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Abstract. In this paper we analyze a quasi-Monte Carlo method for
solving systems of linear algebraic equations. It is well known that the
convergence of Monte Carlo methods for numerical integration can often
be improved by replacing pseudorandom numbers with more uniformly
distributed numbers known as quasirandom numbers. Here the conver-
gence of a Monte Carlo method for solving systems of linear algebraic
equations is studied when quasirandom sequences are used. An error
bound is established and numerical experiments with large sparse matri-
ces are performed using Soból, Halton and Faure sequences. The results
indicate that an improvement in both the magnitude of the error and
the convergence rate are achieved.

1 Introduction

Monte Carlo methods (MCMs) for solving systems of linear algebraic equations
(SLAE) have been used for many years [7,8,6,4]. They give statistical estimates
for the components of the solution vector by performing random sampling of a
certain random variable whose mathematical expectation is the desired solution.
However, MCMs require pseudorandom number generators of high quality, high
speed and long period and the results of simulation are very sensitive to the gen-
erator. Even using ”good” generator the convergence rate of a MCM is O( 1√

N
),

where N is the number of performed realizations.
On the other hand, the convergence of MCMs for numerical integration can

often be improved by replacing pseudorandom numbers (PRNs) with more uni-
formly distributed numbers known as quasi-random numbers (QRNs) [2]. Quasi-
Monte Carlo methods often include standard approaches of variance reduction,
although such techniques do not necessarily directly translate. The fundamental
feature underlying all quasi-MCMs, however, is the use of a quasi-random se-
quence. In this paper the convergence of a Monte Carlo method for estimating
the solution of SLAE is studied when quasirandom sequences are used. An error
bound is established and numerical experiments with large sparse matrices are
performed using three different QRN sequences: Soból, Halton and Faure. The
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results indicate that an improvement in both the magnitude of the error and the
convergence rate can be achieved using QRNs in place of PRNs.

2 Background

2.1 Monte Carlo Method for SLAE

Assume that the system of linear algebraic equations (SLAE) is presented in the
form:

x = Ax+ ϕ (1)

where A is a real square n×nmatrix, x = (x1, x2, ..., xn)t is a 1×n solution vector
and ϕ = (ϕ1, ϕ2, ..., ϕn)t is a given vector.1 Assume that all the eigenvalues of
A lie in the unit circle. The matrix and vector norms are determined as follows:
‖A‖ = max1≤i≤n

∑n
j=1 |aij |, ‖ϕ‖ = max1≤i≤n |ϕi|.

Now consider the sequence x(1), x(2), . . . defined by the following recursion:

x(k) = Ax(k−1) + ϕ, k = 1, 2, . . . .

Given initial vector x(0), the approximate solution to the system x = Ax + ϕ
can be developed via a truncated Neumann series:

x(k) = ϕ+Aϕ+A2ϕ+ . . .+A(k−1)ϕ+Akx(0), k > 0 (2)

with a truncation error of x(k) − x = Ak(x(0) − x).
Consider the problem of evaluating the inner product of a given vector g with

the vector solution of (1)

(g, x) =
∑n

α=1 gαxα. (3)

To solve this problem via a MCM (see, for example, [12]) one has to construct
a random process with mean equal to the solution of the desired problem. First,
we construct a random trajectory (Markov chain) Ti of length i starting in state
k0

k0 → k1 → · · · → kj → · · · → ki,

with the following rules

P (k0 = α) = pα, P (kj = β|kj−1 = α) = pαβ ,

where pα is the probability that the chain starts in state α and pαβ is the tran-
sition probability to state β from state α. Probabilities pαβ define a transition
matrix P . The natural requirements are

∑n
α=1 pα = 1 ,

∑n
β=1 pαβ = 1 for any

α = 1, 2, ..., n, the distribution (p1, ..., pn)t is acceptable to vector g and similarly
the distribution pαβ is acceptable to A [12].

1 If we consider a given system Lx = b, then it is possible to choose a non-singular
matrix M such that ML = I − A and Mb = ϕ, and so Lx = b can be presented as
x = Ax + ϕ.
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It is known [12] that the mathematical expectation EΘ∗[g] of the random
variable Θ∗[g] is:

EΘ∗[g] = (g, x)

where Θ∗[g] = gk0
pk0

∑∞
j=0Wjϕkj

and W0 = 1 , Wj = Wj−1
akj−1kj

pkj−1kj
.

(4)

We use the following notation for a partial sum (4) θi[g] = gk0
pk0

∑i
j=0Wjϕkj .

According to the above conditions on the matrix A, the series
∑∞

j=0Wjϕkj

converges for any given vector ϕ and Eθi[g] tends to (g, x) as i −→ ∞. Thus
θi[g] can be considered an estimate of (g, x) for i sufficiently large.

To find one component of the solution, for example the r-th component of
x, we choose g = e(r) = (0, ..., 0, 1, 0, ..., 0) where the one is in the r-th place.
It follows that (g, x) =

∑n
α=1 eα(r)xα = xr and the corresponding Monte Carlo

method is given by

xr ≈ 1
N

N∑
s=1

θi[e(r)]s, (5)

where N is the number of chains and θi[e(r)]s is the value of θi[e(r)] in the s-th
chain.

Thus the Monte Carlo estimate for (g, x) is (g, x) ≈ 1
N

∑N
s=1 θi[g]s, where N

is the number of chains and θi[g]s is the value of θi[g] taken over the s-th chain,
and a statistical error of size O(V ar(θi)1/2N−1/2).

2.2 Quasirandom Numbers and Integration

Quasi-Monte Carlo methods are based on the idea that random Monte Carlo
techniques can often be improved by replacing the underlying source of random
numbers with a more uniformly distributed deterministic sequence.

QRNs are constructed to minimize a measure of their deviation from unifor-
mity called discrepancy. Consider a set {xn} of N points in the d-dimensional
unit cube Id. The discrepancy of this set is

D∗
N = D∗

N (x1, . . . , xN ) = sup
E⊂Id

∣∣∣∣#{xn ∈ E}
N

−m(E)
∣∣∣∣ , (6)

where E is a subrectangle of Id, m(E) is the volume of E, and the sup is
taken over all subrectangles. When the sup is taken only over all subrectangles
with one vertex at 0, the discrepancy is called star discrepancy D∗.

The mathematical motivation for QRNs can be found in the classic Monte
Carlo application of numerical integration. Let us assume that we are interested
in the numerical value of I =

∫
Id f(x) dx, and we seek to optimize approxi-

mations of the form I ≈ 1
N

∑N
n=1 f(xn). A solution to the optimization of the

integration nodes, {xn}N
n=1, comes from the famous Koksma-Hlawka inequality:
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Theorem (Koksma-Hlawka): if f(x) has bounded variation, V (f), on Id, and
x1, . . . , xN ∈ Id have star discrepancy D∗

N , then:
∣∣∣∣∣∣

1
N

N∑
n=1

f(xn) −
∫
Id

f(x) dx

∣∣∣∣∣∣ ≤ V (f)D∗
N . (7)

This simple bound on the integration error is a product of V (f), the total vari-
ation of the integrand in the sense of Hardy and Krause, and D∗

N , the star
discrepancy of the integration points. A major area of research in Monte Carlo
is variance reduction, which indirectly deals with minimizing V (f). Quasirandom
number generation deals with minimization of the other factor.

The star discrepancy of a point set of N truly random numbers in one di-
mension is O(N−1/2(log logN)1/2), while the discrepancy of N QRNs can be as
low as N−1.2 In s > 3 dimensions it is rigorously known that the discrepancy of
a point set with N elements can be no smaller than a constant depending only
on s times N−1(logN)(s−1)/2. This remarkable result of Roth, has motivated
mathematicians to seek point sets and sequences with discrepancies as close to
this lower bound as possible. Since Roth’s remarkable results, there have been
many constructions of low discrepancy point sets that have achieved star discrep-
ancies as small as O(N−1(logN)s−1). Most notably there are the constructions
of Hammersley, Halton, [7], Soból, [13], Faure, [5], and Niederreiter, [7,1].

While QRNs do improve the convergence of applications like numerical in-
tegration, it is by no means trivial to enhance the convergence of all MCMs.
In fact, even with numerical integration, enhanced convergence is by no means
assured in all situations with the näıve use of QRNs. This fact was born out
by careful work of Caflisch, Morokoff and Moskowitz(see, for example, [2]). In
a nutshell, their results showed that at high dimensions, s ≈> 40, quasi-Monte
Carlo integration ceases to be an improvement over regular Monte Carlo integra-
tion. Perhaps more startling was that they showed that a considerable fraction
of the enhanced convergence is lost in quasi-Monte Carlo integration when the
integrand is discontinuous. In fact, even in two dimensions one can lose the
approximately O(N−1) quasi-Monte Carlo convergence for an integrand that is
discontinuous on a curve such as a circle. In the best cases the convergence drops
to O(N−2/3), which is only slightly better than regular Monte Carlo integration.

3 Quasi-Monte Carlo Method for SLAE

We consider the presented Monte Carlo method for solving systems of linear al-
gebraic equations by generating the ”random” walks with deterministic, quasir-
andom sequences. The goal is to generate walks that are in fact not random, but
have in some sense better distribution properties in the space in all walks on the

2 Of course, the N optimal quasirandom points in [0, 1) are the obvious:
1

(N+1) ,
2

(N+1) , . . .
N

(N+1) .
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matrix elements. Each walk is constructed according to the following initial and
transition densities:

pα =
|gα|∑n

α=1 |gα| , pαβ =
|aαβ |∑n

β=1 |aαβ | α, β = 1, . . . , n.

This quasi-Monte Carlo method is faster and has a lower error bound. Let us
analyze the error.

We evaluate the inner product (3) of a given vector and the unknown solution
vector. Let x(0) = 0, then substituting x with x(k) from (2) will give

(g, x) ≈ (g, x(k)) = gTϕ+ gTAϕ+ gTA2ϕ+ . . .+ gTA(k−1)ϕ, k > 0.

We can directly consider gTAiϕ as an integral if we define the sets G = [0, n)
and Gi = [i − 1, i), i = 1, . . . , n, and likewize define the piecewise continuous
functions g(x) = gi, x ∈ Gi, i = 1, . . . , n, a(x, y) = aij , x ∈ Gi, y ∈ Gj , i, j =
1, . . . , n and ϕ(x) = ϕi, x ∈ Gi, i = 1, . . . , n. Then computing gTAiϕ is equiv-
alent to computing an (i + 1)-dimensional integral and we may analyze using
QRNs in this case with bounds from numerical integration. We do not know Ai

explicitly, but we do know A and can use quasirandom walks on the elements of
the matrix to compute approximately gTAiϕ. Using (i+ 1)-dimensional quasir-
andom sequence to form N walks [k0, k1, . . . , ki]s , s = 1, . . . , N we have the
following error bound [9]:

∣∣∣∣∣gTAiϕ− 1
N

N∑
s=1

[
gk0

pk0

Wiϕki

]
s

∣∣∣∣∣ ≤ C1(A, g, ϕ)D∗
N ,

where Wi is defined in (4), and [f ]s means the value of f on the s-th walk.
Then we have ∣∣∣(g, x) − (g, x(k))

∣∣∣ ≤ C2(A, g, ϕ) kD∗
N .

Here D∗
N has order O((logkN)/N). Remember that the order of the mean square

error for the analogous Monte Carlo method is O(N−1/2).

4 Computational Results

We now present the numerical results for the accuracy of the described MCM
and quasi-MCM for computing the scalar product (g, x) for a given vector g (x is
the unknown solution vector of the given SLAE), and for computing components
of the solution vector. The results are presented as a function of N , the number
of walks, and as a function of the length of the walks. For each case the error is
computed with respect to the exact solution.

A large number of numerical tests were performed for solving systems of
linear algebraic equations with general sparse matrices of size 128, 1024, 2000.
The method is realized using PRNs and Soból, Halton and Faure QRNs. The
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Fig. 1. Accuracy in computing (g, x) with matrix of order 2000.

sequence of pseudorandom numbers is generated with the generator URAND.
In the given figures and table, the following notation is used: n - dimension
of the tested matrix, k - length of the walk, N — number of the walks. The
length of the walks is chosen having in mind the spectral radius of matrices.
Because the projections of the n-dimensional quasirandom sequence over Ii =
[0, 1)i, i = 1, . . . , n − 1, are very well uniformly distributed, we use the same
chain for computing all the members in the Neumann series (2). The accuracy
when compute a scalar product of a given vector g and the solution of system
of size 2000 is presented on Figure 1, where gi = 0, i = 1, . . . , 1000, gi = 1, i =
1001, . . . , 2000. On this figure, the tendency is obvious: the use of QRNs gives
better accuracy. For the three tested linear systems of equations we present the
results for the 64-th component of the solution whose exact value is 1. The
absolute errors for the quasi-MCM and root mean square error for the random
MCM with respect to the length of the walks are plotted on Figure 2, and with
respect to the number of walks are plotted on Figure 3. The results confirm that
using QRNs we obtain much higher accuracy than using PRNs. The magnitude of
the error in computing x64 is presented on Table 1. Moreover, another important
feature of quasi-Monte Carlo methods is the increased smoothness of convergence
as the number of samples increases. The best results are obtained using Soból
sequence.

5 Conclusion

This paper continues studying the application of quasi-Monte Carlo approach
in Linear Algebra problems (see also [9,10]). Our theoretical estimation and
numerical experiments for solving SLAE with general sparse matrices confirm
that using QRNs we achieve an improvement of the magnitude of error and the
convergence rate. The use of Soból sequence gives the best results.
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Fig. 2. Accuracy in computing x64 with matrix of order 128, 1024 and 2000 with
respect to the length of the walks.
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Fig. 3. Accuracy in computing x64 with matrix of order 128, 1024 and 2000 with
respect to the number of the walks.
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Table 1. Accuracy in computing x64 for a sparse matrices of order n.

n N k URAND SOBOL FAURE HALTON
128 10000 5 0.306e-03 0.917e-05 0.435e-04 0.334e-04
1024 100000 5 0.212e-03 0.112e-04 0.531e-05 0.471e-05
2000 1000000 6 0.136e-03 0.573e-06 0.707e-06 0.104e-05
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sion s), Acta Arithmetica, XLI, 337-351, 1992.

6. J. H. Halton. Sequential Monte Carlo techniques for the solution of linear systems,
TR 92-033, University of North Carolina at Chapel Hill, Department of Computer
Science, 1992.

7. J. H. Halton. On the efficiency of certain quasi-random sequences of points in
evaluating multi-dimensional integrals, Numer. Math., 2, 84–90, 1960.

8. J. M. Hammersley and D. C. Handscomb. Monte Carlo Methods, Chapman and
Hall, London, New York, 1964.

9. M. Mascagni and A. Karaivanova. Are quasirandom numbers good for anything
besides integration?, in Proc. of Advances in Reactor Physics and Mathematics
and Computation into the Next Millennium (PHYSOR2000), 2000, (to appear).

10. M. Mascagni and A. Karaivanova. Matrix computations using quasirandom se-
quences, in Numerical Analysis and its Applications, Lecture Notes in Computer
Science, 1988, Springer, 552-559, 2001.

11. H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods,
SIAM, Philadelphia, 1992.

12. I. M. Soból. Monte Carlo Numerical Methods, Nauka, Moscow, 1973, (in Russian).
13. I. M. Soból. The distribution of points in a cube and approximate evaluation of

integrals, Zh. Vychisl. Mat. Mat. Fiz., 7, 784–802, 1967, (in Russian).


	1 Introduction
	2 Background
	2.1 Monte Carlo Method for SLAE
	2.2 Quasirandom Numbers and Integration

	3 Quasi-Monte Carlo Method for SLAE
	4 Computational Results
	5 Conclusion
	References

