
Using dense matrix computations in the solution

of sparse problems

Tz. Ostromsky1 and Z. Zlatev2

1 Central Laboratory for Parallel Information Processing,
Bulgarian Academy of Sciences,

Acad. G.Bonchev str., bl. 25-A, 1113 Sofia, Bulgaria;
e-mail: ceco@iscbg.acad.bg

2 National Environmental Research Institute,
Frederiksborgvej 399, P. O. Box 358, DK-4000 Roskilde, Denmark;

e-mail: luzz@sun2.dmu.dk

Abstract. On many high-speed computers the dense matrix technique
is preferable to sparse matrix technique when the matrices are not very
large, because the high computational speed compensates fully the dis-
advantages of using more arithmetic operations and more storage. Dense
matrix techniques can still be used if the computations are successively
carried out in a sequence of large dense blocks. A method based on this
idea will be discussed.

1 Statement of the problem

Consider: Ax = b − r with AT r = 0, where A ∈ Rm×n, m ≥ n, rank(A) = n,
b ∈ Rm×1, r ∈ Rm×1 and x ∈ Rn×1. It is difficult to use efficiently high-
speed computers for solving the above problem if matrix A is general sparse.
For dense matrices all difficulties disappear and the speed of the dense matrix
computations is normally close to the peak performance of the computer used;
see Table 1.

matrix gemat1 (10595 × 4929)

Computing time (in seconds) 511

Speed of computations in MFLOPS 878

Peak performance of the computer 902

Efficiency (in percent) 97%

Table 1. Results on CRAY C92A by using LAPACK dense subroutines.

A new method will be described. The method is based on a reordering al-
gorithm LORA, [3], [4], which allows us to form easily a sequence of relatively
large blocks. The blocks are handled as dense matrices. This is a trade off pro-

cedure: it is accepted to perform more computations, but with higher



speed. All computations are performed by dense kernels (LAPACK subrou-
tines, [1] are used at present, but other dense subroutines may also be applied).
The dense kernels perform the most time-consuming part of the work; Table 3.
Therefore, it should be expected to obtain good results on any computer for
which high quality software for dense matrices is available.

The new method is described in Section 2. Numerical results, obtained on
CRAY C92A and POWER CHALLENGE (Silicon Graphics) are given in Section
3. Plans for future work on the algorithm are outlined in Section 4.

2 Description of the algorithm

The main objective is to compute the QR-factorization of A by applying dense
orthogonal transformations to a sequence of large blocks. The algorithm consists
of five steps: (i) reordering by LORA, (ii) scatter, (iii) compute, (iv) gather and
(v) deal with the last block. The actions performed during the five steps are
discussed in §2.1 - §2.5)

2.1 Using LORA for rectangular matrices

LORA (”locally optimized reordering algorithm”; [3, 4]) reorders the matrix to
a block upper triangular form (Fig. 1) with an important additional requirement
to put as many zeros as possible under the diagonal blocks (”the separator”).

The complexity of LORA is O(NZ log n) assuming that A has NZ non-zeros
and n columns. The complexity can be reduced to O(NZ). The more expensive
version allows us to introduce additional criteria, [3], by which the quality of the
ordering is improved. A criterion that puts more non-zeros close to the diagonal
blocks is applied here.

2.2 Scattering the non-zeros in a two dimensional array

The next task is to form large dense block-rows. It is easier to explain the main
ideas by taking the simplest (but not the best) case: each block-row is formed
by taking a dense block of the separator (Fig. 1). If the first dense block of the
separator contains r1 rows and q1 columns, then the non-zeros in the first block-
row are stored in a two-dimensional array with r1 rows and c1 columns, where
c1 is the union of the sparsity patterns of its r1 rows. The number of orthogonal
stages is q1 (rank(A) = n implies q1 ≤ r1).

Assume that the second dense block of the separator contains r2 rows and
q2 columns. The second block-row can be formed by taking this dense block
and adding the relevant ”unfinished rows” from the first block-row. The total
number of unfinished rows is r1 − q1 but there may be some with only zeros in
the first q2 columns. Therefore the number of relevant (when the second block
is treated) unfinished rows is r∗1 ≤ r1 − q1. The remaining r1 − q1 − r∗1 unfinished
rows are moved to the end of the second block-row. They will be treated in some
of the following block-rows. The non-zeros of the relevant rows of the second



zero partdense part sparse part

Fig. 1. Sparsity pattern of a rectangular matrix, reordered by LORA.

block-row (the first r2 + r∗1 rows) are stored in a two-dimensional array with
r2 + r∗1 rows and c2 columns, where c2 is the union of the sparsity patterns of its
r2+r∗1 relevant rows. The number of orthogonal stages is q2 (again, rank(A) = n
implies q2 ≤ min(r2 + r∗1 , c2)).

Continuing in this way, one can factorize the whole matrix. This may be
inefficient, because the blocks of the separator are in general too small. One can
combine several blocks of the separator into a larger diagonal block and to apply
the same technique, as above. It is appropriate to use two parameters: LROWS

and LSTAGE as lower limits respectively for the number of rows and the number
of stages in a composite block.

2.3 Calling subroutines for dense matrices

The i’th dense block contains ri rows and ci columns, while qi stages are to
be performed. The LAPACK subroutine SGEQRF is called to produce zeros
under the diagonal elements of first qi columns of the (ri × ci) dense matrix by
Householder reflections. After that the LAPACK subroutine SORMQR is called
to modify the last ci − qi columns of the i’th Dense block-row by using the
orthogonal matrix Qi obtained during the call of SGEQRF. The complexity of
SGEQRF is O(riq

2
i
− q3

i
/3). The complexity of SORMQR is O(riqi(ci − qi) −

q2
i
(ci − qi)/2). The cost of Step 3 is the dominant part of the work; Table 3.



2.4 Gathering the non-zeros in one-dimensional arrays

After Step 3 for block-row i, the non-zeros must be gathered in the sparse arrays.
This can cause difficulties, because the number of non-zeros per row is in general
changed in the Step 3. Therefore some operations (moving rows to the end of
the sparse arrays and even performing occasionally garbage collections; [5]) that
are traditionally used in sparse techniques for general matrices must be carried
in Step 4. This extra work can be reduced by (i) dropping small elements and
(ii) avoiding the storage of Qi .

Dropping has two effects: (i) the numbers of copies and/or garbage collections
is often reduced and (ii) the sizes of some of the next blocks are sometimes
reduced (when ci is reduced for some values of i). The second effect is more
important than the first one. If dropping is used, then one should try to regain
the accuracy lost by using R in a preconditioned conjugate gradients (PCG)
method. The preconditioned system is Cz = d, where C = (RT )−1AT AR−1,
z = Rx and d = (RT )−1AT b. The PCG method is applicable, because C is
symmetric and positive definite. C is never formed explicitly; one works the
whole time with A and R. Q, which is normally rather dense, is neither stored
nor used in the iterative process (see [5]).

Dropping is very successful for some matrices (see §3.2), but it should not
be used if the matrix is very ill-conditioned. Direct methods may work better in
the latter case. The storage of Q can be avoided by calculating c = QT b during
the decomposition and then x can be found from Rx = c.

2.5 Final switch to dense matrix technique

If the density of the non-zeros in the active submatrix (in percent) becomes
greater than some parameter (30% is normally a good choice), then the algorithm
switches to Step 5. The same work as in Step 2 - Step 4 has to be done, with two
simplifications: (i) no need to determine the union of the sparsity patterns of
the rows in the last block; (ii) no need of gather step after the dense orthogonal
decomposition (the part of R calculated during Step 5 can be used in the solution
process directly from the dense array).

3 Numerical results

Most of the results have been obtained on CRAY C92A. A few results on
POWER CHALLENGE from Silicon Graphics will also be presented.

3.1 Experiments with rectangular Harwell-Boeing matrices

Results obtained when the two largest rectangular matrices from [2] have been
run, are given in Table 2. The new algorithm has been compared with three other
algorithms: (i) Totally dense. Matrix A is stored in a full-size two-dimensional
array (the empty locations are filled with zeros). LAPACK is directly used to



solve the problem. (ii) Partially sparse. The large block-rows are created in
the same way (as explained in §2.2). Givens rotations are used to produce zero
elements. A Givens rotation is performed only if both leading elements of the
two rows involved are non-zeros. (iii) Pure sparse. Without using dense matrix
technique (the sparse algorithm used is discussed in [5]).

Matrix Characteristics Totally New Partially Pure
measured dense algorithm sparse sparse

Computing time 511 28 10 34
gemat1 MFLOPS 878 662 196 4

Efficiency 97% 73% 22% 0.4%
Number of blocks 1 47 49 -

Computing time 14 10 16 1490
bellmedt MFLOPS 870 685 458 6

Efficiency 96% 76% 51% 0.7%
Number of blocks 1 8 8 -

Table 2. Results of comparing the four algorithms on CRAY C92A (one processor,
peak performance 902 MFLOPS).

If the matrix is relatively small, then the direct use of LAPACK (”Totally
dense”) is quite competitive with the new algorithm. The situation changes when
the matrix becomes larger. The general conclusion is that the use of a sequence
of large dense blocks together with dense kernels should be preferred when a
standard package is needed.

In Table 3 the computing times spent in the different steps of the new algo-
rithm are given. Most of the time is spent in the LAPACK subroutines.

Step Action gemat1 bellmedt

Step 1 LORA 0.67 0.25

Step2 and the beginning of Step 5 Scatter 1.30 0.07

Step 3 and the second part of Step 5 Compute 22.55 9.38

Step 4 Gather 3.22 0.14

Solve 0.09 0.03

Total time 27.79 9.91

Table 3. Computing times (in seconds) spent in the different steps. ”Solve” refers to
the solution part carried out after the factorization (the direct solver is used in this
example).



3.2 Running larger problems with matrices of class F2

LAPACK can be used directly for solving problems with Harwell-Boeing matrices
(only for gemat1 the results are inefficient; Table 2). Therefore some very large
matrices must also be tested. Matrices of class F2 ([5]) are used. Five parameters
determine a matrix of that class: (i) the number of rows M , (ii) the number of

columns N , (iii) the sparsity pattern C, (iv) the average number of non-zeros

per row NR, (v) the condition parameter ALPHA. The results in Table 4 show
that there is no difficulty with the computing times (they are small even when
M = 500000).

Matrix identifiers Computing times

M N C NR=5 NR=10 NR=15

50000 25000 15000 10 18 35

100000 50000 30000 18 34 60

150000 75000 45000 27 40 76

200000 100000 60000 36 54 74

250000 125000 75000 46 73 109

300000 150000 90000 59 81 107

350000 175000 105000 70 98 141

400000 200000 120000 82 117 167

450000 225000 135000 88 125 162

500000 250000 150000 100 142 179

Table 4. Computing times (on CRAY C92A) spent for the factorization of 30 matrices
of class F2 (ALPHA=1 , NZ=NR∗M + 110) with the new algorithm.

3.3 Dropping small elements and using PCG

Dropping small elements and computing an approximate QR-factorization is
discussed in [5]. It can be used (often with a great positive effect) in our new
algorithm. The approximate R (obtained by dropping small non-zeros in Step 4)
is used as a preconditioner; §2.4 . Sometimes this leads to considerable reductions
of the computing time and/or the storage; see Tables 5, 6. Large drop tolerance
may be inefficient for very ill-conditioned matrices, For such matrices it is better
to apply the direct method (this is true for gemat1).

3.4 Preliminary results obtained on POWER CHALLENGE

Table 7 contain some results for the performance of our algorithm on a POWER
CHALLENGE computer from Silicon Graphics. The results are obtained by just
taking the CRAY version of the sparse code and calling the LAPACK routines



NR Direct Iterative time Evaluated Exact
time (PCG, iterations) error error

10 10 6.9 (0.9, 5) 1.1E-08 4.5E-10

20 15 8.4 (1.2, 7) 4.9E-08 1.2E-09

30 20 10.1 (1.3, 7) 1.3E-08 2.4E-09

40 30 11.1 (1.3, 7) 7.9E-08 1.5E-10

50 44 12.6 (1.4, 7) 2.9E-08 6.1E-10

60 64 14.4 (2.1,10) 2.1E-08 8.6E-10

70 74 16.0 (2.9,13) 2.4E-08 1.3E-09

80 95 18.3 (3.0,13) 2.3E-08 1.4E-09

90 105 20.1 (3.1,13) 2.4E-08 1.4E-09

100 124 24.2 (5.5,23) 1.1E-08 4.0E-11

Table 5. Results of both the direct and the iterative solution (with drop-tolerance
TOL= 0.0625) of 10 matrices from class F2 on CRAY C92A. The total time for iterative
solution of the problem with using drop-tolerance TOL=0.0625 is given in the third
column (togetger with the time spent in the iterative procedure and the number of
iterations, given in brackets). The two-norms of the evaluated by the code error and
the exact error of the iterative solution are given in the last two columns. (the required
accuracy is 10−7).

TOL Time Itera- Evaluated Exact
Fact. Sol. tions error error

2−1 1.6 1.39 113 9.5E-08 3.7E-09

2−2 5.0 0.49 36 8.4E-08 9.0E-09

2−4 7.9 0.26 18 5.9E-08 1.6E-08

2−8 10.1 0.10 5 1.8E-08 4.9E-10

2−12 10.1 0.06 3 6.0E-09 3.2E-12

2−16 10.1 0.04 2 7.3E-10 2.4E-13

Table 6. Results of running bellmedt on CRAY C92A with different values of the
drop-tolerance TOL and required accuracy 10−7. The two-norms of the evaluated by
the code error and the exact error are given in the last two columns.

available on POWER CHALLENGE. Therefore, the results are quite satisfac-
tory: the main idea (to obtain standard modules that perform reasonably well
on different high-speed computers on which the LAPACK modules perform well)
seems to work (we get reasonably good time, speed-up, MFLOPS and efficiency).
The results could be improved.



Processors Comp. time Speed-up MFLOPS Efficiency

1 416 - 167 64%

2 266 1.7 262 50%

4 157 3.3 443 43%

8 94 4.4 741 36%

Table 7. Results on a POWER CHALLENGE computer from Silicon Graphics for a
problem with coefficient matrix gemat1.

4 Conclusions and plans for the future work

Only the computations in Step 3 and Step 5 have been optimized. These two
steps are the most time-consuming parts of the computational work (which has
been illustrated by two examples in Table 3), but it is nevertheless necessary to
optimize also the other steps of the computational work.

The main conclusion is that although the new method will not always give
best results it is a standard tool for solving efficiently large sparse lin-

ear least squares problems. It will produce good results on any high-speed
computer on which the LAPACK modules perform well.

Acknowledgements

This research was partially supported by the BRA III Esprit project APPARC
(# 6634) and by Grant I-505/95 from the Bulgarian Academy of Sciences. Dr.
Guodong Zhang from the Application Group at Silicon Graphics sent us the last
updated version of the LAPACK routines tuned on POWER CHALLENGE.

References

1. Anderson, E., Bai, Z., Bischof C., Demmel J., Dongarra, J., Du Croz, J., Greenbaum,
A., Hammarling, S., McKenney, A., Ostrouchov, S. and Sorensen, D, ”LAPACK:
Users’ guide”, SIAM, Philadelphia, 1992.

2. Duff, I. S., Grimes, R. G. and Lewis, J. G., ”Sparse matrix test problems”, ACM
Trans. Math. Software, 15 (1989), 1-14.

3. Duin, A. C. N. van, Hansen, P. C., Ostromsky, Tz., Wijsoff, H. and Zlatev, Z.,
”Improving the numerical stability and the performance of a parallel sparse solver”,
Comput. Math. Applics., Vol. 30, No. 12 (1995), 81-96.

4. Gallivan, K., Hansen, P. C., Ostromsky, Tz. and Zlatev, Z., ”A locally optimized
reordering algorithm and its application to a parallel sparse linear system solver”,
Computing, 54 (1995), 39-67.

5. Zlatev, Z., ”Computational methods for general sparse matrices”, Kluwer Academic
Publishers, Dordrecht-Toronto-London, 1991.

This article was processed using the LATEX macro package with LLNCS style


