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Abstract. The Monte Carlo method has been successfully used for com-
puting the extreme (largest and smallest in magnitude) eigenvalues of
matrices. In this paper we study computing eigenvectors as well with the
Monte Carlo approach. We propose and study a Monte Carlo method
based on applying the ergodic theorem and compare the results with
those produced by a Monte Carlo version of the power method. We also
study the problem of computing more than one eigenpair combining our
Monte Carlo method and deflation techniques.

1 Introduction

Many important problems in computational physics and chemistry can be re-
duced to the computation of dominant eigenvalues of matrices of high or infinite
order (for example, quantum mechanical Hamiltonians, Markov matrices and
transfer matrices, [11]). The analogy of the time-evolution operator in quantum
mechanics, on the one hand, and the transfer matrix and the Markov matrix
in statistical mechanics, on the other, allows these two fields to share numerical
techniques. Specifically, a transfer matrix, G, of a statistical-mechanical system
in d dimensions often can be interpreted as the evolution operator in discrete,
imaginary time, t, of a quantum-mechanical analog in d − 1 dimensions. That
is, G ≈ exp(−tH), where H is the Hamiltonian of a system in d− 1 dimensions,
the quantum mechanical analog of the statistical-mechanical system. From this
point of view, the computation of the partition function in statistical mechanics,
and of the ground-state energy in quantum mechanics are essentially the same
problems: finding the largest eigenvalue of G and exp(−tH), respectively. An-
other issue is the computation of the relaxation time of a system with stochastic
dynamics. This problem is equivalent to the computation of the second largest
eigenvalue of the Markov matrix.
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Another important problem is estimating the Fiedler vector, [13], which is the
eigenvector corresponding to the second smallest eigenvalue of a matrix. This
task is the most computationally intensive component of several applications,
such as graph partitioning, graph coloring, envelope reduction, and seriation.
Some difficulties in applying Monte Carlo approach to this problem have been
reported in [13]

These numerous examples which require the calculation of more than just the
dominant eigenpair have motivated us to study the problem of finding one or
more eigenvectors of a matrix via Monte Carlo. The problem of using Monte
Carlo and quasi-Monte Carlo methods for finding an extremal eigenvalue has
been extensively studied, for example, [7,3,4,8,9]. In this paper, we study the
problem how to accurately find both the dominant eigenvector and the second
largest eigenpair using deflation techniques coupled with Monte Carlo or quasi-
Monte Carlo power iterations. Due to space considerations we do not describe
here the quasirandom sequences used as this can be found in many articles and
books, for example, [2,10].

2 The Problem and the Method of Solution

Consider the eigenvalue problem for determining complex number-vector pairs,
(λ, x), for which the following matrix equation

Ax = λx,

has a non-trivial solution. One (extremal) solution depends upon the conver-
gence, for almost all choices of initial values, x0, on the sequence

x(k) = Ax(k−1)/λk,

where λk is chosen for normalization, i. e., so that ||x(k)|| = 1 in some vector
norm, [1]. Then the λk converge to the dominant (largest) eigenvalue, λ1, of A,
and x(k) converges to the corresponding eigenvector. We suppose that A is n×n
and that its n eigenvalues are ordered as follows |λ1| > |λ2| ≥ . . . ≥ |λn−1| ≥
|λn|. Choosing the initial vector, f , and a vector h (both of dimension n), the

construction of the desired Monte Carlo Method (MCM) begins with defining a
Markov chain k0 → k1 → . . . → ki, of the natural numbers, kj ∈ {1, 2, . . . , n} for
j = 1, . . . , i. The kj ’s defining the Markov chain can be thought of as a random
walk on the n dimensions in the vector space we find ourselves. We then define
an initial density vector, p = {pα}n

α=1, to be permissible to the vector h and a
transition density matrix, P = {pαβ}n

αβ=1, to be permissible to A, [3]. We then
define the following random variable on the given Markov chain:

W0 =
hk0

pk0

, Wj = Wj−1

akj−1kj

pkj−1kj

, j = 1, . . . , i. (1)
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The Monte Carlo method for estimating the eigenvector that corresponds to the
dominant eigenvalue is based on the following expected value identity[12,3]:

(h, Aif) = E[Wifki ], i = 1, 2, . . . .

By setting h = e(r) = (0, . . . , 0, 1
︸︷︷︸

r

, 0, . . . , 0)T , the rth canonical unit vector,

for r = 1, . . . , n the above random variable has expected value equal to the r-
th component of the dominant eigenvector. The Monte Carlo estimate for the

dominant eigenvalue is based on the fact that [14,3]:

λmax ≈ E[Wifki ]
E[Wi−1fki−1 ]

. (2)

2.1 Convergence

The fact that the system of the eigenvectors {v(1), v(2), . . . , v(n)} is linearly inde-
pendent and spans R

n implies that any vector, x(0), can be presented as a linear
combination of them as follows

x(0) =
n

∑

j=1

αjv
(j).

If we repeatedly apply A to x(0) we get

Akx(0) = λk
1

n
∑

j=1

αj(
λj

λ1
)kv(j).

Since |λ1| > |λj | for all j = 2, 3, . . . , n, we have limk→∞(λj/λ1)k = 0, and so

limAkx(0) = lim
k→∞

λk
1α1v

(1). (3)

Obviously, this sequence converges to zero if |λ1| < 1, and diverges if |λ1| ≥ 1,
provided, of course, that α1 �= 1. Advantage can be made of the relationship (3)
by scaling the powers of Akx(0) appropriately to ensure that the limit in (3) is
finite and nonzero. The convergence of this process, and therefore of the Monte
Carlo process as well, is most rapid if x(0) is close to v(1). We may be able to
enhance the probability of this occurring by replacing xk by x(k)/

∑n
1 x

(k)
i after

performing our sampling. This, in effect, gives new weights to the same set of
Markov-chain paths, which we hope will give better estimates for the eigenpair.

The power method has rate of convergence of O((λ2
λ1

)k). When we use the power
method with Monte Carlo iterations we have additional error from the approxi-
mate, probabilistic, computation of matrix powers. This error is stochastic, and
thus the uncertainty in this average taken from N samples is O(N−1/2), by virtue
of the central limit theorem. One generic approach to improving the convergence
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of MCMs has been the use of highly uniform, quasirandom, numbers (QRNs) in
place of the usual pseudorandom numbers (PRNs). While PRNs are constructed
to mimic the behavior of truly random numbers, QRNs are constructed to be
distributed as evenly as mathematically possible. Quasi-MCMs use quasirandom
sequences, which are deterministic, and may have correlations between points,
and they were designed primarily for integration. For example, with QRNs, the
convergence of numerical integration can sometimes be improved to as much as
O(N−1)!

Since we wish to discuss both MCMs and and quasi-MCMs for these problems,
it is timely to recall some pertinent estimates. Using MCMs, [3,4], we have

|hT Aif − 1
N

N
∑

s=1

(θ)s| ≈ V ar(θ)1/2N−1/2,

where V ar(θ) = {(E[θ])2 − E[θ2]}. In addition, we have

E[θ] = E[
hk0

pk0

Wifki ] =
n

∑

k0=1

hk0

pk0

pk0

n
∑

k1=1

. . .
n

∑

ki=1

ak0k1 . . . aki−1ki

pk0k1 . . . pki−1ki

pk0k1 . . . pki−1ki .

Using quasi-MCMs, [8,9], we obtain:

|hT
NAi

NfN − 1
N

N
∑

s=1

h(x(s)
1 )a(x(s)

1 , x
(s)
2 ) . . . a(x(s)

i , x
(s)
i+1)f(x(s)

i+1)| ≤ |h|T |A|i|f |D∗
N ,

(4)
where the i+1-dimensional quasirandom sequence {(x(s)

1 , x
(s)
2 , . . . , x

(s)
i+1)}, has a

star discrepancy of D∗
N .

Let us compare MCM and QMCM errors for computing (h, Amf): Both are
products of two factors (first depends on A, second - on the sequence). The
order is N−1/2 for MCM and (logm+1N)N−1 for QMCM. Moreover, the MCM
error is a probabilistic error bound while the QMCM error is the worst-case
bound (inequality). In the same time, computational complexity for MCM and
QMCM is the same: O((m + 1)N), where N is the number of chains, m + 1 is
the length of a single Markov chain.

Then, the convergence rates for power method with MCM or QMCM iterations
are:

O(‖λ2

λ3
||m + σN−1/2)

O(‖λ2

λ3
‖m + (logmN)N−1)

2.2 The Complex Conjugate Eigenvalue Pair Case

The above approach can be as is used when the dominant eigenvalue is real, a
singleton, and separated from the second eigenvalue. However, the method can
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also be extended to estimate also a complex conjugate pair of eigenvalues, λ1 =
a + bi and λ2 = a− bi, and their corresponding eigenvectors. These eigenvectors
are approximately equal to

bxk−1 ± i(axk−1 − xk),

provided the power iterations, xk = Axk−1, are real. Unfortunately, the eigen-
vector estimate is inaccurate when the conjugate pair is close to the real axis,
i. e., when b is small.1

What is the Monte Carlo procedure in this case? It can be shown ([6]) that λ1

and λ2 are the roots of the quadratic equation λ2 + c1λ + c2 = 0. In addition, it
can be shown that the coefficients, c2, c1, and 1 have the property that for any
three consecutive iterations xk, xk+1 and xk+2 in the power method, they are
the coefficients of an approximate linear relation, i. e. , xk+2+c1xk+1 +c2xk ≈ 0.

Let h ∈ R
1×n be an n-dimensional vector. One can prove that the above system

is equivalent to the following one, [4]:

d1(h, Axk) + d2(h, xk) = −(h, A2xk).

Suppose, we have the values of four MC iterations:

(h, xk−3); (h, Axk−3) = (h, xk−2);

(h, A2xk−3) = (h, xk−1); (h, A3xk−3) = (h, xk).

One can prove that the dominant complex conjugate eigenvalues, λ1 and λ2, of
the matrix A are the solution of the following quadratic equation: λ2+d1λ+d2 =
0, where

d1 =
(h, xk−1)(h, xk−2) − (h, xk)(h, xk−3)

(h, xk−1)(h, xk−3) − (h, xk−2)2
(5)

and

d2 =
(h, xk)(h, xk−2) − (h, xk−1)2

(h, xk−1)(h, xk−3) − (h, xk−2)2
. (6)

These expressions give us a Monte Carlo procedure to estimate the complex
conjugate eigenvalues and their corresponding eigenvectors.

2.3 A Fast and Rough Estimate of the Eigenvector

By using the ergodic theorem, [5], we can estimate the first eigenvector very fast.
In this case we use a single, very long, Markov chain:

EigV = limk→∞Akx(0).

1 It is obvious, that as b goes to zero, λ1 = a + bi and λ2 = a − bi both approach a
and the two eigenvalues coalesce into a single eigenvalue of multiplicity 2.
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This approach can be used only when the matrix is a stochastic matrix with
principal eigenvalue equal to 1. Such a matrix describes a Markov chain where
all states communicate.2 Our test matrices are not stochastic, but still a rough
estimate for the first eigenvector can be computing using the matrix 1

λmax
A. The

numerical results are given in the Table 2.

2.4 Numerical Tests

We performed many numerical tests using PRNs, and Soból, Halton and Faure
quasirandom sequences. Some of the results for the L2-norm of the error: err =
√
√
√
√

n
∑

i=1

(xk(i) − EigV (i))2, where EigV is the exact eigenvector and xk is the our

approximation after k iterations, are presented in the Tables 1 and 2.

Table 1. Accuracy in computing the first eigenvector of sparse matrices of order
n using Nw random or quasirandom walks of length k

n Nw k URAND SOBOĹ FAURE HALTON

128 1280 5 0.282e-01 0.642e-02 0.632e-02 0.496e-02

1024 10240 6 0.375e-02 0.958e-03 0.837e-03 0.778e-03

2000 20000 6 0.158e-02 0.153e-02 0.158e-02 0.156e-02

Table 2. Accuracy in computing the first eigenvector of sparse matrices of order
n using one long random or quasirandom walk

n URAND SOBOĹ FAURE HALTON

128 0.52 0.22 1.32 0.41

1024 0.67 0.14 1.22 0.17

2000 0.86 0.003 1.32 0.003

For our numerical tests we use randomly generated sparse matrices of order
n = 128, 1024 and 2000. With Nw = 10n walks we achieve sufficiently good
accuracy in estimating the eigenvector using the power method with MCM or
quasi-MCM iterations. For large n, this makes the power MCM and the power
quasi-MCMs computationally very efficient. We should recall that the computa-
tional complexity of both methods is kNw, where k is the length of the Markov
chains (the power in the power method) and Nw is the number of the walks. It

2 For example, if the matrix has a block structure, it does not satisfy these communi-
cation requirements.
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should also be noted that the results using QRNs are better than with PRNs,
as we hoped; in order to compare the Monte Carlo and the quasi-Monte Carlo
approach, we implemented them using the same number and length of walks for
both of the methods, and the quasi-Monte Carlo gives better accuracy.

Let us also note, that when we compute the dominant eigenvalue we need to
perform many more walks to achieve an accuracy similar to that in case we
compute the dominant eigenvector (see the results given in the Table 3).

The Table 2 shows the results using the ergodic theorem - they confirm the
theoretical assumption for giving us a rough approximation.

Table 3. Accuracy in computing the dominant eigenvalue of a sparse matrix of
order n using Nw random or quasirandom walks of length k

n Nw k URAND SOBOĹ FAURE HALTON

128 12800 5 0.42e-01 0.36e-02 0.14e-01 0.18e-01

1024 20480 6 0.37e-02 0.23e-02 0.57e-02 0.43e-02

2000 50000 6 0.17 0.15 0.14 0.17

3 Finding More Eigenpairs

Once having the eigenpair, (λ1, v1), we deflate the computed eigenvalue from A
by constructing a smaller matrix, B. The deflated matrix, B, has one less row
and column than A, and the eigenvalues of B are the same as those of A, except
that the previously computed λ1 is missing from B’s spectrum.

The deflated matrix is constructed using a Householder matrix, H = I − 2wwT ,
where w is an n-dimensional vector with components, [6],

w(1) =
1

√

2s(s + |v1(1)|) (v1(1) + sign(v1(1))s),

and
w(i) =

1
√

2s(s + |v1(1)|)v1(i), i = 2, . . . , n,

where s = (
∑n

i=1 v1(i)2)1/2. Then ensures that the matrix HAH has the form

HAH =
(

λ1 bT

0 B

)

,

with eigenpairs (λ, Hv), where λ is an eigenvalue of A and v is the corresponding
eigenvector of A. The characteristic polynomial for HAH is: det(HAH − λI) =
(λ1 − λ) det(B − λI). One zero of the characteristic polynomial for HAH is
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λ = λ1, while the remaining zeros are the roots of the equation det(B−λI) = 0,
i. e., the eigenvalues of B. Hence, the eigenvalues of B are the same as the
eigenvalues of A except that λ1 is missing. Now we can apply power iterations
to estimate λ2 using B.

Our goal is to study the applicability of MCMs and quasi-MCMs for finding
the second eigenpair. We need to understand how the use of the approximate
eigenvector (estimated by MC or by QMC iterations) will ”spoil” the deflated
matrix, and how spectrum of B will be changed. Generally speaking, the answer
depends on what type of matrix A is, and on how accurate its first eigenvector is
computed. If we perform exactly the above procedure, we will obtain the deflated
matrix with the accuracy of the approximate eigenvector. Then we again apply
the power method with MC or quasi-MC iterations. It is important to note that
this second iteration has a rate of convergence depending additionally on λ2

λ3
.

3.1 Numerical Tests

In our numerical tests, we use a matrix with size n = 128 which produced
estimates for the first eigenpair with the worst accuracy among the test matrices.
We obtained the deflated matrix using the eigenvector computed using PRNs and
the Soból sequence. The “approximate” deflated matrix has the same spectral
radius as the exactly deflated matrix, and the eigenvalues very close to the exact
ones as well. The expected rate of convergence for the power method applied to
the deflated matrix for estimating λ2 is λ3

λ2
= 13

16 . The results using PRNs and
Soból sequence are presented in the Table 4. We have tabulated the relative error
for computing λ2 and the L2-error in the eigenvector. Again, the quasi-MCM
shows slightly better results than the MCM, but the best results are obtained
when we combine results using both types (pseudorandom and quasirandom) of
sequences.

4 Conclusions and Future Plans

We have shown that Monte Carlo approach can be used for finding more than
one eigenpair of a matrix. We tested the method by finding the first- and
second-largest eigenvalues and their eigenvectors using PRNs and quasirandom
sequences. In all of our numerical experiments, the quasi-MCM gives better re-
sults than the MCM. Given these results, we now have to study the use of Monte

Table 4. The error in computing the second eigenpair of a matrix of order 128
using PRNs, Soból, and both sequences

Error(λ2) Error(v(2))

PRNs 0.22 0.3571

Soból 0.022 0.3555

PRNs+Sob 0.007 0.3482
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Carlo on the analogous problem at the “other end of the spectrum,” i. e., for es-
timating the second smallest eigenpair based on prior knowledge of the smallest
eigenpair. This problem can be solved in a similar way; however, using the resol-
vent Monte Carlo method on a deflated matrix. However, it is well known that
resolvent-type algorithms have more restrictions on applicability and have worse
rate of convergence than the power-type algorithms studies here, so a careful
study should be undertaken.
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