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Abstract. The “random walk on the boundary” Monte Carlo method
has been successfully used for solving boundary-value problems. This
method has significant advantages when compared to random walks on
spheres, balls or a grid, when solving exterior problems, or when solv-
ing a problem at an arbitrary number of points using a single random
walk. In this paper we study the properties of the method when we use
quasirandom sequences instead of pseudorandom numbers to construct
the walks on the boundary. Theoretical estimates of the convergence rate
are given and numerical experiments are presented in an attempt to con-
firm the convergence results. The numerical results show that for “walk
on the boundary” quasirandom sequences provide a slight improvement
over ordinary Monte Carlo.

1 Introduction

The “random walk on the boundary” Monte Carlo method has been successfully
used for solving various boundary-value problems of mathematical physics. This
method is based on classical potential theory which makes it possible to con-
vert the original problem (boundary-value problem) into an equivalent problem
(boundary integral equation). The Monte Carlo technique is then used to solve
numericaly the integral equation. This method was first published in [13], and
then applied to solving various boundary-value problems.

The major drawback of the conventional Monte Carlo approach is the statistical
rate of convergence: computational error behaves as O(N−1/2), where N is the
number of random walks. Computer simulation of randomness is usually based on

I. Lirkov et al. (Eds.): LSSC 2003, LNCS 2907, pp. 162–169, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Solving BVPs Using Quasirandom Walks on the Boundary 163

the generation of a sequence of standard pseudorandom numbers that mimic the
theoretical behavior of “real” random numbers. One possible way to improve the
convergence is to change the type of random numbers used. Quasi-Monte Carlo
methods (QMCMs) use quasirandom (also known as low-discrepancy) sequences
instead of pseudorandom numbers. The quasi-Monte Carlo method for integra-
tion in s-dimensions has a convergence rate of approximately O((logN)sN−1).
While numerical integration is the major application area of quasirandom se-
quences, there are many other problems where quasi-Monte Carlo methods also
give better results than the Monte Carlo methods. There are many papers on
using quasirandom numbers on differential equations. The curious reader should
consult, for example, [10, 3, 12, 8, 9].

Here, we recall some basic concepts of QMCMs, [1]. First, for a sequence of N
points {xn} in the s-dimensional half-open unit cube Is define

RN (J) =
1
N

#{xn ∈ J} −m(J)

where J is a rectangular set and m(J) is its volume. Then define two discrepan-
cies

DN = sup
J∈E

|RN (J)|, D�
N = sup

J∈E�

|RN (J)|,

where E is the set of all rectangular subsets in Is and E� is the set of all
rectangular subsets in Is with one vertex at the origin.

The basis for analyzing QMC quadrature error is the Koksma-Hlawka inequality:

Theorem (Koksma-Hlawka, [1]): For any sequence {xn} and any function f of
bounded variation (in the Hardy-Krause sense), the integration error is bounded
as follows ∣∣∣∣∣

1
N

N∑
n=1

f(xn)−
∫
Is

f(x) dx

∣∣∣∣∣ ≤ V (f)D�
N . (1)

The star discrepancy of a point set of N truly random numbers in one dimension
is O(N−1/2(log logN)1/2), while the discrepancy of N quasirandom numbers
in s dimensions can be as low as O(N−1(logN)s−1) (see, e.g. [1, 11]). Most
notably there are the constructions of Hammersley, Halton, Soból, Faure, and
Niederreiter for producing quasirandom numbers. Description of these can be
found, for example, in Niederreiter’s monograph [11].

In this paper, we present quasirandom walks on the boundary for solving some
boundary-value problems. The paper is organized as follows. The formulation
of the problems are given in §2. The random walk on the boundary method is
described in §3. In §4 the use of quasirandom sequences is discussed, and some
numerical results are presented.
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2 Formulation of the Problem

Consider the problem of computing the electrostatic potential, u, in the interior
of a compact dielectric G surrounded by another dielectric media. Let ρ(x) be
the density of this charge distribution. Then we have

∆u(x) = −ρ(x)
ε

, x ∈ G (or x ∈ R
3 \G) , (2)

and u(x) satisfies the continuity conditions on the boundary of the domain:

ui(y) = ue(y) , εi
∂ui
∂n(y)

= εe
∂ue
∂n(y)

, y ∈ ∂G. (3)

Here, ui and ue are the limit values of the solution from inside and outside
respectively, εi and εe are the corresponding constant dielectric permittivities.

With the assumption that ∂G is smooth enough and there are only point
charges inside G, qm,m = 1, . . . ,M , it is possible to represent the solution in
the form [5, 4]

u(x) = g(x) +
∫
∂G

1
2π

1
|x− y|µ(y)dσ(y) ≡ g(x) + u0(x) , (4)

where g(x) =
M∑
m=1

qm
4πεi

1
|x− xm|

, and xm are the positions of the point charges.

Taking into account boundary conditions (3) and discontinuity properties
of the single-layer potential’s normal derivative [5], we arrive at the integral
equation for the unknown density, µ:

µ = −λ0Kµ+ f , (5)

which is valid almost everywhere on ∂G. Here, λ0 =
εe − εi
εe + εi

, and the kernel

of the integral operator K is
1
2π

cosφyy′
|y − y′|2 , where φyy′ is the angle between the

external normal vector n(y) and y − y′. The free term of this equation equals

λ0
∂g

∂n(y)
, and it can be computed analytically. Since λ0 < 1, the Neumann series

for (5) converges (see, e.g. [5, 4]), and it is possible to calculate the solution as

u0(x) =
∞∑
i=0

(hx, (−λ0K)i f) , (6)

where hx(y) =
1
2π

1
|x− y| . Usually, however, εe � εi and, hence, ||λ1| − 1| =

2εi
εe + εi

" 1. Here, λ1 = −1/λ0 is the smallest characteristic value of the operator

−λ0K. This means that convergence in (6) is rather slow.
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The situation is even worse when we consider a grounded body, G. In this
case the original problem reduces to an internal Dirichlet problem for the Laplace
equation:

∆u0 = 0 , u0

∣∣∣
∂G

= ψ . (7)

The double-layer potential representation of its solution u0(x) = (µ∗, h∗x) leads
to the following integral equation for the unknown density, µ∗:

µ∗ = −K∗µ∗ + ψ . (8)

Here, h∗x(y) =
1
2π

cosφyx
|y − x|2 , the operator K∗ is the adjoint of K, and has the same

characteristic values (see [5, 4]). This means that λ∗1 = −1 and the Neumann
series for solving (8) does not converge.

To speed up the convergence in (6), and to calculate the solution of (8), we
apply the method of spectral parameter substitution (see, e.g., [7], and [14, 15]
for Monte Carlo algorithms based on this method). This means that we consider
the parameterized equation µλ = λ(−λ0K)µλ + f and analytically continue its
solution given by the Neumann series for |λ| < |λ1|. This goal can be achieved by
substituting in λ its analytical expression in terms of another complex parameter,
η, and representing µλ as a series in powers of η.

In this particular case, it is possible to use the substitution λ =
2|λ1|η
1− η

≡
χ(η), and hence

u0(x) =
n∑
i=0

l
(n)
i (−λ0)i

(
hx,Kif

)
+O(qn+1) , (9)

where q =
1

1 + 2|λ1|
<

1
3
, and l(n)

i =
n∑
j=i

Ci−1
j−1(2|λ1|)iqj . The rate, q, of geometric

convergence of the transformed series in powers of η at the point η0 = χ−1(1) is
determined by the ratio of |η0| and L = mini |χ−1(λi)|. Here, λi are characteristic
values of K (and K∗), and L = 1 [5, 7].

Given a desired computational accuracy, we can calculate the number of
terms needed in (9). Thus, the problem reduces to computing a finite number of
multidimensional integrals.

The same representation is valid for the solution of the Dirichlet problem (7):

u0(x) =
n∑
i=0

l
(n)∗
i (−1)i

(
K∗iψ, h∗x

)
+O(qn+1

∗ ) . (10)

Here, q∗ = 1/3, and l
(n)∗
i =

n∑
j=i

Ci−1
j−12

iqj∗ (see [15]).
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3 Random Walks on the Boundary

To construct Monte Carlo estimates for u0(x), it is sufficient to calculate the
integral functionals Ii(x) =

(
hx,Kif

)
and I∗i (x) =

(
K∗iψ, h∗x

)
of iterations of

the reciprocally adjoint integral operators. Here, the domain of integration is
[∂G]i+1.

Let G be a convex domain. In this case, the kernel, k(y, y′), of K corresponds
to the uniform in a solid angle distribution of the point y as viewed from the
point y′. This means that the most convenient way to implement the random
walk on the boundary algorithm here is to use direct estimates for Ii(x) and
adjoint estimates for I∗i (x) [15]. Therefore

Ii(x) = EQihx(yi) , I∗i (x) = EQ∗
iψ(yi) , (11)

where Y = {y0, y1, . . .} is the Markov chain of random points on the bound-
ary ∂G, with the initial density p0 and transition density p(yi → yi+1) =
1
2π

cosφyi+1yi

|yi+1 − yi|2
, and random weights are Qi =

f(y0)
p0(y0)

, Q∗
i =

h∗x(y0)
p0(y0)

, i =

1, 2, . . . , n. Hence, biased estimators for u0 are

θ1 =
n∑
i=0

l
(n)
i (−λ0)i

f(y0)
p0(y0)

hx(yi) and θ2 =
n∑
i=0

l
(n)∗
i (−1)i

h∗x(y0)
p0(y0)

ψ(yi) (for

the Dirichlet problem).
Construction of the Markov chain, Y , is based on its geometrical interpreta-

tion. Given a point, yi, we simulate a random isotropic direction ωi and find
the next point yi+1 as the intersection of this direction with the boundary
surface ∂G. It is well known that different procedures can be used to choose
ωi = (ωi,1, ωi,2, ωi,3). We consider the procedure based on the direct simula-
tion of the longitudiual angle. Normally, an acceptance-rejection method would
be used. But since we plan to use quasirandom numbers, this is inadvisable
(see, e.g. [6]). So we use the following algorithm: ωi,3 = 1 − 2αi,1, ϕi = 2παi,2,

d =
√

1− ω2
i,3, ωi,1 = sinϕi/d, ωi,2 = cosϕi/d, where the αi are standard

uniform pseudorandom numbers in the unit interval.

4 Quasirandom Walks on the Boundary

In this section we discuss how to use quasirandom numbers for solving the
boundary-value problems (2), (3) and (7). To construct Monte Carlo estimates,
in §2, we reformulated the original problem into the problem of solving integral
equations (5) and (8). So, in order to make use of these representations when
constructing quasirandom estimates, we have to refer to a Koksma-Hlawka type
inequality for integral equations, [2]:

∣∣∣∣∣u[Y ∗]− 1
N

N∑
1

θ∗[Y ∗]

∣∣∣∣∣ ≤ V (θ∗) D∗
N(Q) , (12)
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where Q is a sequence of quasirandom vectors in [0, 1)s, s = d× T , and d is the
number of QRNs in one step of a random walk, T is the maximal number of
steps in a single random walk, and θ∗ corresponds to an estimate θ[Y ] based on
the random walk Y ∗ generated from Q by a one-to-one map. Space precludes
more discussion of the work of Chelson, but the reader is referred to the original
for clarification, [2].

This inequality ensures convergence when θ∗ is of bounded variation in the
Hardy-Krause sense, which is a very serious limitation. But even when this con-
dition is satisfied, the predicted rate of convergence is very pessimistic due to the
high (and, strictly speaking, possibly unbounded) dimension of the quasirandom
sequence in the general Monte Carlo method for solving these integral equations,
(e.g. (6)). To avoid this limitation, we consider variants of the method with each
random walk having fixed length. Clearly, the smaller the dimension of Q, the
better the rate estimate in (12).

Guided by this reasoning, we used the representations (9) and (10), and the
correspondent random estimators θ1 and θ2, to construct quasirandom solutions
to the original boundary-value problems.

It is essential to note that despite the improved rate of convergence of our
quasirandom-based calculations, constants in the error estimates are hard to
calculate. On the contrary, the statistical nature of Monte Carlo solutions makes
it possible to determine confidence intervals almost exactly.

5 Numerical Tests

We performed numerical tests with two problems.
The first one is the Dirichlet problem for the Laplace equation inside a sphere

with an exact analytic solution.
To solve this problem with quasirandom sequences, we fix the length of series

to be n = 4. That provides a 1% bias, and use 2(n+1)-dimensional Sobol, Halton
and Faure sequences. We compared the approximate value of the solution at
different points computed using MCM and QMCM. The QMCM solution shows
a slightly better rate of convergence for Sobol and Halton sequences.

Table 1. Test problem 1. Exact and approximate solution at different points

x u(x) URAND SOBOĹ FAURE HALTON

(0.9,0,0) 0.124339 0.125317 0.124259 0.123183 0.125915

(0,0.9,0) 0.074873 0.079288 0.074843 0.081115 0.075192

(0,0,0.9) 0.074873 0.077072 0.075623 0.085194 0.074769
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The second problem is (2), (3) with G being the unit cube with the only one
unit point charge inside, εi = 4.0, εe = 78.5. To calculate u0, defined by (4),
we use the estimator θ1 and compute point values for the same order of bias
(number of terms, n = 4) and different sample number.

Both tables show that we achieve a better acuracy when we replace pseudoran-
dom numbers with quasirandom sequences. We performed numerical tests with
Sobol, Halton and Faure sequences.

Table 2. Test problem 2. Exact and approximate solution at the point
(0.95, 0.95, 0.95) using different number of walks

Ntr. u(x) URAND SOBOĹ FAURE HALTON

100 -0.02446 -0.04086 -0.02234 -0.02102 -0.02537

1000 -0.02446 -0.02947 -0.02635 -0.02476 -0.02418

10000 -0.02446 -0.02634 -0.02470 -0.02436 -0.02448

6 Conclusions

In this paper we presented a successful application of quasirandom sequences to
the walks on the boundary method for solving boundary-value problems. The
success is due to the following reason: instead of solving the original integral
equation arising from integral representation of the solution, we parameterized
the equation, analytically continued the solution, and used a special substitution
to accelerate the convergence significantly. In this way, the problem was reduced
to solving a small number of multidimensional integrals. This is the key point
for the successive use of quasirandom sequences - they are designed to solve
multidimensional integrals with a better rate of convergence than arises from
pseudorandom numbers.

We tested our approach by solving two problems using pseudorandom num-
bers and the Sobol, Halton and Faure sequences. The accuracy of the quasiran-
dom walks on the boundary method is better and the advantage of this method
is significant for the second test problem.
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