditions. Then for all 1 ≤ n ≤ N ,

we seek (unh, p
n
h,η

n
h , ζ

n
h , φ

n
h) ∈ Xh

f ×Qhf ×Xh
p ×Xh

p ×Qhp , such that

ρf (D∆tu
n
h,v)Ωf + af (unh,v) + bf (v, pnh) + ρs(ζ

n
h −D∆tη

n
h , tau)Ωp + ρs(D∆tζ

n
h , ξ)Ωp

+ ae(η
n
h , ξ)−be(ξ, φnh) + s0(D∆tφ

n
h, r)Ωp+be(D∆tη

n
h , r) + ad(φ

n
h, r)+〈φnhnΓ,v−ξ〉ΓI

+ Σd−1
l=1 〈β(unh −D∆tη

n
h) · tlΓ, (v − ξ) · tlΓ〉ΓI + 〈(D∆tη

n
h − unh) · nΓ, r〉ΓI

= −〈Pninnf ,v〉Γinf + (fnf ,v)Ωf + (fns , ξ)Ωp + (fnp , r)Ωp ,

bf (unh, q) = 0, ∀(v, q, ξ,χ, r) ∈ Xh
f ×Qhf ×Xh

p ×Xh
p ×Qhp

where

af (v,w) = 2νf (D(u),D(w))Ωf ,∀v,w ∈ Xh
f ,

bf (v, qf ) = −(qf ,∇ · v)Ωf ,∀v ∈ Xh
f ,∀qf ∈ Qhf ,

ae(η, ξ) = (2νsD(η),D(ξ))Ωp + (λs∇ · η,∇ · ξ)Ωp ,∀η, ξ ∈ Xh
p ,

be(ξ, qp) = α(qp,∇ · ξ)Ωp ,∀ξ ∈ Xh
p , qp ∈ Qhp ,

ad(qp, ψ) = (K∇qp,∇ψ)Ωp ,∀qp, ψ ∈ Qhp .

We prove that there exists a unique discrete solution {(unh, pnh,ηnh , ζnh , φnh)}n≥0 and the
method is stable, that is, the discrete solution is bounded by the data of the problem
ff , fs, fp, ρf , νf , ρs, νs, α, s0,K. The error is proved to be optimal in the sense that if
we use polynomials of degree k1 for uh, k1 − 1 for ph, k2 for ηh, ζh and k2 − 1 for φh,
then the convergence is of order O(h2k1 + h2k2 + (∆t)2) where h is the mesh size.
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Computational Nano-physics – Monte Carlo
Approach

I. Dimov

The Wigner equation is a full quantum model capable of capturing the relevant physics
needed for the simulation of nano-devices. There have been a number of recent
publications that deal with the numerical approximation of observables related to
the Wigner equation using probabilistic techniques and most notably Monte-Carlo
methods based on branching particle systems. In this work we consider and study
in detail the Signed Particle Wigner Monte-Carlo method, which is devised for the
numerical approximation of observables related to the Wigner equation.
Convergence of class of Monte Carlo methods dealing with observables in Quantum
Physics is analyzed. We deal with the numerical approximation of observables re-
lated to the Wigner equation using probabilistic techniques based on branching par-
ticle systems. We answer several questions about the behavior of the algorithm and
demonstrate theoretically why almost always is not stable and how to deal with this
instability. Our work relies exclusively on probabilistic techniques and the estimates
related to the proposed algorithms can be seen as sharpening of the more general
study of stochastic algorithms for the Wigner equation. The work also summarizes
the formulation of the Wigner equation as an operator equation in suitable L2 spaces.
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Numerical Approximation of Fractional Spectral
Elliptic Operators

B. Duan, R.D. Lazarov, J.H. Pasciak

We shall discuss methods and algorithms for approximately solving the linear alge-
braic systems Lαhuh = vh, 0 < α < 1, for uh, vh ∈ Hh, Hh a finite dimensional
Hilbert space. Such problems arise in finite element or finite difference approxima-
tions of problems Lαu = v with fractional powers of second order elliptic operators L.
The algorithms are based on the method of Vabishchevich, that related the algebraic
problem to a solution of a time-dependent parabolic type equation on the interval
[0, 1].
We develop and study two algorithms based on diagonal Padé approximation of the
corresponding solution operator. The first one uses geometrically graded meshes in
order to compensate for the singular behavior of the solution for t close to 0 for
non-smooth data v. The second algorithm uses uniform in t meshes, but requires
smoothness of the data v in order to retain optimal convergence rate. For both meth-
ods we estimate the error in terms of the number of time steps and the regularity of the
data. Finally, we report some numerical experiments of finite element approximation
of second order elliptic problems in one and two spatial dimensions.
The work of R. Lazarov was supported in parts by the Bulgarian NSF Grant DN 12/1
and USA NSF-DMS Grant #1620318
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Deflation Methods Made Possible

S.-E. Ekström, M. Neytcheva

It is well known that the convergence of Krylov subspace iterative solution methods
is severely hampered by the presence of small eigenvalues (e.g., [1]). Techniques
how to avoid or diminish this effect are also well-known, under the names bordering,
augmenting or deflation. All those techniques are based on the assumption that we
know the smallest eigenvalues and their corresponding eigenvectors, or, at least some
good enough approximations of those. At the same time, we are aware that, in general,
to compute or estimate a number of eigenvalues and eigenvectors is not an easy task,
in particular, for large size matrices. Note that not only the eigenpair computation is
time consuming. It might be practically infeasible when we are aiming to determine
a number of interior eigenvalues or all eigenvalues in an interval.
Even though the above difficulties are widely acknowledged, deflation methods have
been recently advertized in the context of High Performance Computing (HPC) and in
particular, in the search of iterative solution methods, suitable for exascale computer
platforms.

In this talk we show that for certain classes of problems we are able to compute the
eigenvalues exactly or within machine precision, without even constructing the ma-
trices explicitly. The target matrices arise from discretizations of partial differential
models, discretized using local methods, such as Finite Elements (FEM), Finite Dif-
ferences (FD), Finite Volumes and Iso-geometric Analysis (IgA). For some problems
it is possible to construct also explicitly the eigenvectors. At this stage of develop-
ment of the techniques the discretization meshes are regular and tensor-based. The
latter, although seen as a disadvantage for some problems, is also attractive for HPC
applications.

To put the presentation in some context, consider the solution of a linear system of
equations

Ax = b,

where A ∈ Rn×n is a large and sparse nonsingular matrix. We also assume that A is
symmetric and positive definite. Let {λi} and v(i), i = 1, 2, · · · , n be the eigenvalues
of A and their corresponding eigenvectors. We start with the assumption that we
know the smallest eigenvalues of A, respectively, their eigenvectors,
Recall one of the first frameworks that eliminate the influence of several nearly zero
eigenvalues on the condition number of A, say p of them. Consider the so-called
bordering method, described in [2]. We construct a larger matrix by bordering the
original one with the corresponding number of columns and rows. The eigenvalues
are then perturbed as stated in the next theorem.
Theorem Let A be of order n× n and Vp of order n× p where p < n. Consider the
augmented system

Ã =

[
A −AVp

−V Tp A V Tp AVp

]
.
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Then

(a) Ã has p zero eigenvalues. The remaining eigenvalues λ̃i are equal to those of
(I + VpV

T
p )A.

(b) If A is s.p.d., then to every eigenvalue λi of A there exists λ̃i such that λ̃i ≥ λi.

(c) If A is nonsingular and symmetric and Vp = [α1v
(1), · · · , αpv(p)], where vi, i =

1, 2, · · · , p are normalized eigenvectors of A, then the nonzero eigenvalues of Ã
equal λ̃i = (1 + α2

i )λi, i = 1, 2, · · · , p and λ̃i = λi, i = p+ 1, · · · , n.

(d) the smallest effective condition number of Ã, i.e. λmax((I+V Tp Vp)A)/λmin((I+

V Tp Vp)A) obtained by bordering with p vectors is λn/λp+1.

So, we eliminate the p smallest eigenvalues and make the matrix exactly singular.
At the same time we do not perturb the rest of the spectrum significantly, ensuring
a much smaller effective condition number of Ã. The resulting singular system is
expected to be efficiently solved by a Krylov subspace method.
Of course, in practice we would not advocate to solve a singular matrix of larger size
than A. The above framework is shown to be equivalent to solve (I+V Tp Vp)A, which
is of the same size as A. See some earlier studies in [3].
The same idea to deflate the small eigenvalues has been incorporated in particular
implementations of some of the most used Krylov subspace iteration methods, such as
the Conjugate Gradient method, (deflated CG), BiCG, GMRES, e.g. [4]. Deflation
techniques are advocated also in the context of communication-avoiding techniques
and pipelined versions of various iterative solvers.

In all deflation-related studies the question how to compute or approximate the eigen-
pairs in question, remains a major issue. There are various results on constructing
approximate subspaces to be used instead of the exact eigenvectors, which we do not
consider here.

Since many years, a (seemingly unrelated to the deflation techniques) scientific the-
ory has been developed, namely, the so-called ’Generalized Locally Toeplitz’ (GLT)
sequences, cf. [6]. For certain classes of structured matrices, much richer than the
classical Toeplitz matrices, GLT offers the possibility to associate an analytical func-
tion to (a sequence of) matrices, referred to as the symbol of the matrices. Sampling
the symbol gives an information about the spectrum of the corresponding matrix,
namely, a curve (for s.p.d. matrices) on which all eigenvalues are located, except for
possibly a finite number of outliers. Untill recently, it was not known however, where
exactly on that curve the exact eigenvalues are located. A significant improvement in
this direction is due to the work of the first author and coauthors, cf. [7], providing
a methodology to compute exactly (or up to machine accuracy) all eigenvalues of
a matrix of the considered class, only based on the symbol, in a cheap and easy to
implement way.
The knowledge of the exact eigenvalues opens the door to reviving various methods,
based on eigenvalue information, in particular, deflation techniques. The question
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regarding the eigenvectors is more difficult, however, some approaches are applicable,
again, claimed to be profitable in HPC computations.
We show the idea on how to compute the eigenvalues based on the matrix symbol and
illustrate the effect on solving the linear systems with deflated methods on problems,
discretized by FD, FEM and IgA.
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Reliable Numerical Models and Their Applications

I. Faragó, R. Horváth, M. Mincsovics, R. Mosleh, F. Dorner

1 Introduction and Motivation

Mathematical models are efficient tools of modelling of different phenomena. In the
modelling process we formulate these phenomena in the language of mathematics.
Typically, the construction of the models is realized with the modelling chain

physical / biological model → continuous model → discrete (numerical) model.

In order to have an adequate model, it is almost obvious that the continuous model
and the numerical model on some fixed mesh should preserve the basic (scientifically
motivated) qualitative properties of the original phenomenon. Such models are called
qualitatively adequate, or, in short reliable models.
In the following we examine the preservation of the qualitative properties for the
numerical models. In some earlier works, we have investigated the discrete model of
the heat conduction problem (e.g. [3, 4]). For the heat conduction process the main
and physically motivated characteristic properties are the non-negativity preservation,
the maximum / minimum principle and the contractivity in the maximum norm.
Obviously, these requirements are quite natural and they are motivated by the basic
physical principles. Therefore the discrete models for the heat conduction process
should have the discrete analogue of these properties. One can show (e.g. [3, 4])
that the connection between the above discrete qualitative properties in the discrete
one-step models is the following

maximum principle ⇔ non-negativity preservation ⇒ contractivity
In these papers we formulated the conditions under which the discrete models are
reliable. Typically these conditions result in some restriction for the choice of the
discretization parameters, namely, for fixed space discretization there are bounds for
the time-discretization step-size.
In the following we focus our attention on some discrete mathematical models of the
biology, namely we consider some discrete epidemic models and we will investigate
their qualitative properies. This problem is related to the following phenomenon. The
modeling of infectious diseases is a tool which has been used to study the mechanisms
by which diseases spread, to predict the future course of an outbreak and to evaluate
strategies to control an epidemic.

Our basic aim is to investigate the corresponding discrete models from qualitative
point of view. As the qualitative property, for the first problem we investigate the mass
preservation, monotonicity and the non-negativity preservation properties, while, for
the second problem we analyse the energy-preservation property.
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2 Qualitative Properties of Discrete Epidemic Mod-
els

Our natural demand is to predict the spatial motion of diseases, and to prevent or
to curb epidemics. Mathematical models are very effective tools of the investigation
of disease propagations. This is why a number of mathematical models have been
constructed and investigated in the literature, see e.g. [1]. The investigations started
almost one hundred years ago with the system of ordinary differential equations model
given in [7]. This model is a so-called compartmental model, where the population is
divided into disjoint groups according to the members’ relation to the disease, and the
time-dependent function of the number of the members in each group is determined
with the solution of the system of the ordinary differential equations. The most typical
compartments are as follows: susceptibles (members that can be infected), infectives
(members that can pass on the disease to others) and recovered (members that have
recovered from the disease). Compartmental models describe only the number of
the members in each compartment as a function of time, thus they are not able to
give spatial information about the disease. Models in the form of systems of partial
differential equations must be constructed to incorporate spatial dependence into the
models, e.g. [1]. In the case of these models mainly the stability of the stationary
states and the pattern formation is investigated and little attention is paid to the
qualitative properties of the numerical solutions. When the birth and the death of
the members are not taken into the account then the main qualitative properties of
the disease propagation process are the mass conservation, non-negativity preservation
and monotonicity of the number of the susceptibles and the recovered members.
Because of the spatial dependence, the above properties will be formulated for the
discrete density functions of the compartments. The densities of the members in the
susceptible, infective and recovered compartment are denoted by S(x, t), I(x, t) and
R(x, t), respectively. This means, for example, that when we integrate the function
I(x, t) on a spatial domain Ω then we get the number of infective members in the
domain Ω at the time instant t.
Now we construct discrete spatial disease propagation models. We will give the con-
ditions of the validity of the above qualitative properties for these models. We define
the problem on the cubical domain [0, L]D (L > 0). Here D is the spatial dimension
of the problem (D = 1 and 2 are the important dimensions from the practical point
of view). In the discrete model we apply a uniform spatial grid

ωh ={(x1, . . . , xD) ∈ [0, L]D |xk ∈ {0, h, 2h, . . .Mh, (M + 1)h}, k = 1, . . . , D,

h = L/(M + 1),M ∈M+}

and a positive time step τ > 0. The sub-population density functions S, I and R
are approximated, respectively, by the grid functions Sn, In and Rn at the nth time
level t = nτ . The values of the grid functions with n = 0 are known from the initial
conditions, moreover the values of the functions are equal zero in the boundary points.
In order to calculate the values of the grid functions in the inner points, we reshape the
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values of the grid-functions into column vectors using the usual column-wise indexing.

In this way, we obtain the column vectors sn, in and rn ∈ RMD

.
We consider two discrete models. Both are the combinations of implicit and explicit
time-stepping methods. The first discrete model

sn+1 − sn

τ
= −sn+1 ◦ pn

in+1 − in

τ
= sn+1 ◦ pn − bin+1,

rn+1 − rn

τ
= bin+1,

(1)

is an implicit-explicit (IMEX) discretization of the continuous disease propagation
model

S′t = −S (ϑI + ϕ∆DI) ,

I ′t = S (ϑI + ϕ∆DI)− bI,
R′t = bI,

(2)

where pn = ϑin + (ϕ/h2)QDi
n and QD/h

2 is the discretization matrix of the D
dimensional Laplace operator ∆D. We suppose homogeneous Dirichlet boundary
conditions. The parameters b (the recovery parameter), ϑ and ϕ are positive numbers.
The last two values are calculated from a weighting function that gives the locality
of the infection (e.g. [2, 5]). The matrix QD can be formed as follows. Let us define
the tridiagonal matrix Q = tridiag(1,−2, 1) ∈ RM×M . Then, if D = 1 then QD = Q
and in the case of D = 2 we have QD = IM ⊗Q+Q⊗ IM , where IM ∈ RM×M is the
identity matrix and ⊗ denotes the Kronecker product.
The conditions of the qualitative properties of the scheme (1) can be given as follows.

Theorem 4. Assume that at the initial state s0 ≥ 0, i0 ≥ 0, r0 ≥ 0, and p0 ≥ 0,
moreover suppose that

τ ≤

{
1/((2Dϕ/h2 − ϑ)Mmax), if h < h?,

arbitrary, if h ≥ h?,
(3)

where h? = (2Dϕ/ϑ)1/2 and Mmax = max(s0 + i0 + r0). Then the scheme (1) satis-
fies the mass conservation property, the non-negativity preservation property and the
monotonicity property. The first and the third property is meant pointwise.

The second discrete model has the form

sn+1 − sn

τ
=
dS
h2
Q̄Ds

n+1 − kin ◦ sn,

in+1 − in

τ
=
dI
h2
Q̄Di

n+1 + kin ◦ sn − bin,

rn+1 − rn

τ
=
dR
h2
Q̄Dr

n+1 + bin.

(4)
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This model comes from an IMEX discretization of the continuous disease propagation
model [1]

S′t(x, t) = dS∆DS(x, t)− kI(x, t)S(x, t),

I ′t(x, t) = dI∆DI(x, t) + kI(x, t)S(x, t)− bI(x, t),

R′t(x, t) = dR∆DR(x, t) + bI(x, t).

(5)

Here dS , dI and dR are the diffusion parameters of the sub-populations, moreover
k and b are positive constants. In the discrete model Q̄D/h

2 denotes the second
order approximation of the Laplace operator taking into the account the homogeneous
Neumann boundary condition. The matrix Q̄D can be constructed by using the
tridiagonal matrix

Q̄ =


−2 2 0 · · ·
1 −2 1 0 · · ·

· · ·
· · · 0 1 −2 1

· · · 0 2 −2

 ∈ R(M+2)×(M+2). (6)

Then, if D = 1 then Q̄D = Q̄ and in the case of D = 2 we have Q̄D = IM+2⊗Q̄+Q̄⊗
IM+2 [8]. The qualitative properties of the model can be guaranteed by the following
theorem.

Theorem 5. Let us consider the IMEX scheme for the system (5) with homogeneous
Neumann boundary condition. The mass conservation property is satisfied without
any condition, moreover the condition

τ ≤ min

{
hD

2kDN?
,

1

b

}
(7)

implies the non-negativity property and the monotonicity property. N? is the approx-
imation of the integral of S + I + R computed with the trapezoidal rule at the initial
time instant. The mass conservation and the monotonicity properties are related to
the number of the members in the whole domain.

The next model is constructed to simulate the spreading of malaria. As it is known,
malaria is an infectious disease caused by the Plasmodium parasite and transmitted
between humans through bites of female Anopheles mosquitoes. A mathematical
model describes the dynamics of malaria and human population compartments in
terms of mathematical equations and these equations represent the relations between
relevant properties of the compartments. The discrete model of the malaria, which is
investigated, is the following

xn+1 = xn + τ (αyn(1− xn)− rxn)

yn+1 = yn + τ (βxn(1− yn)− µyn) ,
(8)

which is the explicit discretization by Euler method of the continuous propagation
model of malaria, first given by Ross
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ẋ(t) = αy(t)(1− x(t))− rx(t)

ẏ(t) = βx(t)(1− y(t))− µy(t)
(9)

using the step-size τ . In these models the parameters α, β, r and µ are given biological
parameters and the unknown functions x(t) and y(t) (and their discretization) yield
the density of infected human and mosquitoes, respectively. Therefore, the natural
requirement for the models is that they are non-negative and not greater than one.
This qualitative properties of the model can be guaranteed by the following theorem.

Theorem 6. Let us assume that in the discrete model (8) the time discretization
step-size satisfies the condition

τ ≤ min

{
1

α
,

1

β
,

1

µ
,

1

r
,

}
. (10)

Then the dinamical system (8) is invariant with respect to the set [0, 1], i.e., if x0, y0 ∈
[0, 1] then xn, yn ∈ [0, 1] for any n, too.

We can construct another discrete model for the Ross-system (9), by using implicit
Euler method. For such approach we build the following model

xn+1 = xn + τ (αyn+1(1− xn+1)− rxn+1)

yn+1 = yn + τ (βxn+1(1− yn+1)− µyn+1) .
(11)

Then the following statement holds.

Theorem 7. The discrete model (11) is unconditionally invariant with respect to the
set [0, 1], i.e., if x0, y0 ∈ [0, 1] then xn, yn ∈ [0, 1] for any n, too.
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[6] Faragó I., Horváth R., Qualitative Properties of Numerical Solutions of some PDE
Models of Disease Propagation. J. Comput. Appl. Math., to appear.

[7] Kermack, W. O., McKendrick, A. G.: A contribution to the mathematical theory
of epidemics. In: Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences 115 (772) pp. 235–240 (1927).

[8] Thomas, J.W., Numerical Partial Differential Equations, Finite Difference Meth-
ods, Texts is Applied Mathematics,22, Springer (1995).

37



Vertical Structure of Atmospheric Composition
Fields over Bulgaria

G. Gadzhev, K. Ganev

Abstract

The numerical simulations for the vertical structure of atmospheric composi-
tion fields over Bulgaria have been performed using the US EPA Model-3 system
as a modelling tool for 3D simulations and the system nesting capabilities were
applied for downscaling the simulations to a 9 km resolution over Bulgaria. The
national emission inventory was used as an emission input for Bulgaria, while
outside the country the emissions are from the TNO high resolution inventory.
The air pollution pattern is formed as a result of interaction of different pro-
cesses, so if know the contribution of each, for different meteorological conditions
and given emission spatial configuration and temporal behavior is very helpful
for understanding the atmospheric composition and pollutants behavior. Nu-
merically obtained characteristics for the vertical structure of the atmospheric
composition will be demonstrated in the paper.

Introduction

The parameters of the atmosphere have key impact on quality of life and human
health. Because of this, quite naturally, the surface air quality is mostly studied. From
the other hand the atmospheric composition fields are formed as a result of complex
interaction of processes with different temporal and spatial scales — from global
to synoptic to a chain of local scales. A very significant role in the formation of air
pollution pattern play also the atmospheric turbulence and the atmospheric boundary
layer processes. The impact of complex terrain phenomena is also important. The
picture becomes even more complex in urban environment, where human activities
leads to the formation of specific urban climate, urban heat island and urban boundary
layer with complex structure.
The incredible diversity of dynamic processes, the complex chemical transformations
of the compounds and complex emission configuration together lead to the forma-
tion of a complex vertical structure of the atmospheric composition. The detailed
analysis of this vertical structure with it temporal/spatial variability jointly with the
atmospheric dynamics characteristics can enrich significantly the knowledge about
the processes and mechanisms, which form air pollution, including near earth surface.
The present paper present first results of a study, which aims at performing relia-
ble, comprehensive and detailed analysis of the atmospheric composition fields 3D
structure and its connection with the processes, which lead to their formation.
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1 Methodology

The study is based on ensemble of computer simulations of the atmospheric composi-
tion fields in Bulgaria. The simulations have been performed using US EPA Model-3
system as modeling tools for 3D simulations: Meteorological model WRF [5], Atmo-
sphere Composition Model CMAQ [1] and Emission model SMOKE [2]. The NCEP
Global Analysis Data meteorological background with 1 °× 1 °resolution was used.
The models nesting capabilities were applied to downscale the simulations to 9 km
for Bulgaria. The TNO high resolution emission inventory [7] and National emission
inventory as emission input for Bulgaria have been used. More detailed description
of the experiments can be seen in [3],[4].
The computer resource requirements of the modeling system are very big [6] and the
numerical experiments were organized in effective HPC environment. The calculations
were implemented on the Supercomputer System “Avitohol” at IICT-BAS.
The simulations, performed day by day for 7 years (2008–2014), produced ensemble,
comprehensive enough as to provide statistically reliable assessment of the atmo-
spheric composition climate. By averaging over the ensemble the “typical” seasonal
and annual pollution concentration fields were constructed with their spatial vari-
ability and diurnal course. Some characteristics of the concentration fields vertical
distribution – center of masses, vertical dispersion, skewness and kurtosis, vertical
mean and maximal concentration and the maximal concentration level have been cal-
culated for the so constructed “typical” seasonal and annual pollution concentration
fields.

2 Results

The center of masses horizontal distribution for the annually averaged Ozone (O3)
and Nitrogen Dioxide (NO2) at 12:00 GMT are shown on Figure 1. What can imme-
diately be seen from the figure is that the center of masses is significantly horizontally
heterogeneous, which reflects the complex interaction of different dynamic and chem-
istry processes as well as the emission source configuration. It should be also be
mentioned that the center of masses for O3 is much higher than the one for NO2.
This is a reflection of the already known [3],[4] fact that the surface O3 in Bulgaria is
to great extend due to transport from abroad and/or from above.

Figure 1: Centre of masses horizontal distribution over Bulgaria for the annually averaged
NO2 and NO2 at 12:00 GMT
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Figure 2: Diurnal course of the annually averaged profiles of O3 and NO2 (a), together with
the surface, maximal and vertically mean concentrations [µg/m3/h] (b), centers of masses,
vertical dispersions and maximal concentrations levels [m] (c).

Figure 2 demonstrates the diurnal course of the annually averaged profiles of O3 and
NO2, together with the surface, maximal and vertically mean concentrations, the
centres of masses, vertical dispersions and maximal concentrations levels. The main
vertical/diurnal pollutant behavior features that can be seen from the figure are the
following: (i) the diurnal course of the characteristics is generally well manifested;
(ii) the NO2 maximal concentrations always appear in the ground layer, while for
the O3 they are at much higher levels — yet another manifestation of the above
mentioned O3 origin in Bulgaria; (iii) as should be expected the surface NO2 has
local minimum, while the O3 has a local maximum around and after noon (the joint
effect of intensified turbulent transport and photochemistry); (iv) as it should be
expected the centre of masses and the vertical dispersion for the NO2 have similar
temporal behavior and close values; (v) against the expectations the centre of masses
and the vertical dispersion have local minimum during the warmer part of the day.
This is a demonstration that in the environment of a complex 3D dynamics, chemical
transformations and emission sources at different levels the admixture propagation
can be different from the case of a classic instantaneous point source in conventional
boundary layer; (vi) there is practically no diurnal course of all the O3 characteristics,
except the surface concentration, which is another evidence that the O3 in the major
part of the column is not a subject of local processes; the vertical mean concentration
of the NO2 is much smaller than the surface one, while for the O3 it is higher than
the surface one and closer to the maximal. This can be followed also in the vertical
distribution skewness (not demonstrated in the paper), which is positive for all the
compounds except O3.
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3 Conclusion

Due to volume limitations only few of the calculated pollution vertical distribution
characteristics are shown in the present paper. Nevertheless they are a good demon-
stration of the complexity of the atmospheric composition 3D structure and of the
joint impact of processes of different nature and spatial/temporal scales. The hori-
zontal resolution of the performed computer simulations is rather coarse (9 km), so
the simulations do not reflect the role of many local scale phenomena. Performing
and analysis of simulations with finer resolution (down to urban scales) will be the
task for future work.
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Performance Analysis of Real-time Applications for
Debugging Parametrization

I. Georgiev, I. Georgiev

Development of safety-critical real-time applications requires from the programmers
to explicitly calculating the execution time scenarios.In this paper, we perform some
experimental analysis and formalization of the parameters that have significant influ-
ence to the performance of safety-critical real-time applications. Parameter’s range is
implemented in both hardware and software debugger that can lead the programmer
to estimate the worst-case execution time (WCET).
We extract the performance parameters by starting from a simple computer model
and adding one after another different hardware and software features.
For simple pipelined CPU with registers only the clocks per instruction CPI is influ-
enced by several parameters. Most embedded systems fetch and execute an instruction
in 5 stages, every stage is synchronized by a clock, the pipeline executes 5 instructions
at different stages. Then the CPI is 1 (5 instructions in the pipeline, 5 clocks per
instruction).
For simple pipelined CPU considering hazards the ideal pipelining is not possible.
There are data hazards and control hazards that influence the execution time. Data
hazards depend in the data dependencies in the program and are 5-8%. Every data
hazard stall the pipeline for 2-4 clocks. The killers of performance are the control
hazards that are caused by the branch instructions. Without prediction every branch
instruction can stall the pipeline for 3 clocks. In average, every program has 25-35%
branch instructions. Then the worst-case CPI both for data and control hazards will
be 1.95. The CPU is 2 times slower because of the hazards.
For simple pipelined CPU considering hazards and loop programming the data de-
pendencies, especially loop-carried, can strongly reduce the performance of real-time
program.The execution time can be improved by loop unrolling. In a simple example
of parallel loop without loop-carried dependences we show that three times loop un-
rolling can increase the execution time of the loop 2.7 times.
If the loop is not parallel because of the loop-carried dependences it cannot be proceed
in multi-core CPU and there is no performance improvement.
Memory hierarchy utilization is an important requirement to achieve high perfor-
mance. The primary memory consists of processor registers, cache level one (separate
instruction and data cache), cache level two, cache level three and main memory. The
exchange of the information between those levels is controlled by a memory manage-
ment unit and is hidden from the OS and run-time environment. The processor issues
main memory addresses, the memory management unit checks whether the data is
uploaded in cache one and down through the hierarchy. If the data is in the upper
level, it is a hit. If it is not, it is called miss and the information has to be uploaded
from the lower level. The time to upload the missing data block from the lower level
is miss penalty, when the current thread waits several hundred clock cycles.
Further, the performance analysis becomes more complicated considering high per-
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formance array programming. Array streaming or large array files put additional
requirement to the performance estimation. During the processing, the arrays are
uploaded blocks by blocks from the virtual memory (if it exists) to the cache memory
by the memory management hardware-software tools (memory management unit and
operating system). For our further consideration let us consider only two levels in the
memory hierarchy (upper level and lower memory level). If the information is not in
the upper level memory, there is a cache miss or virtual memory fault (let us use a
common name fault). The memory management blocks the program under execution
and uploads the page or segment from the lower to the upper level memory. After
that, the program is unblocked and put in the ready queue of the OS scheduler. The
fault could take thousands of clock cycles. In high performance programming, it is
recommended general estimation of the code performance especially of cache misses
and virtual memory faults in those parts of the programs that manipulate huge in-
formation.
Let us consider nested loops that access array data stored in memory in row or col-
umn order. Programming the right nesting of the loops can make the loop expressions
retrieve the data in the order in which they are stored. In case the array cannot fit
in the cache or main memory pages assigned for the program, precise nesting reduces
cache misses and/or virtual memory faults using all data in a cache or page before
they are replaced.
For preemptive multi-threading mode of real time embedded system the performance
depends strongly on the scheduling of processes and threads. The scheduling is per-
formed usually by the Real Time Operating system (RTOS) and the scheduling time
consists of several components:
a. Response time, which is the time from interrupt signal to the beginning of the
interrupt service by the interrupt handler;
b. Interrupt handler time, which is the time for interrupt processing;
c. Dispatching time of RTOS to select the next thread to run in the CPU.
Most of the RTOS declare that the time of all those three component is a predictable
constant, i.e. the big-O complexity is O(1). The dispatching algorithms are priority
based. Priorities can be:
a. calculated in advance;
b. shorter threads have higher priority (Rate Monotonic Scheduling);
c. thread with earliest (absolute) deadline has highest priority.
The execution of every thread can be preempted by a thread of higher priority in most
of the embedded systems (enable and disable interrupt directives are not allowed).
Performance is difficult to calculate. We suggest the influence of the unpredictable
preemption to be expressed increasing the value of instruction count by some per-
centage, which can be experimentally calculated for the concrete configuration.
For shared memory multiprocessing (SMP) performance evaluation depends on sev-
eral factors, most of them depend both on the environment, but also on running
application and the number of the sensors and actuators that can cause additional
delays.
In Single Program Multiple Data (SPMD) the same threads run in concurrent (if
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the threads number is greater than the number of cores) and partly parallel mode
on different cores (if the number of cores if enough). In concurrent mode the worst
case is when all threads are executed in one core sequentially. In fully parallel mode,
some additional delay is generated by the barrier synchronization between the threads
(every thread waits for others to reach the barrier instruction).
In the implemented experimental debugger parametrization programming and debug-
ging of the real time applications is supported by powerful hardware-software inte-
grated development environment (IDE). The IDE configuration consists of:
a. Host computer that runs programming automation package (compiler, editor,
linker) and a host-debugger that runs on a simulator of the selected micro-controller;
b. Evaluation board that has usually two micro-controllers: the target micro-controller
and a microcontroller-debugger.
Both host-and-microcontroller debuggers provide a suite of functions that support the
programming cycle but not so many for performance estimation. The host-debugger
provides the number of the executed instructions and the simulated execution time.
The microcontroller-debugger uses the incorporated timers and provide the absolute
time of execution. Both simulated and absolute execution times are only snapshots
of the current run of the thread.Obviously such estimation has to be modify with
parameters according to the specifics of the computing configuration and possible
maximum number of the connected sensors and actuators.
The proposed parametrization of the debugger has two goals. The first one is to offer
the designer some percentage over the measured time. For example, statistics shows
that for single ARM-based embedded systems the cache misses are 5% from all mem-
ory accesses and the miss penalty is about 5000 CPU cycles (one cycle is 5 clocks).
The second goal is to incorporate entry points for some implemented algorithms for
formal estimation of the worst case (there are several available open source methods).
Our performance analysis has resulted in some parametrization of the microcontroller-
debugger. We added some preprocessor to the debugger that performs a dialog with
the designer to fill in some values for every parameter. The values can be:
a. just Yes/No for some architectural feature of the embedded system or RTOS;
b. some hard-coded or given by some expertize percentage to increase the WCET ;
c. call entry point to some additional software to calculate performance. We grouped
the parameters into two groups: parameters that increase the clock per instructions
CPI and parameters that increase the Instruction count IC.
Below we enumerate only main groups of parameters - every group can include a lot
of parameters.
The group of parameters that increase the CPI:
a.Data and control hazards. Here we have several entry point for subroutines that
can statically or dynamically estimate the number of the data hazards and give some
percentage to increase the execution time. Some example percentage is 5-8%.
b. Branch predictions. Several parameter are to be declared: forward branches are
predicted taken, backward branches are predicted taken, dynamical branch tables or-
ganization, etc.
c. Data dependencies especially, loop-carried dependencies. The most important here
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is the statical estimation of the data dependencies - here there are entry points to
different subroutine for loop-carried dependencies.
d. Single core or SMP organization. If CPU is a single core the estimation of exe-
cution time can be measurement based. In case of SMP several parameters have to
be given that make the prediction more appropriate.The literature mostly considers
methods for single core processors. But fully preemptive scheduling, the possible line
of waiting interrupts, conflicting access to main memory makes the timing analysis
dependable by the interference delays parametrization.
The parameters that increase the IC are related to:
a.Cache misses.The influence of the cache misses depends on the CPU organization,
the levels of caches, the size of the cache blocks, etc. The performance prediction is
based on the measurement-based timing estimation and and on the experience of the
designers.
b.Write policy (write through, write back). The threads that belong to the same pro-
cess share the same address space and every write can invalidate some blocks. For
that situation we incorporate several parameters that can make the performance pre-
diction more correct.
c.Block replacement.The selected policy parameters (FIFO, LRU or randomly) has to
be object of different estimation.
d. Memory hierarchy faults. The parameters that the designer has to present to
debugger particularization together with measurement has to motivate possible esti-
mation of the execution time, which could be more than ten times greater then the
measured.
e.The parallel execution in different cores with multi-threaded synchronization by bar-
rier instructions. Barrier synchronization in SPMD (Single Program Multiple Data)
between the parallel threads (the threads are parallel but they are executed in con-
current mode) can increase the WCET with 1-3%.
f.The interrupt sequence and especially the scheduling procedure has the most signifi-
cant influence on WCET. The designer present some parameters that describe more
precisely the scheduling and the response time after interrupts.
g.Reset-restart for fault recovery is a popular techniques especially in periodical real-
time applications. Every critical fault triggers restart of all safety-critical application
that could be corrupted by the fault are executed again. We consider such restart a
function that can increase the IC by 0.23% for periodical applications.
With parametrization the debugger can give more realistic picture during estimation
of the execution time. Some parameters are also entry point to some additional sub-
routines for performance prediction.
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Computer Simulations of PM Concentrations
Climate for Bulgaria

I. Georgieva, N. Miloshev

Abstract

The numerical simulations of the Particulate matters (PM) fields in Bulgaria
have been performed using the US EPA Model-3 system as a modelling tool for
3D simulations and the system nesting capabilities were applied for downsca-
ling the simulations to a 9 km resolution over Bulgaria. The national emission
inventory was used as an emission input for Bulgaria, while outside the country
the emissions are from the TNO high resolution inventory. The air pollution
pattern is formed as a result of interaction of different processes, so if know the
contribution of each, for different meteorological conditions and given emission
spatial configuration and temporal behavior is very helpful for understanding
the atmospheric composition and pollutants behavior. The “Integrated Process
Rate Analysis” model option was applied to discriminate the role of different dy-
namic/chemical processes for the air pollution formation. Numerically obtained
PM concentration fields of as well as of determining the contribution of different
processes to the formation of surface PM concentrations will be demonstrated
in the paper.

Introduction

The air is the living environment of human beings and atmospheric parameters have a
great importance for the quality of life. According to the World Health Organization
(WHO), between 2.5 and 11% of the total number of annual deaths are due to air
pollution [10, 11]). Special attention is paid to primary emitted or secondary formed
Particulate Matter (PM), which size varies from 0.01µm to 50µm. The particulates
are separate in several fractions: PM10 (diameter <10µm), PM2.5 (diameter <2.5µm)
and ultra-fine PM with diameter <0.1µm (PM01). The topic is especially relevant for
Bulgaria, where the situation is especially severe regarding of PM concentrations, and
several times exceeded the limit values. The objective of the work is to demonstrate
the numerically obtained PM concentration fields of as well as of determining the
contribution of different processes to the formation of surface PM concentrations
using modeling tools.

1 Methodology

Extensive numerical simulations of the atmospheric composition fields in Bulgaria
have been performed using up to date modelling tools and detailed and reliable input
data [3, 4, 5]. An ensemble, comprehensive enough as to provide statistically relia-
ble assessment of the atmospheric composition climate, has been constructed. The
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used modeling tools is US EPA (Environmental Protection Agency) Model-3 sys-
tem consists of: Meteorological model WRF (Weather Research and Forecasting )[7],
Atmosphere Composition Model CMAQ (Community Multiscale Air Quality)[1] and
Emission model SMOKE[2](Sparse Matrix Operator Kernel Emissions). The simula-
tions were performed day by day for 7 years (2008—2014). The NCEP Global Analysis
Data meteorological background with 1 °×1 °resolution was used. The models nesting
capabilities were aplied to downscale the simulations to 9 km for Bulgaria. The TNO
high resolution inventory [9] was exploited, and National emission inventory as input
for Bulgaria. By averaging the surface concentrations over the whole simulated fields
of ensemble were obtained the mean annual and seasonal surface concentrations and
used as “typical” daily concentration patterns. In this work the PM are separated
in 2 fractions: Fine PM (FPRM) with diameter < 2.5µm and Coarse PM (CPRM)
with diameter from 2.5µm to 10µm. The Integrated Process Rate Analysis option
was applied to evaluate the concentration change (∆C) for each compound for an
hour, so is presented as a sum of the contribution of the processes. The processes
are advection (horizontal HADV and vertival VADV), diffusion (horizontal HDIF
and vertival VDIF), emissions (EMIS), dry deposition (DDEP), chemistry (CHEM),
aerosol processes (AERO) and cloud processes/aqueous chemistry (CLDS). The mo-
dels computer resource requirements are rather big [8] and the numerical experiments
were organized in effective HPC environment. The calculations were implemented on
the Supercomputer System Avitohol at Institute of Information and Communication
Technologies Bulgarian Academy of Sciences.

2 Results

The PM climate and behauvior over Bulgaria is evaluated by averaging the surface
concentrations over the whole ensemble and the mean annual and seasonal surface
concentrations were obtained. Due to volume limits here are present only the annua-
lly average surface concentrations for both fractions FPRM and CPRM. According
to current Regulation [6] the defined limit values for PM concentrations are: FPRM
– 40µg/m3 24 hour average and 20µg/m3 annual average; CPRM – 50µg/m3 24 hour
average and 40µg/m3 annual average. The results show that there is exceedance the
limit values for both PM fractions. For CPRM plots the exceedance is several times
mostly at biggest cities in the country Figure 1. The outputs from the Integrated
Process Rate Analysis were averaged over the 7 year ensemble and so the “typical”
seasonal and annual evaluations were obtained. An example of the diurnal annual
behavior of the contribution of different processes to the surface concentration of
FPRM and CPRM, averaged for Bulgaria, is given in Figure 2. The processes that
were considered are HADV and VADV, HDIF and VDIF, EMIS, DDEP, AERO and
CLDS. The graphics show dominant contributions with their sign and phases of each
process that leading to concentration change. For the FPRM can be seen that the
leading processes are EMIS with positive contribution and VDIF with negative contri-
bution. The EMIS is dominant process for CPRM too, but VDIF has highest positive
contribution, and also can be see that DDEP has maximal negative contribution.
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Figure 1: Annual surface concentrations for FPRM and CPRM [µg/m3], averaged for the
territory of Bulgaria at 07:00 GMT.

The ∆C has different sign during the day and depending on weather conditions and
topography.

Figure 2: Annually averaged contribution of the different processes to the formation of
FPRM and CPRM [µg/m3/h] for Bulgaria.

3 Conclusion

Due to volume limitations the spatial and seasonal variability of the PM character-
istics is not demonstrated at all, only the annual. The numerically obtained PM
concentration fields show the several times exceeded the limit values for concentra-
tions mainly at biggest city in the country. For the whole domain, the ∆C, leading to
a change in a concentration is determined by a small number of dominating processes
with big values, and the sign and phases of these processes could be opposite. The
contributions sign of some processes is obvious, but for some the sign may be changing
and can be different, depending on weather conditions, topography and etc.
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Numerical Methods for Fractional-in-Space
Diffusion Problems

S. Harizanov, N. Kosturski, R. Lazarov, S. Margenov, P.
Marinov, Y. Vutov

1 Introduction

The interest in fractional diffusion models is motivated by the active on-going de-
velopment in fractional calculus and its numerous applications related to anomalous
diffusion, e.g., underground flow, diffusion in fractal domains, dynamics of protein
molecules, and heat conduction with memory, to name just a few (see, e.g, [4] and the
references there in). Another field of application of fractional diffusion operators is the
image processing. For instance, problems with fractional power of graph Laplacians
appear in image segmentation [6].
In the stationary elliptic case, such kind of problems lead to fractional order partial
differential equations that involve in general non-symmetric operators. An important
subclass of this topic is defined by fractional powers of self-adjoint elliptic operators,
which are nonlocal but self-adjoint. In particular, the fractional Laplacian describes an
unusual diffusion process associated with random excursions. In general, the fractional
elliptic operators of power α ∈ (0, 1) are related to super-diffusion.

2 The problem

In what follows we consider the definition of fractional diffusion problem based on
spectral decomposition of the elliptic operator. Let us consider the weak formulation
of the boundary value problem: find u ∈ V such that

a(u, v) :=

∫
Ω

(a(x)∇u(x) · ∇v(x) + q(x)) dx =

∫
Ω

f(x)v(x)dx, ∀v ∈ V,

where V := {v ∈ H1(Ω) : v(x) = 0 on ΓD}, Γ = ∂Ω, and Γ = Γ̄D ∪ Γ̄N . We
assume that ΓD has positive measure, q(x) ≥ 0 in Ω, and a(x) is an SPD d×d matrix,
uniformly bounded in Ω. Then, the nonlocal operator Lα, 0 < α < 1 is introduced
through its spectral decomposition, i.e.

Lαu(x) =

∞∑
i=1

λαi ciψi(x), u(x) =

∞∑
i=1

ciψi(x),

where {ψi(x)}∞i=1 are the eigenfunctions of L, orthonormal in L2-inner product and
{λi}∞i=1 are the corresponding positive real eigenvalues. Similar definition of the
fractional power of a given SPD matrix is assumed.
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In a very general setting, the numerical solution of nonlocal problems is rather ex-
pensive. The following four approaches A1-A4 lead to transformation of the original
problem Lαu = f to some auxiliary local problems in a computational domain of
higher (d+ 1) dimension:

A1 Extension to a mixed boundary value problem in the semi-infinite cylinder [2].
Truncation analysis is provided to allow numerical solution in a bounded cylin-
der.

A2 Transformation to a pseudo-parabolic problem [8]. Stability conditions are ob-
tained for the fully discrete schemes under consideration.

A3 Integral representation of the solution in (0,∞) is used in [1]. Then exponen-
tially convergent quadrature formulae are applied to evaluate numerically the
related integrals.

A4 Best uniform rational approximation (BURA) is introduced in [4]. See for some
more details the next section.

All A1-A4 are applicable to fractional diffusion problems in computational domains
with general geometry.

3 BURA methods

A class of efficient solvers for the linear system Aαu = f , 0 < α < 1, is proposed in [4],
where A is a normalized symmetric and positive definite (SPD) matrix generated by
finite element or finite difference approximation of some self-adjoint elliptic problem.
Instead of the original problem, the system Aα−βu = A−βf := F, β ≥ 1 an integer,
is considered. Then Aβ−αF is approximated by a set of solutions of systems with
A + djI, dj ≥ 0, for j = 1, . . . , k, where k ≥ 1 is the number of partial fractions of
BURA rβα(t) of tβ−α, t ∈ (0, 1].
From algorithmic point of view, the methods A3-A4 are very similar. In both cases
the approximate solution is obtained by solving a number of local problems where
the sparse SPD matrix A is diagonally perturbed with a positive constant. The
computational efficiency follows from the assumption that some optimal (say multigrid
or multilevel) solver is applied for the related auxiliary sparse SPD problems.
Both A3-A4 lead to positive approximation of the fractional diffusion operator [5].
This means that the numerical solution has monotone behaviour. This is an important
advantage allowing to avoid possible numerical oscillations in the boundary layers.
When compare A3 and A4, some advantages of the BURA methods can be observed.
They are stronger expressed for stronger super-diffusion, means for smaller α. A test
problem with checkerboard right hand side is introduced in [1] and is used for the
comparative analysis in [4]. Numerical results for the relative `2 accuracy of 1-BURA
(β = 1) are presented, where the mesh parameter h = 210 ≈ 103 and k = {9, 8, 7}
for α = {0.25, 0.5, 0.75}, respectively. For instance, for α = 0.25, 40 is the smallest
number of linear systems to be solved according to A3 to beat the numerical accuracy
of 1-BURA with 10 similar systems.
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4 Parallel algorithms

The supercomputing simulations are de facto a standard in the development of many
new technologies, advanced engineering solutions and research projects. In particular,
the use of parallel algorithms makes the fractional diffusion modeling more feasible
and attractive. However, the efficient parallel computations require development of
appropriate parallel algorithms. The selection of best fitted algorithms needs extended
scalability analysis varying the most advanced parallel architectures.
First scalability study of parallel algorithms for methods A2-A3 are presented in
[3]. Not surprisingly, more promising strong scalability results are reported for the
second method. The related parallel algorithm is based on a two-level parallelization
template. At the first level, a number of independent local elliptic subproblems are
solved, while at the second one, parallel multigrid solvers are employed.
First robustness and parallel scalability results for BURA are published in [4]. A
more involved performance analysis of multigrid preconditioning (utilized in the re-
lated BURA implementation) on Intel Xeon Phi towards scalability for extreme scale
problems is available in [7].
The parallel numerical tests included in the above mentioned papers are run on HPC
cluster Avitohol at IICT-BAS.

5 Concluding remarks

Some recently introduced numerical methods for fractional-in-space diffusion prob-
lems are discussed with a particular focus on the method based on on best uniform
rational approximation (BURA) of tβ−α for 0 ≤ t ≤ 1 and natural β. Bigger β means
stronger regularity assumptions. This is why, from practical point of view, β = 1 is
the most important case. Unlike the integral quadrature formula method (A3) the
approximation properties of the BURA algorithm are not symmetric with respect to
α = 0.5, α ∈ (0, 1). Some well expressed advantages for smaller α, i.e., in the case of
stronger super-diffusion, are observed.
The plans for future research include: i) developing BURA of higher order which
requires also improvements of the involved Remez algorithm; ii) developing new ap-
proaches based on BURA including novel multi-step methods; iii) developing BURA
based methods for more general or/and new nonlocal problems.
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Edge Detection of Radiographic Images through
Phantom Blur Denoising

S. Harizanov, I. Lirkov, I. Georgiev, J. Stary, S. Zolotarev

1 Theoretical setup

Digital image processing is a vastly emerging and extremely active research field,
that combines mathematical and computer science knowledge, and has applications
in practically all our daily activities. This paper is devoted to a novel approach
for extracting important structural information for the scanned object, based on the
segmented difference image between two denoised outputs. More precisely, denoting
by ū the noise-free “perfect” gray-scale image we want to reconstruct, and assuming
that we have two independent noisy observations f1 and f2 of it with identical noise
characteristics, we can study the following two model problems

uUB = argmin
u∈[0,ν]n

‖∇u|‖2,1 s.t.


∥∥T (u)− T (f1)

∥∥2

2
≤ 1

2

∥∥T (f2)− T (f1)
∥∥2

2∥∥T (u)− T (f2)
∥∥2

2
≤ 1

2

∥∥T (f2)− T (f1)
∥∥2

2

, (1)

and

uB = argmin
u∈[0,ν]n

‖∇u|‖2,1 s.t.


∥∥T (Hu)− T (f1)

∥∥2

2
≤ 1

2

∥∥T (f2)− T (f1)
∥∥2

2∥∥T (Hu)− T (f2)
∥∥2

2
≤ 1

2

∥∥T (f2)− T (f1)
∥∥2

2

. (2)

Here, n is the image size, ν is its maximal intensity, T is the Anscombe transform, ∇ ∈
R2n×n is the discrete gradient operator (forward differences and Neumann boundary
conditions are used), the Total Variation (TV) norm ‖ · ‖2,1 sums the lengths of the
pixel gradients, and H ∈ [0, ν]n×n is a blur operator, corresponding to a convolution
with a Gaussian kernel of standart deviation σ = 0.5.
The constrained energy minimization techniques (1) and (2) lead to practically noise-
free, but oversmoothed images. The level of oversmoothing depends on the charac-
teristics of the constrained set and the admissibility of the true image ū. It affects
the contrast of the image edges and not the brightness of regular regions. Therefore,
we can try localizing the image edges via looking in the segmented difference image

|uUB − uB | > threshold.

2 Numerical results

The work of S. Harizanov is supported by the Bulgarian National Science Fund under
grant No. BNSF-DM02/2.
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Row input data f1 Denoised output uB Segmented Difference Image

PSNR= 19.88dB PSNR= 35.47dB threshold=80

PSNR= 26.55dB PSNR= 39.89dB threshold=1.2

PSNR= 30.01dB PSNR= 43.09dB threshold=80

Figure 1: Experimental verification of the proposed methodology on various data sets,
generated by the industrial tomograph Nikon XT H 225.
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Study of Non-Proline cis Peptide Planes
in Different Protein Framings

Y. Hou, J. Dai, A. J. Niemi, X. Peng, J. He, N. Ilieva

1 Introduction

Familiar examples where the choice of coordinates is important, range from descrip-
tion of Keplerian planetary motion to identification of action-angle variables in inte-
grable models [1]. In studying and visualisation of proteins, however, this problem has
been widely neglected so far. Commonly, a protein is visualised as a one-dimensional
piecewise linear discrete chain with vertices that coincide with the positions of back-
bone Cα atoms. Geometrical description of such an object can be performed both in
intrinsic and extrinsic coordinates. A classical differential-geometry example from the
first category are the canonical Frenet coordinates [2]. More common, however, is the
description in terms of Ramachandran angles — the dihedral angles that are adjacent
to the α-carbons of the backbone [3]. However, most of the 3D visualisation programs,
e.g. VMD, Jmol and PyMOL [4], employ an extrinsic, laboratory coordinate frame.
The extrinsic and intrinsic geometries are the same for structureless curves, but their
information content differs for natively framed objects as is the case with proteins. We
step on the intrinsic geometric structure provided by the peptide planes to develop
a methodology for analysis and visualisation of protein structure with the potential
for identifying the intrinsic geometry influence on atomic positions anomalies and
overcoming the apparent statistical bias [5] in the diffraction data refinement.

2 Materials and Methods

For description and analysis of protein structure and dynamics we employ, on the one
side, the extrinsic Frenet frames (see, e.g. [6]). On the other, based on the planar
character of the peptide bond, we introduce an intrinsic coordinate system, defined
by the Ci, Ni and Oi atoms of a given peptide plane (Fig. 1) with its origin at the
location of the corresponing Ci atom as follows:

xi =
rOi − rCi

|rOi − rCi|
, zi =

xi × ui
|xi × ui|

, yi =
zi × xi
|zi × xi|

(1)

where

ui =
rNi − rCi

|rNi − rCi|

3 Results and Discussion

Our empirical data set consists of the ultrahigh-resolution (better than 1.0 Å) struc-
tures in PDB [7]. Therein, the peptide planes are mostly found in trans conformation,
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defined through Ramachandran dihedral ω between 〈Cαi −Ci−Ni〉 and 〈Ci−Ni−Cαi+1〉
planes having the value ω ≈ π. The cis conformation, where ω ≈ 0, is seldom seen
among the low-resolution structures, but still present among the less refinement-prone
high-resolution ones.

Figure 1: The right-handed orthonormal
(x,y, z) CNO-frame.

We focus on these relatively rare cis
peptide plane conformation, extend-
ing the definition range for the Ra-
machandran dihedral ω from the ideal
value ω ≈ 0 to the interval ω ∈
[−π/4, π/4]. To narrow further the se-
lection, we choose to analyse the struc-
tures that exhibit cis X-Xnp peptide
plane, where X denotes any amino acid
and Xnp stands for any amino acid
but proline. About 40% of ultrahigh-
resolution structures presently deposited in PDB have at least one cis peptide plane,
where the rare cis X-Xnp type accounts for about 7.5% of the structures. In terms
of peptide planes, the rarity of these conformations becomes even more apparent:
out of 118226 peptide planes present in the ultrahigh-resolution data set, only about
0.3% appear in cis-conformation, and only some 0.05% are of cis X–Xnp type. In
our numbering convention, the ith peptide plane connects residues (resp., α-carbons)
at position i and i+ 1. In Fig. 2, the frequency of different amino acids at these two
positions for the cis X-Xnp peptide planes is shown.

Figure 2: Distribution of amino acids at the ith (left panel) and (i + 1)th (right panel)
vertex of the cis X–Xnp peptide planes within ultrahigh-resolution structures in PDB.

As a characteristic example we consider the side-chain orientation in the cis peptide
planes, substantiated by the angular distribution of the β-carbons [8] at the respective
nodes of the protein backbone. In Fig. 3, Fig. 4, these distributions on a Cα-centered
Frenet sphere for the ith, resp. (i+ 1)th, Cβ are given, in parallel for the cis X-Xnp
and the cis X-Pro peptide bonds. In all plots we observe a clear deviation from the
grey background of all PDB structures with resolution below 1.0 Å.
Thus, in the Frenet-representation, ith cis peptide plane affects both the preceding
and subsequent structures, as reflected in the Cβi and Cβi+1 distributions, the latter
though stronger. In the CNO frame (figures not shown), no influence on the preceding
structures can be detected — distributions of all involved atoms are well in line with
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Figure 3: Distribution of the β-carbons of the cis X–Xnp residues (left panel) and of the
cis X–Pro ones (right panel), on a Cα-centered Frenet sphere for the ith Cβ .

the corresponding trans-conformation background.

Figure 4: Same as Fig. 3, but for the (i+ 1)th Cβ .

The CNO-frame information content is complementary to that of the Ramachan-
dran representation. However, one would expect that the CNO angular variables,
being spherical coordinates, are more convenient for protein structure studies than
the toroidal Ramachandran angles [9].

4 Conclusions and outlook

We compare the local geometry around trans and cis peptide planes, as well as the
differences between their conformations in different coordinate systems. In partic-
ular, we show how to employ the intrinsic geometry to visually analyze the atomic
level neighborhood around a peptide plane and systematically classify how the cis
conformation affects the protein structure. Further, we combine the traditional Ra-
machandran angles with our modern visualisation methods. We reveal systematics
in the way how such a cis peptide plane deforms the atomic level geometry in its
neighborhood, and show how our 3D methodology easily detects the presence of a cis
peptide planes from the arrangement of atoms near the latter. Our approach identifies
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efficiently exceptionally positioned atoms in crystallographic PDB structures. It can
also help overcome the apparent refinement bias towards statistically more significant
trans structures. Thus it can be extended to a visual analysis and refinement tool,
applicable even when resolution is limited or data are incomplete.
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Study of Human Interferon-Gamma Glycosilation
by Molecular Dynamics Simulations

E. Lilkova, N. Ilieva, P. Petkov, L. Litov

1 Introduction

Interferon-γ (IFNγ) is a signaling molecule, which is crucial in regulation of the for-
mation and modulation of immune response. Human IFNγ (hIFNγ) consists of 143
amino acids (aa), organised in six α-helices (comprising 62% of the molecule), which
are linked by short unstructured regions. Besides them, hIFNγ contains also a long
positively charged unstructured C-terminal domain composed of 21 aa. The ma-
ture form of hIFNγ is organised as a non-covalent homodimer. The cytokine accom-
plishes its functions via high-affinity extracellular interaction with its specific receptor
(IFNγR1).
Under physiologic conditions the natural human IFNγ is a glycoprotein. The two N-
glycosilation sites in each monomer chain – ASN25 and ASN97 – are independently and
differentially glycosilated. Naturally, two fractions with molecular weights of 20 kDa
and 25 kDa are isolated, that correspond to either monoglycosilated or diglycosilated
protein. The chemical compositions of the predominantly occurring oligosaccharide
sequences in the native hIFNγ have been determined experimentally [3] and are shown
in Figure 1. Glycosilation does not affect hIFNγ activity, but it has been shown that
N-linked oligosaccharides promote the folding and dimerization of the recombinant
cytokine. In addition, N-glycosilation enhances circulatory half-life by protecting
hIFNγ from proteolytic degradation [4].

Figure 1: Chemical composition of the most common oligosaccharide chains of native
hIFNγ.

Here, we report the development of model structures of monoglycosilated at either
ASN25 or ASN97 or diglycosilated full-length native dimers and study the influence
of added glycans on the conformation and dynamics of hIFNγ by means of molecular
dynamics (MD) simulations.
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2 Materials and Methods

Input model development
We started from the conformation of previously reconstructed and folded full-length
hIFNγ [5]. Glycosilation anchors were added to the starting structure of the protein
using GlyProt server [1]. The glycan structures, corresponding to Figure 1, were then
built and attached to the anchors with the help of Glycan Reader of the molecular
dynamics simulation setup server CHARMM-GUI [2]. The structures were parame-
terized with the CHARMM 36 force field, minimised and equilibrated.

Production simulation protocol
The production MD simulations were performed with GROMACS 2016.3. The glyco-
proteins were solvated in rectangular boxes with a minimal distance to the box walls
of 2 nm under periodic boundary conditions. The leapfrog integrator with constraints
imposed on all bonds was used with a time-step of 2 fs. Van der Waals interactions
were smoothly switched off from a distance of 10 Å and truncated at 12 Å. The direct
PME cut-off was 12 Å. The simulations were performed at temperature of 310 K and
pressure of 1 atm, supported through a v-rescale thermostat and Parrinello-Rahman
barostat, respectively.

Figure 2: Top and front projections of the sampled conformations of (a) monoglycosilated
at ASN25, (b) monoglycosilated at ASN97 and (c) diglycosilated full-length hIFNγ. The
globular part of the proteins is depicted in grey ribbons and the flexible C-termini are in
blue ribbons. The glycans are depicted in lines as follows: ASN25

A – silver, ASN97
A – cyan,

ASN25
B – pink, and ASN97

B – orange.

61



3 Results and Discussion

The glycan chains populate conformations, which remain in the upper part of the
hIFNγ molecule. A graphical summary of the three trajectories is shown in Figure 2.
The carbohydrates do not alter significantly the conformation and dynamics of the
globular part of hIFNγ. In fact, they even stabilise the globule and reduce its atoms
RMSF (Figure 3).

Figure 3: RMSF of the amino acid residues of hIFNγ.

The glycan chains interact both with the receptor-binding interfaces and the flexible
C-termini of the cytokine. This is reflected in the contacts, formed between the
carbohydrates and different parts of hIFNγ, presented in Figure 4. As evident form
the two top plots, the glycans at position ASN25 interact more actively with the
receptor-binding sites than those at position ASN97.
Nonetheless, contrary to expectations, the glycans do not interact very actively with
the C-termini, except for the diglycosilated glycoprotein. Initially in all three simula-
tions, the C-termini are close to the globular part. In both cases of monoglycosilated
hIFNγ one or both tails drift away from the globule into the solvent, which prevents
them from binding to the glycans, added to the upper part of the cytokine glob-
ule. Thus, our results do not support the hypothesis that interaction between the
oligosaccharides and the C-termini protects the latter from proteolytic degradation.
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Figure 4: Number of contacts within 6 Å between the carbohydrate chains and the left
and right receptor-binding interfaces (left and right top panels) and the C-termini of the two
monomers (left bottom panel – chain A, right bottom panel – chain B) of hIFNγ.
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Monte Carlo Simulation for Seismic Analysis of
Egnatia Highway Bridges in Northern Greece

K. Liolios, T. Makarios, A. Liolios, K. Georgiev, I. Georgiev

1 Introduction

A probabilistic methodology concerning the construction of vulnerability curves for
Civil Engineering Structures under seismic excitation, and especially for bridges, is
presented. Use is made of the Finite Element Method (FEM), the non-linear static
pushover procedure, the capacity spectrum method and Monte Carlo simulation tech-
niques for the treatment of various uncertainties. The methodology is applied to ob-
tain the fragility curves of the ravine Egnatia Highway bridge in the Kavala motorway
section, East Macedonia, Greece.
The vulnerability analysis of Civil Engineering Structures, and especially for highway
bridges, represents a critically important step in their seismic damage estimation and
protection process [1]. The relevant fragility curves provide the probability that a
specific damage level will be exceeded for a given intensity of a seismic event. In this
respect, development of vulnerability relationships for both, the existing and under
design Civil Engineering structures, is a key element in formulating mitigation and
disaster planning strategies in Civil Earthquake Engineering for the estimation of the
urban seismic risk. In combination with seismic hazard analysis at the bridge sites,
they can lead to a reliable assessment of the seismic risk of highways. Furthermore,
they can even be used by the authorities in charge to prioritize the on site aftershock
inspections, in order to check the structural integrity of the bridges subjected to a
severe seismic event.
The present paper deals with a simplified analytic methodology for the evaluation
of vulnerability curves for bridges. The methodology combines the nonlinear static
pushover procedure, the capacity spectrum method [2], and Monte Carlo simulation
techniques for the treatment of various uncertainties [3, 4]. The methodology is
applied for establishing fragility curves for an reinforced concrete bridge in the Kavala
section of Egnatia Motorway, in the county of East Macedonia, Northern Greece. The
Kavala bridge examined herein is a structurally representative one of many bridges
in Egnatia Motorway, and in Greece more generally [5-7].
Egnatia Odos is a new motorway that crosses Northern Greece in an E-W direction.
It is currently the largest and technically the most demanding highway project in
Greece, and one of the biggest ones under recent (2008-2009) construction in Europe.
Moreover, for the design and construction of Egnatia Motorway, a lot of Applied
Science topics are involved, e.g. structural and seismic mechanics, geotechnical and
transport engineering, hydraulic and environmental engineering, probabilistic meth-
ods, etc. The total length of Egnatia Motorway is about 1000 km and includes about
1900 special structures (bridges, tunnels and culverts). These structures are expected
to withstand several minor or moderate earthquakes during their life, and may be
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damaged if they are subjected to a major (catastrophic) earthquake. So, the con-
struction of their fragility curves is very significant [5].

2 Problem statement and solution procedure

As was mentioned in the Introduction, the present study focuses on the simplified
practical fragility analysis of bridges. Details have been presented in [7]. The vulner-
ability functions, required for the fragility curves, are expressed [1, 6-7] in terms of a
Lognormal cumulative probability function in the form of next eq. (1):

Pf (DP ≥ DPi|S) = Φ

[
1

βtot
. ln

(
S

Smi

)]
(1)

Here Pf () is the probability of the damage parameter DP being at, or exceeding, the
value DPi for the i-th damage state for a given seismic intensity level defined by the
earthquake parameter S (the Peak Ground Acceleration-PGA or Spectral Displace-
ment - Sd), Φ is the standard cumulative probability function, Smi is the median
threshold value of the earthquake parameter S required to cause the i-th damage
state, and βtot is the total lognormal standard deviation. Thus, the description of the
fragility curve involves the two parameters, Smi and βtot, which must be determined.
The damage level depends on the input seismic excitation, i.e. the seismic ground
acceleration. As well known from Structural Dynamics and Earthquake Engineering
[2], because this input is not known for future earthquakes, the spectral approach
is used according to various seismic building codes, e.g. the Greek Aseismic Code
EAK2000 [5].
According to equation (1), the description of the fragility curve involves only two
parameters, Smi and βtot. The first parameter Smi is estimated on the basis of
the capacity spectrum method [1], wherein the demand spectrum is plotted for a
range of values of the earthquake parameter S (in spectral acceleration vs. spectral
displacement format) and it is superimposed on the same plot with the capacity
curve of the bridge. The earthquake parameter used in this study is the peak ground
acceleration (PGA).
The second parameter of Eq. (1) is the total lognormal standard deviation βtot, which
incorporates the various uncertainties in the seismic demand, in the response and the
capacity of the bridge, and also in the definition of the damage index and damage
states. So, it takes into account the uncertainties in seismic input motion (demand),
in the response and resistance of the bridge (capacity), and in the definition of damage
states. This parameter (βtot) can be estimated in the frame of Monte Carlo simulation
techniques [3] by realizing a statistical combination of the individual uncertainties,
assuming these are statistically independent. On the basis of empirical fragility curves
obtained from actual Egnatia Hoghway bridges damage data in the frame of the
research project ASPROGE [5], the value of βtot was set equal to 0.60
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3 The investigated case of the Kavala ravine bridge
in Egnatia Motorway

On the part of Egnatia Motorway, northern Greece, that bypasses the city of Kavala,
East Macedonia, it has been constructed a ravine bridge, shown in Fig. 1. The
bridge is of reinforced concrete, with seismic stoppers, and crosses a 54.00 m deep
ravine. The 180 m long bridge consists of four spans, each constructed using four 45
m long prestressed beams that rest on three piers and two abutments via elastomeric
bearings.

Figure 1: The Kavala ravine bridge on Egnatia Motorway.

The fragility curves were computed, assuming a lognormal cumulative probability
distribution for the damage ratio as a function of peak ground acceleration PGA
and using the equation (1). Representative results for the Kavala bridge obtained by
the numerical implementation of the proposed methodology are presented in Fig. 2.
These results concern the fragility curves in the in the x (longitudinal) direction.

Figure 2: Fragility curves for the Kavala bridge (x –longitudinal - direction, EAK2003
elastic demand spectrum).
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Finally, for the case of bridges with seismic stoppers, where unilateral contact effects
must be taken into account, the approach presented in [7] using the hemivariational
inequality concept [8] can be applied.

References

[1] Shinozuka, M., Feng, M.Q., Lee, J., Naganuma, T., Statistical analysis of
fragility curves, J. Eng. Mech. 126(12), 1224-1231 (2000)

[2] Chopra, A.K., Dynamics of Structures. Theory and Applications to Earthquake
Engineering, Pearson Prentice Hall, New Jersey (2007)

[3] Dimov, I.T., Monte Carlo Methods for Applied Scientists, World Scientific
Publishing Company, Singapore (2008)

[4] Hwang, H.H.M, Jaw, J.W.: Probabilistic damage analysis of structures. J.
Struct. Eng. 116(7), 1992-2007 (1990)

[5] ASPROGE. Research Project for the Aseismic PROtection of Bridges. Egnatia
Odos S.A., Thessaloniki (2007)

[6] Moschonas, I.F., Kappos, A.J., Panetsos, P., Papadopoulos, V., Makarios, T.,
Thanopoulos, P., Seismic fragility curves for Greek bridges: Methodology and
case studies. B. Earthq. Eng. 7(2), 439-468 (2009)

[7] Liolios, Ast., Panetsos, P., Liolios, Ang., Hatzigeorgiou, G., Radev, S., A nu-
merical approach for obtaining fragility curves in seismic structural mechanics:
A bridge case of Egnatia Motorway in northern Greece, In: Dimov I., Dimova
S. and Kolkovska N. (Eds.), Numerical Methods and Applications, Lecture
Notes in Computer Science (LNCS) 6046, 477-485 (2010)

[8] Panagiotopoulos, P.D., Inequalities and Applications in Mechanics and Engi-
neering, Springer Verlag, Berlin (1993)

67



Scalability Analysis of Solvers based on Hierarchical
Compression of Dense Matrices and Gaussian

Elimination

D. Slavchev, S. Margenov

Abstract

We compare the performance of traditional Gaussian elimination with a
solver utilizing hierarchical compression of the matrix. The test problems are ob-
tained by Boundary Element Method (BEM) simulation of laminar flow around
airfoils. The most computationally expensive part of the BEM algorithm is to
solve the arising system of linear algebraic equations. The related dense matrix
can be compressed using a Hierarchically Semi-Separable (HSS) representation.
This significantly lowers the computational complexity of the solution method,
thus allowing faster overall execution.

The performance of STRUMPACK library implementation of HSS and the
MKL direct solver is compared on Intel Xeon CPU architecture. At the end,
we examine the accuracy of the HSS approximation using the (exact) results of
Gaussian elimination as a reference solution.

1 Background

This work is motivated by the recent development of heterogeneous high performance
computing (HPC) architectures. Solving systems of linear algebraic equations with
dense matrices is one of the most computationally intensive numerical linear algebra
problems. This is the topic of the article. The focus is on a comparative performance
analysis of a solution method based on hierarchical compression of a class of test
matrices obtained by BEM simulation of laminar flows around airfoils.
The traditional Gaussian elimination has computational complexity O(n3), where n
is the number of unknowns (degrees of freedom). The methods based on hierarchical
compression have nearly optimal complexity, i.e., O(r2n), where r is the maximum
rank of off diagonal blocks of the matrix. Typically r is much smaller then n. For
some problems it is either a constant or it grows slowly with n.
The organization of this short communication is as follows. A brief overview of the
HSS implementation in STRUMPACK is given in Section 2. Some numerical results
are presented in Section 3 ending with a short summary in Section 4.

2 HSS method

A summary of Hierarchically Semi-Separable matrices can be seen in [1], while the
parallel algorithm implemented in the STRUMPACK package is described in [2].
The HSS framework developed in STRUMPACK consists of HSS compression, ULV
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factorization and solution. The HSS compression is the most important part of the
HSS framework. Once the matrix is compressed specialized fast operations can be
performed on it, including factorization and matrix vector product.
The HSS compression uses a cluster tree that defines a hierarchical partitioning of
the dense matrix A. This decomposition can be performed for any matrix, but it
has a practical value mostly when the off-diagonal blocks of A have a low-rank. The
algorithm uses randomized sampling, which is implemented by multiplying the matrix
with a set of random vectors. This method is introduced by Martinsson [1]. The main
advantage is that it doesn’t need to access the entire matrix A, but only parts of it.
If a fast sparse matrix-vector product is utilized, the complexity of the HSS compres-
sion is O(r2n), where n is the size of the matrix and r is the maximum rank of the off
diagonal blocks, found during the compression. For structured matrix, like the ones
produced by the BEM method, r is much smaller than n.
In order to calculate the maximum rank r, STRUMPACK should be supplied with an
user defined compression tolerance ε. If this tolerance is too small (e.g. approaching
the machine accuracy), then r will be close to n, and the matrix will not be compressed
significantly. This means to have a computational complexity close to O(n3). If the
tolerance is too bigger the complexity of the HSS method will be much smaller, but
at the price of accuracy of the numerical solution.
The compressed matrix is then factorized using ULV-like factorization. The special
structure of the HSS matrix is taken into account. Finally the ULV factorized form
is used to compute the solution.

3 Numerical results

The presented numerical results are obtained on the HPC cluster AVITOHOL of
the Institute of Communication and Information Technologies, Bulgarian Academy
of Sciences. We run the tests on a single node with two Intel Xeon E5-2650v2 8C
2.6GHz CPUs with 8 cores each. The examined test problem is based on applying
boundary element method for numerical simulation of laminar flow around airfoils [3].
The compression tolerance ε, required by the HSS algorithm, is associated with the
relative and absolute thresholds εrel and εabs. STRUMPACK allows both to be spec-
ified by the user. The compression process stops when one of them is reached.
We present numerical tests for several different settings of εrel (the default value of
10−2 as well as 10−4, 10−8 and 10−12). For the absolute threshold εabs, the default
value of 10−8 is used.
The times of the sequential tests are presented on Fig. 1 (left). The asymptotic
behavior of O(n3) is clearly seen for the MKL implementation of the Gaussian elimi-
nation. We see also the nearly optimal complexity of the STRUMPACK of the HSS
algorithm, as well as the impact of increasing the rank r with the decrease of εrel.
STRUMPACK significantly outperforms MKL for all settings of εrel.
The best parallel times are observed when 16 threads are used. The obtained results
are plotted on Fig. 1 (right). Not surprisingly, the parallel speedup of Gaussian
solver from MKL is better then the STRUMPACK ones. The second important
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conclusion concerns the overall performance. For larger n, the observed advantage
of STRUMPACK is restricted to the case of relatively larger εrel = 10−2, 10−4. It
should be noted that the test with ε = 10−12 run slightly faster then the experiments
with ε = 10−8. This is probably due to achieving more efficient hierarchy in the
compressed matrix.

Figure 1: Performance of STRUMPACK and MKL: sequential test (left), and parallel
scalability tests using 16 cores (right)

An important question when working with an approximate compression (factoriza-
tion) method, like HSS, is how accurate it is. In order to examine the used threshold
settings of the STRUMPACK package we consider the accuracy in the normalized `2
norm where the MKL solution is taken as reference/exact.

∥∥xGauss − xHSS∥∥
2

=
1

n

√√√√ n∑
i=1

(xGaussi − xHSSi )2

In Table 1 we show the calculated `2 norms varying the problem sizes and the relative
tolerances tested. Lowering the threshold improves the accuracy. The results with
the lowest relative threshold εrel = 10−12 show the best accuracy and are slightly
faster then the tests with the next lower threshold. It should be noted that the
accuracy of the results degrades as n grows. With the default threshold of εrel = 10−2,
and for sizes n > 15000 (the NaN values), the compressed matrix is singular and
STRUMPACK cannot solve the system.

4 Concluding remarks

Performance analysis of the STRUMPACK package for solving dense systems of linear
algebraic equations arising from the use of Boundary Element Method is presented.
A Hierarchical Semi-Separable(HSS) based method is tested on Intel Xeon E5-2650v2
8C 2.6GHz CPUs and the performance and accuracy is studied. The HSS based
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n
εrel

10−2 10−4 10−8 10−12

5000 1.11e+08 7.10e-03 0.00079 8.22e-06
10000 1.31e+23 1.23e+00 0.0055 1.69e-05
15000 NaN 1.21e+00 0.0050 7.60e-05
20000 NaN 3.69e+05 0.023 8.73e-05
25000 NaN 1.57e+03 0.018 2.28e-04
40000 NaN 1.30e+07 0.001 1.96e-04

Table 1: Normalized `2 norm of the error

method works significantly faster in the sequential mode but it doesn’t scale as well
as the direct method from MKL. The accuracy of the method is sensitive with respect
to threshold parameters which must be fine tuned for a given size of the problem in
order to achieve acceptable results.
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A Non-Symmetric Model of Disease Propagation

B. Takács, R. Horváth, I. Faragó

One of the oldest problems in the area of applied differential equations is the inves-
tigation of the spread of diseases. Since the black death in Europe in the middle
ages, people tried to describe and understand the phenomena that dominate these
processes.
Since its introduction in the article of Kermack and McKendrick in 1927 ([6]), one of
the most popular models has been the SIR model. This model splits the examined
population into three disjunctive groups: the susceptible (S), who have yet to contract
the disease and become infectious; the infected (I), who can pass on the disease to
the previous group; and the recovered (R), who had been infected, but have already
recovered and cannot transmit the disease.
The aforementioned model can be written as the following first order system of ordi-
nary differential equations 

dS(t)

dt
= −aS(t)I(t),

dI(t)

dt
= aS(t)I(t)− bI(t),

dR(t)

dt
= bI(t),

(1)

where a, b ∈ R+ are given parameters, and S(t), I(t) and R(t) describe the number
of susceptibles, infected and recovered, respectively.
One of the key element of the investigation of the disease is the spatial spread of the
infection among the population. This phenomena is characterized by the infection
of a single individual, such that in what radius does an infectious person have an
effect on the susceptibles. From now on, we will investigate the processes on a two
dimensional plane, and later only on a subdomain of it.
Let us expand the previous model (1) in a way that the size of the populations differ
in space. For this, we introduce the following system of partial differential equations:

∂S(t, x, y)

∂t
= −aS(t, x, y)I(t, x, y),

∂I(t, x, y)

∂t
= aS(t, x, y)I(t, x, y)− bI(t, x, y),

∂R(t, x, y)

∂t
= bI(t, x, y),

(2)

in which X(x, t) denotes the size of population at place x at time t, X ∈ {S, I,R}.
However, this expansion is not beneficial: the different places behave independently of
each other, thus the infection will not spread. In other words, the infection takes place
just in a point, i.e. the infected individual at place x only passes on the disease to
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those susceptibles who are exactly at x. Instead of this, it is more natural to suppose
that the infected individual has an influence on susceptibles in a certain radius around
itself, in a way that it infects healthy individuals further from the infected one less
likely.
Let the nonnegative function F (x, y, r, θ) be defined as

F (x, y, r, θ) =

{
f1(r)f2(θ), if (r, θ) ∈ Bδ((x, y))

0 otherwise.

where Bδ((x, y)) denotes the δ radius ball with center at (x, y). This expression
measures the influence of the infected at position (x, y) on the susceptibles at (r, θ),
where r and θ are polar-coordinates, i.e. r denotes the radius and θ the angle. Note
that in this case we assume a homogeneous domain in which the propagation of the
disease does not depend on the place of the infectious individual, i.e. the spread of
the disease is the same at every point of the domain (there are no regions in which the
disease would spread faster or slower). It is a natural presumption that f1 decreases
as r increases, and f2 can be either constant in θ, or a periodic function in a way
that f2(θ) : [0, 2π] → R, f(0) = f(2π). The case of constant f2 was widely studied
in the articles of I. Faragó and R. Horváth ([3] and [5]). In this talk we consider the
nonconstant case, which can be a model of a plant disease propagated by a constant
wind on the domain, for example.
Now we would like to expand the original theory with a spatial dependence described
by the function F . This way, we get the following equation for the susceptibles:

∂S(t, x, y)

∂t
= −

∫ ∞
0

∫ 2π

0

F (x, y, r, θ)I(t, x′(r, θ), y′(r, θ)) r dθdr · S(t, x, y), (3)

in which we used the notations x′(r, θ) = x+ r cos(θ) and y′(r, θ) = y + r sin(θ), and
r is the Jacobian determinant.
Note that outside of the previously described Bδ((x, y)) ball the value of this integral
is zero. Hence, with the definition of the function F , the previous term takes the form

∂S(t, x, y)

∂t
= −

∫ δ

0

∫ 2π

0

f1(r)f2(θ)I(t, x′(r, θ), y′(r, θ)) r dθdr · S(t, x, y).

This way, the SIR model with spatial dependence can be written as the following
system of integro-differential equations:

∂S(t, x, y)

∂t
= −

∫ δ

0

∫ 2π

0

f1(r)f2(θ)I(t, x′(r, θ), y′(r, θ)) r dθdr · S(t, x, y)

∂I(t, x, y)

∂t
=

∫ δ

0

∫ 2π

0

f1(r)f2(θ)I(t, x′(r, θ), y′(r, θ)) r dθdr · S(t, x, y)− bI(t, x, y)

∂R(t, x, y)

∂t
= bI(t, x, y)

(4)
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These cannot be solved analytically, so we present here a few numerical methods. It
is important to use adequate numerical schemes, which preserve the qualitative prop-
erties of the continuous model. In our case, we will consider the following qualitative
properties.

C1 : the numbers of the individuals in classes S, I and R are nonnegative at every
point in our domain,

C2 : the size of the whole population is constant, i.e.

S(t, x, y) + I(t, x, y) +R(t, x, y) = N(x, y),

for every (x, y) ∈ Ω, where Ω is the domain we investigate the spread of the
disease in, and N(x, y) is constant in time,

C3 : the size of the population of S is non-increasing in time at every x,

C4 : the size of the population of R is non-decreasing in time at every x.

In the talk we consider the Taylor expansion method used in [3] and [5] and show that
in the case of a simple nonconstant f2(θ) function these are not beneficial. Because of
this, we consider a numerical integration to compute the integrals in (4). From now
on we use the following notation:

FI(t, x, y, ri, θj) = f1(ri)f2(θj)riI(t, x+ ri cos(θj), y + ri sin(θj)). (5)

Let us consider a two dimensional cubature Q(x, y) on the Bδ(x, y) disc with positive
coefficients:∫ δ

0

∫ 2π

0

FI(t, x, y, r, θ)dθdr ≈
∑

(ri,θj)∈Q(x,y)

wi,jFI(t, x, y, ri, θj) =: T (t,Q(x, y)), (6)

in which wi,j > 0. Formally,

Q(x, y) := {(ri, θj) : (x+ ri cos(θj), y + ri sin(θj)) ∈ Int(Bδ(x, y))}.

With the approximation (6) we get the following differential equation:

dS(t, x, y)

dt
= −S(t, x, y)T (t, Q(x, y)),

dI(t, x, y)

dt
= S(t, x, y)T (t, Q(x, y))− bI(t, x, y),

dR(t, x, y)

dt
= bI(t, x, y),

(7)

Theorem 1. Properties C1, C2, C3 and C4 hold without any restrictions.

For our numerical solutions we will split our domain using a spatial grid, and approx-
imating the continuous solutions by a vector of the values at the gridpoints. We also
approximate the derivatives on the left size of (7), and consequently get a numerical
scheme. In the talk the discrete version of Theorem 1 will be stated for two different
numerical schemes derived from (7). Also, several numerical experiments will also be
presented.
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Artificial Neural Networks Time Series Forecasting
with Android Live Wallpaper Technology

P. Tomov, I. Zankinski, M. Barova

Abstract

The application of Artificial Neural Networks (ANN) for time series fore-
casting is quite common in the last few decades [1]. ANN may be adopted in
a variety of topologies and training algorithms. Algorithms can be sequential,
but they can also be performed in parallel. Computing device types used for
training ANN may vary from supercomputers, grid networks and single desktop
computers to mobile devices. The focus of this research is training of ANN
for Time Series Forecasting (TSF) as background calculations of Android Live
Wallpaper technology.

Keywords: artificial neural networks, mobile computing, time series fore-
casting

1 Introduction

In their nature, common types of ANNs are weighted directed graphs [5]. The process
of ANN training aims to find such values for the weights which minimize the total
error of the output [6]. When the size of ANN is larger, the amount of weights
may reach very high levels. With the increase of the number of weights, the velocity
of training of a single ANN on a single computer is being reduced. The elevated
amount of calculations poses the application of supercomputers, clusters, grids and
donated distributed computing networks as reasonable and adequate [3, 4, 7, 10]. In
the last decade the immense spread of mobile devices suggests their surpassing usage
over stand alone computers. During most of the operating time, the mobile devices
are in idle mode. The possibilities ANN to be trained in distributed computing
environment and the use of mobile devices can be efficiently combined in software
system for ANN training on mobile operating systems such as Android. In the current
research Android Live Wallpaper technology is involved in ANN training for time
series forecasting.

2 Technical Solution

The technical solution is divided in two parts. The first one is related to the Android
application itself. The second one is related to the ANN data structure represen-
tation, information representation and the process of training/forecasting. For the
first part Android development capabilities are used while for the second part Encog
programming library is involved.
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2.1 Android Live Wallpaper

Live Wallpaper is interactive background on the Android home screen, which can even
process animation. The Live Wallpaper does not differ much from other Android ap-
plications. First step of Live Wallpaper creation is an XML file with application
description (manifest). Second component is a Service class inherited from Wallpa-
perService. Inside of the Service class there is an Engine class. The Engine object
is responsible for training/forecasting execution and background redrawing. Running
LW on the Android operating system requires special permissions. The use of Live
Wallpaper feature should be explicitly written into the manifest file in order to prevent
wallpaper installation on devices which are not capable of running it.

Figure 1: Android Live Wallpaper settings screen.

The set up the wallpaper is performed by sending an Intent to the operating system.
SQLite database is used to store financial time series in the mobile device for offline
mode operation. On regular intervals, wallpaper service is activated - cycle of training
is executed, forecast is retrieved and the visual information is updated. Settings screen
is used for visual representation parameters and device loading options (Fig. 1).
During operating mode a background image is drawn and ANN training/forecasting
information is displayed (Fig. 2).

Figure 2: Android Live Wallpaper operational screen.
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2.2 Encog Machine Learning Framework

For the process of forecasting, Econg library is used. Multilayer perceptron with 3
layers is chosen. Time series is conditionally divided in two parts (past and future).
Data frame for the past (lag) is supplied at the input of the ANN. Data frame for the
the future (lead) is expected at the output of the ANN. Time series data are scaled
(according neurons activation function) before fed into ANN’s input. The output is
also scaled with the opposite scaling coefficient used at the input. At each training
cycle resilient backpropagation training is executed.

3 Conclusions

As per the results of the current research, the application of donated mobile devices
power appears to be much more promising even compared to the donated desktop dis-
tributed computing, given that mobile devices are almost always running, which is not
the case with the desktop computers. As future studies, donated mobile distributed
computing infrastructure can be efficiently used for experiments with different ac-
tivation functions [11] or permutation algorithms [12]. Other interesting research
areas where mobile distributed computing can be applied are barcode readers [2] and
computer networks traffic analysis [8, 9].
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Pareto Optimal Solutions of Noise Statistics for
Kalman Filtering Applied to State Estimation of

Gas Dynamics

F. E. Uilhoorn

We present an optimization framework that seeks the Pareto optimal solutions of the
model noise statistics for the extended Kalman filter (EKF) applied to state estimation
of gas flow dynamics in pipelines. Recursive Bayesian estimators, like the EKF (see
Algorithm 1) enable us to combine noisy measurements with a simulator that solves
an inexact flow model [2, 6, 11, 10, 12]. Mathematically, we read

ξk = f(ξk−1) + vk−1, (1)

yk = h(ξk) + nk, (2)

where vk−1 ∼ N (0, Qk−1) and nk ∼ N (0, Rk) with model and measurement noise
covariance matrices Qk−1 and Rk, respectively. Since, we assume an isothermal flow
field, the state vector ξk represents pressure p and mass flow rate ṁ. The functions
f and h refer to the flow and measurement model, respectively.

ALGORITHM 1: Extended Kalman filter.

1: procedure EKF algorithm(y1:nk )

2: ξ̂0|0 ← ξ0 and P0|0 ← P0

3: for k = 1 : nk do
4: ξ̂k|k−1 ← fk−1(ξ̂k−1|k−1)

5: Fk−1 ←
[
∇ξk−1

f>k−1 (ξk−1)
]>

6: Pk|k−1 ← Fk−1Pk−1|k−1F
>
k−1 +Qk−1

7: Hk ←
[
∇ξkh

>
k (ξk)

]>
8: Kk ← Pk|k−1H

>
k (Rk +HkPk|k−1H

>
k )−1

9: ξ̂k|k = ξ̂k|k−1 +Kk

(
yk − hk

(
ξ̂k|k−1

))
10: Pk|k = (I −KkHk)Pk|k−1 (I −KkHk)> +KkRkK

>
k

11: end for
12: end procedure

It is of key importance to identify the optimal process noise statistics because it can
have a significant impact on the filtering accuracy. Improper specification of the noise
variances can cause filter divergence. A priori knowledge about these noise statistics is
in practice unavailable. In fact, the elements of Q, also called filter tuning parameters,
are often obtained via an ad-hoc process based on trial-an-error [7].
Based on the notion of Pareto optimality, our aim is to find a trade-off between
incommensurable objective functions that are related to estimation errors of p and
ṁ. Considering a multiobjective problem we can write

min
ψ∈X

F (ψ) = (f1(ψ), f2(ψ), ..., fq(ψ)) , (3)
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where F : Rn → Rq with n and q as the number of variables and objective functions,
respectively. Let X = {ψ ∈ Rn : a 6 ψ 6 b} where a and b are the bound vectors.
For the isothermal flow model (5) we formulated two single objective functions. Thus,
q = 2 and ψ ∈ {qp,11, qp,22, ..., qp,nn, qṁ,11, qṁ,22, ..., qṁ,nn} where qp and qṁ denote
the elements of covariance matrix Q and n is the number of measurement points. The
performance index to be minimized is based on the mean spatial and temporal root
mean square error. For p and in the same manner for ṁ, it is defined as

f1(qp,11, qp,22, ..., qp,nn) =

(
‖Xp − X̂p‖F√

nxnk

)
, (4)

where X is the true and X̂ is the estimated matrix and within the discretized domain
nx and nk are the number of nodes and time steps, respectively. The measurement
noise statistics represented by R in the EKF were assumed to be known and in practice
often obtained from sensor testing and calibration. The optimization problem was
solved using the Bi-Objective Mesh Adaptive Direct Search (BiMADS) [1] because it
has the convenience, that no information is needed about the gradient or even higher
derivative to search for the optimal solution (see Algorithm 2). The isothermal gas
flow model is described as follows

∂u

∂t
+
∂f(u)

∂x
= s(u), ∀x ∈ [0, L], t ∈ [0, tf ], (5)

with u = [p ṁ]>, f(u) = [a2
sṁA

−1 Ap]> and s(u) = [0 − fa2
sṁ|ṁ|(2dAp)−1]>. The

flow model was approximated with a semidiscrete finite volume scheme using Roe’s
flux limiter. The approximation of u(x, t) can be done as follows

d

dt
Ui(t) +

1

∆xi
(Fi+1/2 −Fi−1/2) = si, (6)

where Fi+1/2 = F(U−i+1/2, U
+
i+1/2) is the monotone numerical flux that approximates

f(u(xi+1/2, t)). The approximations U−i+1/2, U
+
i+1/2 of the point value u(xi+1/2, t) are

obtained via a reconstruction process using Roe’s superbee flux limiter [8]. This to
minimize the presence of numerical dissipation. The resulting system of ODEs was
integrated with the explicit Runge–Kutta scheme. The Jacobian in EKF was approxi-
mated by a finite difference scheme. The elements of the Jacobian are
((∂ dxi/dt) /∂xj) = ∂fk−1,[i]/∂xk−1,[j] where dxi/ dt refers to the ith ODE with x
representing p and ṁ.
Numerical experiments were conducted with boundary condition ṁ(L, t) containing
gradual changes and a hydraulic shock. First, we assumed that the measurement
noise for each instrument is constant. For this idealized situation, we compared
BiMADS with the normalized WS method [3, 9] and widely used Non-Dominated
Sorting Genetic Algorithm (NSGA-II) [5]. For the WS method, the ideal vector
z∗ was found by z∗i = minψ∈X fi(ψ) and the nadir point by znad

i = maxψ∈P fi(ψ).
This method resulted in duplicated solutions. The evolution algorithm NSGA-II was
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ALGORITHM 2: BiMADS.

1: procedure BiMADS(f1, f2,X , ψ0)
2: Solve min

ψ∈X
fj(ψ), j ∈ {1, 2} with MADS.

3: Sort nondominated points XL in ascending order of f1 and descending order of f2.
4: w(ψ)← 0 ∀x ∈ X and δ > 0.
5: for k = 0, 1, 2, ... do
6: if Lk = 1 then
7: ψ̂← ψ1, δ̂ ← δ/(w(ψ̂) + 1)
8: solve min

ψ∈X
fj(ψ), j ∈ {1, 2} with MADS from ψ̂.

9: else if Lk = 2 then

10: ψĵ ← ψ2, r ← f1
(
(ψ2), f2(ψ1)

)
and

‖F (ψ2)−F (ψ1)‖2
w(ψ2)+1

.

11: else if Lk > 2 then

12: ĵ ∈ argmin δj ← ‖F (ψj)−F (ψj−1)‖2+‖F (ψj)−F (ψj+1)‖2
w(ψj)+1

.

13: r ← f1
(
(ψ̂+1), f2(ψ̂−1)

)
.

14: end if
15: Solve single-objective function min

ψ∈X
Ψr(ψ) from ψ̂ with MADS.

16: Update the set of nondominated points XL by adding new ones.
17: Remove dominated points and order list of points.
18: w(ψ̂)← w(ψ̂) + 1 for ψ ∈ XL.
19: end for
20: end procedure

not only significantly slower but also less efficient compared to BiMADS. Hence,
the succeeding computations were only done with the latter algorithm. Based on
the concept of normal boundary intersection [4], the knee point was calculated to
obtain the optimal values of q required for state estimation. In the more realistic
scenario, simulations were conducted whereas each instrument along the pipeline had
different noise parameters. Till now, the model noise was assumed identical, therefore
in the last step, we seek to optimize q at each point for p and ṁ. The simulations
were conducted for gradual changes in ṁ(L, t), therefore in the final experiment, we
imposed a hydraulic shock and repeated the preceding simulations. Results showed
that BiMADS is suitable for designing the EKF algorithm for estimating the gas flow
dynamics. Significant higher computation times were recorded when the number of
tuning variables increased.
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[6] I. Durgut and K. Leblebicioǧlu. Kalman-Filter Observer Design around Optimal
Control Policy for Gas Pipelines. International Journal for Numerical Methods in
Fluids, 24(2):233–245, 1997.

[7] T. D. Powell. Automated Tuning of an Extended Kalman Filter Using the Down-
hill Simplex Algorithm. Journal of Guidance, Control, and Dynamics, 25(5):901–
908, 2002.

[8] P.L. Roe. Characteristic-based schemes for the Euler equations. Annual Review
of Fluid Mechanics, 18(1):337–365, 1986.

[9] S. Shan and G. G. Wang. An efficient pareto set identification approach for
multiobjective optimization on black-box functions. Journal of Mechanical Design,
127(5):866, 2005.

[10] F. E. Uilhoorn. Estimating rapid flow transients using extended Kalman filter.
Silesian J. Pure Appl. Math., 6(1):97–110, 2016.

[11] F. E. Uilhoorn. Comparison of Bayesian estimation methods for modeling flow
transients in gas pipelines. Journal of Natural Gas Science & Engineering, 38:159–
170, 2017.

[12] F.L.V. Vianna, H.R.B. Orlande, and G.S. Dulikravich. Estimation of the temper-
ature field in pipelines by using the Kalman filter. In 2nd International Congress
of Serbian Society of Mechanics: Serbia, 2009.

83



Implementation of the Three-times Repeated
Richardson Extrapolation together with Explicit

Runge-Kutta Methods

Z. Zlatev, I. Dimov, I. Farago, K. Georgiev, A. Havasi

1 Introduction of the Three-times Repeated
Richardson Extrapolation

The Three-times Repeated Richardson Extrapolation can successfully be combined
with Explicit Runge-Kutta Methods (ERKMs) and used in the numerical treatment
of non-linear systems of ordinary differential equations (ODEs). These combinations
are new numerical methods for solving systems of ODEs, which have to be studied
carefully, which must be done and is very essential with regard to their stability
properties. The computational cost per step of the new numerical methods is higher
than the computational cost per step of the underlying ERKMs.
Consider non-linear systems of first order ordinary differential equations (ODEs) de-
fined as follows:

dy

dt
= f(t, y), t ∈ [a, b], a < b, y ∈ Rs, f ∈ D ⊂ Rs ×Rs, y(a) = η (1)

and assume that these systems are to be solved on the following set of equidistant
grid-points:

t0 = a, tn = tn−1 + h, (n = 1, 2, . . . , N), tN = b, h =
b− a
N

, (2)

by applying an arbitrary one-step numerical method, the order of accuracy of which is
p. The fact that one-step numerical methods are used means that only the approxi-
mation yn−1 ≈ y(tn−1 is used in the calculation of the next approximation yn ≈ y(tn)
for any n ∈ 1, 2, . . . , N . Assume furthermore that the computations at the points
t1, t2, . . . , tn−1 of the grid (2) are completed and that the calculations at point tn
have to be carried out. Much more details about the one-step methods can be found
for example in [2]. If the Three-times Repeated Richardson Extrapolation is used
with an arbitrary one-step method, then the approximation yn can be computed by
using the previous approximation yn−1 and by performing successively the following
six calculation processes:

1. Apply the selected ERKM to compute an approximation z
[1]
n of the solution of

(1) at the point t = tn by performing one step with a stepsize h.

2. Apply the selected ERKM to compute an approximation z
[2]
n of the solution of

(1) at the point t = tn by performing two steps with a stepsize h/2.
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3. Apply the selected ERKM to compute an approximation z
[3]
n of the solution of

(1) at the point t = tn by performing four steps with a stepsize h/4.

4. Apply the selected ERKM to compute an approximation z
[4]
n of the solution of

(1) at the point t = tn by performing eight steps with a stepsize h/8.

5. Apply the selected ERKM to compute an approximation z
[5]
n of the solution of

(1) at the point by performing sixteen steps with a stepsize h/16.

6. Compute an approximation yn of the solution of(1) at the point t = tn by

using the approximations z
(
n[k]), k = 1, ]ldots, 5 obtained in the previous five

calculation processes.

It should be mentioned here that the Classical Richardson Extrapolation (based es-
sentially on the first two calculation processes) was first introduced in [3]; see more
details in [6, 7], the Repeated Richardson Extrapolation (based essentially on the
first three processes) was studied in [4], while the Two-times Repeated Richardson
Extrapolation (based on the first four processes) is described in [5].

2 Accuracy of the Three-times Repeated Richard-
son Extrapolation

The order of accuracy of the combined methods is much higher: if the order of
accuracy of the underlying EPKM is p then the order of accuracy of its combination
with a Three-times Repeated Richardson Extrapolation is at least p + 4 (under the
assumption that the right-hand-side function of the system of ODEs is sufficiently
many times continuously differentiable).
The following theorem is proven:

Theorem Consider the numerical solution of the system of ODEs (1) that is obtained
by using an arbitrary one-step method and assume that the chosen method is of order
of accuracy p. Then the order of accuracy of the combination of the Three-times Re-
peated Richardson Extrapolation and the chosen one-step method is at least p+4 when
the function f(t, y) from the right-hand side of (1) is at least p+ 4 times continuously
differentiable. The result proved above shows that the order of accuracy can be in-

creased very significantly when the Three-times Repeated Richardson Extrapolation is
used, but it is necessary to pay some price (to carry out thirty-one steps instead of
only one) for computing the accurate approximation yn. In our full length paper we
demonstrate, by using two numerical examples, that the high accuracy of the Three-
times Repeated Richardson Extrapolation is sometimes allowing us to increase the
stepsize and, by solving the problem (1) with a sufficiently large stepsize, to achieve
both the required accuracy and a very good compensation for the need to use much
more computations in the performance of the six calculation processes described in
Section 1.
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3 ERKMs combined with the Three-times
Repeated Richardson Extrapolation

The two advantages, higher accuracy and better stability, are often giving a very good
compensation for the increased computational cost per step, because the same degree
of accuracy can be achieved by applying a large stepsize which leads to a consider-
able reduction of the number of steps when the Three-times Repeated Richardson
Extrapolation is used in combination with ERKMs.
In this section we introduce: (a) the Explicit Runge-Kutta Methods (the ERKMs), (b)
their stability polynomials together with the stability polynomials of the Three-times
Repeated Richardson Extrapolation and (c) their absolute stability regions again to-
gether with the absolute stability regions of the Three-times Repeated Richardson
Extrapolation (for comparison the absolute stability regions of the Classical Richard-
son Extrapolation, the Repeated Richardson Extrapolation and the Three-times Re-
peated Richardson Extrapolation will also be given). The class of the ERKMs is a
sub-class of the one-step numerical methods.

4 Selecting particular Explicit Runge-Kutta Meth-
ods

Some particular numerical methods satisfying the conditions p = m and m = 1, 2, 3, 4
are needed for the considered numerical experiments. Such methods is presented in
this section. If p = m = 1, then only one Explicit Runge-Kutta Method exists, the
Forward Euler Formula. For each pair p,m with p = m and m = 2, 3, 4 there exists a
large class of Explicit Runge-Kutta Methods (depending on one or two free parameters
for m = 2 and m = 3, 4 respectively; see again [2]). All methods from such a class
have the same absolute stability region. Furthermore, each of these methods can be
used in combination with any version of the Richardson Extrapolation and, if the
version is fixed, then all such combinations have the same absolute stability region.
We shall choose particular methods for each pair p,m with p = m and m = 2, 3, 4.
The selected methods which are used to run the numerical examples are:

(a) One-stage first-order Explicit Runge-Kutta Method

(b) Two-stages second-order Explicit Runge-Kutta Method

(c) Three-stages third-order Explicit Runge-Kutta Method

(d) Four-stages fourth-order Explicit Runge-Kutta Method

5 General conclusions

The Three-times Repeated Richardson Extrapolation is giving very accurate results.
Its order of accuracy is at least p + 4 when the order of accuracy of the underlying
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method is only p. This property often allows us to use large stepsizes and to reduce
considerably the computational cost, achieving at the same time much higher accu-
racy than that obtained by using the ERKMs (and also much higher accuracy than
that achieved when the Classical Richardson Extrapolation, the Repeated Richardson
Extrapolation and the Two-times Repeated Richardson Extrapolation are used).
It was demonstrated that (a) the Three-times Repeated Richardson Extrapolation
have better stability properties than those of the ERKMs when p = m and m =
1, . . . , 4 and (b) this device can sometimes produce stable results in cases where the
underlying ERKM is unstable. However, it should be emphasized here that only
the better stability properties of the Three-times Repeated Richardson Extrapolation
will in general not result in more efficient computational processes. The fact that
high accuracy can be obtained by specifying larger stepsizes during the computations
should additionally be exploited in the efforts for achieving greater efficiency.
It was assumed in this paper that a constant stepsize is used during the calculations.
Strictly speaking, such an assumption is not needed (not always, at least), but the
exposition of the results was facilitated considerably by making it.
The use of the Classical Richardson Extrapolation, the Repeated Richardson Extrap-
olation and the Two-times Repeated Richardson Extrapolation together with Explicit
Runge-Kutta Methods is only briefly mentioned in this paper, but we have presented
the absolute stability regions of the methods based on the use of the Classical Richard-
son Extrapolation, the Repeated Richardson Extrapolation and the Two-times Re-
peated Richardson Extrapolation as well as numerical results obtained by applying
these three numerical methods. Much more details about the application of the
Classical Richardson Extrapolation, the Repeated Richardson Extrapolation and the
Two-times Repeated Richardson Extrapolation together with Explicit Runge-Kutta
Methods can be found in the second chapter of the monograph [6], see also [4, 5].
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An adaptive Newton method for solving nonlinear
partial differential equations

O. Axelsson, S. Sysala

The convergence of the full step Newton iteration method requires that already the
initial approximation is sufficiently close to the exact solution. The normal procedure
to cope with that is to use a damped step version of the method, which however
complicates the method as it needs many iteration steps and can make it converge
very slow. The damped step version can be seen as the lowest order time-stepping
method to solve the corresponding evolution equation to find the stationary solution.
In this paper we consider higher order, namely a second order and a third order
time stepping method and show that then, in particular the third order method has
favourable properties, i.e. much faster convergence and can converge for an initial
approximation in a much larger ball around the exact solution. We also present an
efficient adaptive mesh refinement procedure to gradually approach the solution for
a sufficiently fine mesh. The methods are illustrated numerically for an elastoplastic
problem.
The normal Newton method to solve a nonlinear equation F (x) = 0 has the form

F ′(xk)(xk+1 − xk) = −τkF (xk), k = 0, 1, · · ·

where x0 is given and {τk} is a set of time-step parameters. The method converges in
general only if the set {τk} is sufficiently small. If convergence holds for τk = 1, the
method converges superlinearly, normally with a quadratic rate. The method can be
seen as a time-stepping method for the evolution equation

d

dt
F (x(t)) = −F (x(t)), t > 0, x(0) = x0.

Since F (x(t)) = e−tF (x(0)), i.e. the solution converges exponentially to the station-
ary solution x∞ of F (x∞) = 0, where x(t) → x∞, t → ∞ and x∞ = x̂, the solution
of F (x̂) = 0, it indicates that one can get convergence even if one uses full time-steps,
τk = 1, at least if one uses higher order time-integration methods. We analyze this
for a second and third order method and show that the convergence is not only very
rapid if it converges, namely with a quartic and sixtenth order rates. Furthermore,
the initial solution can be located in a larger ball around the exact solution than for
the standard first order method. Clearly one can construct still even faster convergent
methods in this way.
The second part of the paper shows how one can approach the solution of a nonlinear
partial differential equation, normally or elliptic type, by a sequence of steadily refined
meshes. Thereby the idea is to solve first the nonlinear problem on a coarse mesh,
which is normally relatively cheap and then interpolate the solution on a fine mesh,
where it can suffice to use just one linearized solution to get an approximate solution
of the same order of accuracy as the fine mesh discretized solution has. This idea was
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first presented in the beginning of the 1990’th by J. Xu [1, 2] and O. Axelsson [3] for
basic types of nonlinear elliptic problems.
It has later been extended to more general problems, see for instance [4]. However, as
shown in [5, 6], the method is a bit too simple in the sence that the above favourable
property holds only for sufficiently smooth problems. For problems with local singu-
larities one must use more refinements then just one coarse and a single fine mesh.
Such mesh refinements can be done adaptively by use of local refinements where the
residuals of the given problem is relatively larger than the average residual. In [6] this
was illustrated by first rewriting higher order operators. The Lipschitz condition was
not of a relative type.
In this paper we show how an adaptive method can be constructed based on a rel-
ative Lipschitz condition. We show also how one can use a sequence of only locally
refined meshes to gradually approach an approximate solution with sufficiently small
residuals. Thereby in a 2D problem, the mesh refinements is based on a sequence
of isosceles triangular which are successively and only locally refined by use of the
longest bisection refinement method.
After the construction of a new refined mesh one solves the linearized Newton equa-
tion, using the interpolate of the previous approximation as initial value. Since there
are few additional points in the mesh, very few, typically just two Newton steps need
to be computed on the refined mesh.
Eventually, when all residuals are sufficiently small the whole process can stop.
For an earlier use of adaptive meshes, see [7, 8]. For the use of relative Lipschitz
conditions and an alternative continuation Newton method, see [9].
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Eötvös Loránd University &
MTA-ELTE NumNet Reseach Group
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