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Abstract. The convergence of Monte Carlo method for numerical in-
tegration can often be improved by replacing pseudorandom numbers
(PRNs) with more uniformly distributed numbers known as quasiran-
dom numbers(QRNs). Standard Monte Carlo methods use pseudoran-
dom sequences and provide a convergence rate of O(N−1/2) using N
samples. Quasi-Monte Carlo methods use quasirandom sequences with
the resulting convergence rate for numerical integration as good as
O((logN)k)N−1).
In this paper we study the possibility of using QRNs for computing
matrix-vector products, solving systems of linear algebraic equations and
calculating the extreme eigenvalues of matrices. Several algorithms using
the same Markov chains with different random variables are described.
We have shown, theoretically and through numerical tests, that the use of
quasirandom sequences improves both the magnitude of the error and the
convergence rate of the corresponding Monte Carlo methods. Numerical
tests are performed on sparse matrices using PRNs and Soból, Halton,
and Faure QRNs.

1 Introduction

Monte Carlo methods (MCMs) are based on the simulation of stochastic pro-
cesses whose expected values are equal to computationally interesting quantities.
Despite the universality of MCMs, a serious drawback is their slow convergence,
which is based on the O(N−1/2) behavior of the size of statistical sampling
errors. This represents a great opportunity for researchers in computational sci-
ence. Even modest improvements in the MCM can have substantial impact on
the efficiency and range of applicability for MCM. Much of the effort in the
development of Monte Carlo methods has been in construction of variance re-
duction methods which speed up the computation by reducing the constant in
front of the O(N−1/2). An alternative approach to acceleration is to change the
choice of sequence and hence improve the behavior with N . Quasi-Monte Carlo
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methods (QMCMs) use quasirandom (also known as low-discrepancy) sequences
instead of pseudorandom sequences.
QRNs are constructed to minimize a measure of their deviation from uniformity
called discrepancy. There are many different discrepancies, but let us consider
the most common, the star discrepancy. Let us define the star discrepancy of a
one-dimensional point set, {xn}N

n=1, by

D� = D�(x1, . . . , xN ) = sup
0≤u≤1

| 1
N

N∑
n=1

χ[0,u)(xn)− u| (1)

where χ[0,u) is the characteristic function of the half open interval [0, u). The
mathematical motivation for quasirandom numbers can be found in the classic
Monte Carlo application of numerical integration. We detail this for the trivial
example of one-dimensional integration for illustrative simplicity.
Theorem (Koksma-Hlawka, [6]): if f(x) has bounded variation, V (f), on [0, 1),
and x1, . . . , xN ∈ [0, 1] have star discrepancy D�, then:

| 1
N

∑
n=1

Nf(xn)−
∫ 1

0

f(x) dx| ≤ V (f)D�, (2)

The star discrepancy of a point set of N truly random numbers in one dimen-
sion is O(N−1/2(log logN)1/2), while the discrepancy of N quasirandom num-
bers can be as low as N−1. 1 In s > 3 dimensions it is rigorously known that
the discrepancy of a point set with N elements can be no smaller than a con-
stant depending only on s times N−1(logN)(s−1)/2. This remarkable result of
Roth, [10], has motivated mathematicians to seek point sets and sequences with
discrepancies as close to this lower bound as possible. Since Roth’s remarkable
results, there have been many constructions of low discrepancy point sets that
have achieved star discrepancies as small as O(N−1(logN)s−1). Most notably
there are the constructions of Hammersley, Halton, [5], Soból, [11], Faure, [3],
and Niederreiter, [9].
While QRNs do improve the convergence of applications like numerical integra-
tion, it is by no means trivial to enhance the convergence of all MCMs. In fact,
even with numerical integration, enhanced convergence is by no means assured
in all situations with the näive use of quasirandom numbers, [1,8].
In this paper we study the applicability of quasirandom sequences for solving
some linear algebra problems. We have already produced encouraging theoretical
and empirical results with QMCMs for linear algebra problems and we believe
that this initial work can be improved.

Solving Systems of Linear Algebraic Equations via Neumann Series

Assume that a system of linear algebraic equations (SLAE) can be transformed
into the following form: x = Ax + ϕ, where A is a real square, n × n, matrix,
1 Of course, the N optimal quasirandom points in [0, 1) are the obvious:

1
(N+1)

, 2
(N+1)

, . . . N
(N+1)

.
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x = (x1, x2, ..., xn)t is the 1 × n solution vector and ϕ = (ϕ1, ϕ2, ..., ϕn)t is the
given right-hand side vector.2 In addition, assume that A satisfies either the
condition max1≤i≤n

∑n
j=1 |aij | < 1, or, that all the eigenvalues of A lie within

the unit circle.
Now consider the sequence x(1), x(2), . . . defined by the following recursion:

x(k) = Ax(k−1) + ϕ, k = 1, 2, . . . .

Given initial vector x(0), the approximate solution to the system x = Ax + ϕ
can be developed via a truncated Neumann series:

x(k) = ϕ+Aϕ+A2ϕ+ . . .+A(k−1)ϕ+Akx(0), k > 0 (3)

with a truncation error of x(k) − x = Ak(x(0) − x).
This iterative process (3) of applying the matrix A repeatedly is the basis for
deriving a Monte Carlo approach for this problem.

The Monte Carlo Method

Consider the problem of evaluating the inner product of a given vector, g, with
the vector solution of the considered system

(g, x) =
∑n

α=1 gαxα. (4)

To solve this problem via a MCM (see, for example, [12]) one has to construct
a random process with mean equal to the solution of the desired problem. This
requires the construction of a finite-state Markov chain. Consider the following
Markov chain:

k0 → k1 → . . . → ki, (5)

where kj = 1, 2, . . . , n for j = 1, . . . , i are natural numbers. The rules for con-
structing the chain (5) are: P (k0 = α) = pα, P (kj = β|kj−1 = α) = pαβ

where pα is the probability that the chain starts in state α and pαβ is the
transition probability from state α to state β . Probabilities pαβ define a tran-
sition matrix P . We require that

∑n
α=1 pα = 1 ,

∑n
β=1 pαβ = 1 for any

α = 1, 2, ..., n, and that the distribution (p1, ..., pn)t is permissible to the vector g
and similarly the distribution pαβ is permissible to A [12]. Common construc-
tions are to choose pαβ =

|aαβ|∑
β
|aαβ | for α, β = 1, 2, ..., n, which corresponds to

an importance sampling MCM (MCM with a reduced variance), or to choose
pαβ = 1/n for α, β = 1, 2, ..., n which corresponds to standard MCM.
Now define the random variables θ[g]:

θ[g] = gk0
pk0

∑∞
j=0 Wjϕkj

whereW0 = 1 , Wj =Wj−1
akj−1kj

pkj−1kj
,

(6)

2 If we consider a given system Lx = b, then it is possible to find a non-singular
matrix, M , such that ML = I −A and Mb = ϕ. Thus without loss of generality the
system Lx = b can always be recast as x = Ax+ ϕ.
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It is known [12] that the mathematical expectation E[θ[g]] of the random variable
θ[g] is:

E[θ[g]] = (g, x).

The partial sum corresponding to (6) is defined as θi[g] =
gk0
pk0

∑i
j=0 Wjϕkj . Thus

the Monte Carlo estimate for (g, x) is (g, x) ≈ 1
N

∑N
s=1 θi[g]s, where N is the

number of chains and θi[g]s is the value of θi[g] taken over the s-th chain, and a
statistical error of size O(V ar(θi)1/2N−1/2).

Computing the Extremal Eigenvalues

Let A be an n × n large, sparse, matrix. Consider the problem of computing
one or more eigenvalues of A, i.e., the values of λ for which Au = λu holds.
Suppose the eigenvalues are ordered |λ1| > |λ2| ≥ . . . ≥ |λn−1| > |λn|. There
are two deterministic numerical methods that can efficiently compute only the
extremal eigenvalues - the power method and Lanczos-type methods. (Note that,
the Lanczos method is applicable to only symmetric eigenproblems, [4]. )
Computational Complexity: If k iterations are required for convergence, the num-
ber of arithmethic operations is O(kn2) for the power method and O(n3 + kn2)
for both the inverse and inverse shifted power method.

The Monte Carlo Method

Consider MCMs based on the power method. When computing eigenvalues, we
work with the matrix A and its resolvent matrix Rq = [I − qA]−1 ∈ IRn×n. If
|qλ| < 1, Rq may be expanded as a series via the binomial theorem:

[I − qA]−m =
∞∑

i=1

qiCi
m+i−1, |qλ| < 1. (7)

The eigenvalues of the matrices Rq and A are connected by the equality µ =
1

1−qλ , and the eigenvectors of the two matrices coincide
3. Let f ∈ IRn, h ∈ IRn.

Applying the power method, ([2]), leads to the following iterative processes:

λ(m) =
(h,Aif)
(h,Ai−1f)

−→
m→∞λmax (8)

µ(m) =
([I − qA]−mf, h)

([I − qA]−(m−1)f, h)
−→

m→∞µmax =
1

1− qλ
. (9)

Construct the same Markov chain as before with the initial density vector, p =
{pα}n

α=1, and the transition density matrix, P = {pαβ}n
αβ=1. Define the following

3 If q > 0, the largest eigenvalue µmax of the resolvent matrix corresponds to the
largest eigenvalue, λmax, of the matrix A, but if q < 0, then µmax, corresponds to
the smallest eigenvalue, λmin, of the matrix A.
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random variable: W0 =
hk0
pk0

, Wj = Wj−1
akj−1kj

pkj−1kj
, j = 1, . . . , i. This has the

desired expected values ([2]):

E[Wifki ] = (h,A
if), i = 1, 2, . . . ,

E[
∞∑

i=0

qiCi
i+m−1Wif(xi)] = (h, [I − qA]−mf), m = 1, 2, . . . ,

and allows us to estimate the desired eigenvalues as:

λmax ≈ E[Wifki ]
E[Wi−1fki−1 ]

. (10)

and

λ ≈ 1
q

(
1− 1

µ(m)

)
=

E[
∑∞

i=1 q
i−1Ci−1

i+m−2Wif(xi)]
E[

∑∞
i=0 q

iCi
i+m−1Wif(xi)]

. (11)

We remark that in (10) the length of the Markov chain, l, is equal to the number
of iterations, i, in the power method. However in (11) the length of the Markov
chain is equal to the number of terms in truncated series for the resolvent matrix.
In this second case the parameter m corresponds to the number of iterations.

Table 1. Monte Carlo estimations using PRNs and QRN sequences for the
dominant eigenvalue of matrices of size 128 and 2000

PRN QRN(Faur) QRN(Sobol) QRN(Halton)

Estimated
λ128max 61.2851 63.0789 63.5916 65.1777

Relative
Error 0.0424 0.0143 0.0063 0.0184

Estimated
λ2000max 58.8838 62.7721 65.2831 65.377

Relative
Error 0.0799 0.01918 0.0200 0.0215

Quasi-Monte Carlo Methods for Matrix Computations

Recall that power method iterations are based on computing hTAif (see (8) and
(9)). Even if we are interested in evaluating the inner product (4), substituting x
with x(k) from (3) will give (g, x) ≈ gTϕ+ gTAϕ+ gTA2ϕ+ . . .+ gTA(k−1)ϕ+
gTAkx(0), k > 0. Define the sets G = [0, n) and Gi = [i−1, i), i = 1, . . . , n, and
likewize define the piecewise continous functions f(x) = fi, x ∈ Gi, i = 1, . . . , n,
a(x, y) = aij , x ∈ Gi, y ∈ Gj , i, j = 1, . . . , n and h(x) = hi, x ∈ Gi, i =
1, . . . , n.
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Computing hTAif is equivalent to computing an (i + 1)-dimensional integral.
Thus we may analyze using QRNs in this case with bounds from numerical
integration. We do not know Ai explicitly, but we do know A and can use a
random walk on the elements of the matrix to compute approximately hTAif .

0 2 4 6 8 10
Matrix power

0

0.2

0.4

0.6

0.8

Relative Errors in Computing h
T
A

k
f 

(for sparse matrix 2000 x 2000)

PRN
Sobol QRN
Halton QRN

Fig. 1. Relative errors in computing hTAkf for k = 1, 2, . . . , 10 for a sparse
matrix 2000 × 2000. The corresponding Markov chains are realized using PRN,
Soból and Halton sequences

Consider hTAif and an (i+1)-dimensional QRN sequence. Normalizing A with
1
n , and h and f with

1√
n
, we have the following error bound (for proof see [7]):

|hT
NA

l
NfN − 1

N

N∑
s=1

h(xs)a(xs, ys) . . . a(zs, ws)f(ws)| ≤ |h|T |A|l|f |D∗
N .

If A is a general sparse matrix with d nonzero elements per row, and d � n,
then importance sampling method can be used; the normalizing factors in the
error bound (3) are then 1/d for the matrix and 1√

(n)
for the vectors.

2 Numerical Results

Why are we interested in quasi-MCMs for the eigenvalue problem? Because the
computational complexity of QMCMs is bounded by O(lN) where N is the num-
ber of chains, and l is the mathematical expectation of the length of the Markov
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chains, both of which are independent of matrix size n. This makes QMCMs
very efficient for large, sparse, problems, for which deterministic methods are
not computationally efficient.

6 7 8 9 10
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0.05

0.1

0.15

0.2

Relative Error versus Length of Markov Chain
(matrix of order 1024)

PRN
QRN(Faure)
QRN(Sobol)
QRN(Halton)

Fig. 2. Relative errors in computing λmax using different length of Markov chains
for a sparse matrix 1024 × 1024. The random walks are realized using PRN,
Faure, Soból and Halton sequences

Numerical tests were performed on general sparse matrices using PRNs and
Soból, Halton and Faure QRNs. The relative errors in computing hTAkf with A
a sparse matrix of order 2000 and h = f = (1, 1, . . . , 1), are presented in Figure 1.
The results confirm that the QRNs produce higher precision results than PRNs.
The more important fact is the smoothness of the quasirandom ”iterations”
with k. This is important because these eigenvalue algorithms compute a Raleigh
quotient which requires the division of values from consecutive iterations.
The estimated λmax and the corresponding relative errors using MCM and
QMCM are presented in Table 1. The exact value of λmax for all test matrices
is 64.0000153. The results show improvement of the accuracy. Numerical exper-
iments using resolvent MCM and resolvent QMCM have been also performed -
the relative errors in computing λmax using Markov chains with different lengths
are presented in Figures 2 and 3.
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Fig. 3. Relative errors in computing λmax using different length of Markov chains
for a sparse matrix 2000 × 2000. The random walks are realized using PRN,
Faure, Soból and Halton sequences
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