
Parallel Monte Carlo Algorithms for Sparse

SLAE Using MPI

V. Alexandrov1 and A. Karaivanova2

1 Department of Computer Science, University of Liverpool
Chadwick Building, Peach Street, Liverpool, L69 7ZF, UK

vassil@csc.liv.ac.uk
2 Central Laboratory for Parallel Processing, Bulgarian Academy of Sciences

Acad. G. Bonchev St.,bl. 25 A, 1113, Sofia, Bulgaria
anet@copern.acad.bg

Abstract. The problem of solving sparse Systems of Linear Algebraic
Equations (SLAE) by parallel Monte Carlo numerical methods is consid-
ered. The almost optimal Monte Carlo algorithms are presented. In case
when a copy of the non-zero matrix elements is sent to each processor
the execution time for solving SLAE by Monte Carlo on p processors
is bounded by O(nNdT/p) where N is the number of chains, T is the
length of the chain in the stochastic process, which are independent of
matrix size n, and d is the average number of non-zero elements in the
row. Finding a component of the solution vector requires O(NdT/p) time
on p processors, which is independent of the matrix size n.

1 Introduction

It is known that Monte Carlo methods give statistical estimates for the com-
ponents of the solution vector of SLAE by performing random sampling of a
certain random variable whose mathematical expectation is the desired solution
[11,12]. We consider Monte Carlo methods for solving SLAE since: firstly, only
O(NT) steps are required to find an element of the inverse matrix (MI) or com-
ponent of the solution vector of SLAE (N is a number of chains and T is a
measure on the chains length in the stochastic process, which are independent
of n) and secondly, the sampling process for stochastic methods is inherently
parallel. In comparison, the direct methods of solution require O(n3) sequential
steps for dense matrices when the usual elimination or annihilation schemes (e.g
non-pivoting Gaussian Elimination, Gauss-Jordan methods) are employed [4].
While considering general sparse matrices a reordering algorithms are usually
used before applying direct or iterative methods of solution. The time required
for reordering is O(n2) for straightforward reordering or O(Z log(n)) if binary
trees are used [13], where Z is the number of non-zero elements in the matrix.

Consequently the computation time for very large problems or for real-time
problems can be prohibitive and prevents the use of many established algo-
rithms. Therefore due to their properties, their inherent parallelism and loose

J. Dongarra et al. (Eds.): PVM/MPI’99, LNCS 1697, pp. 283–290, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

284 V. Alexandrov and A. Karaivanova

data dependencies Monte Carlo algorithms can be implemented on parallel ma-
chines very efficiently and thus may enable us to solve large-scale problems which
are sometimes difficult or prohibitive to be solved by the well-known numerical
methods.

Generally three Monte Carlo methods for Matrix Inversion (MI) and finding a
solution vector of System of Linear Algebraic Equations (SLAE) can be outlined:
with absorption, without absorption with uniform transition frequency function,
and without absorption with almost optimal transition frequency function.

In the case of fine grained setting, recently Alexandrov, Megson and Dimov
have shown that an n×nmatrix can be inverted in 3n/2+N+T steps on regular
array with O(n2NT) cells [10]. Alexandrov and Megson have also shown that
a solution vector of SLAE can be found in n + N + T steps on regular array
with the same number of cells [2]. A number of bounds on N and T have been
established, which show that these designs are faster than the existing designs
for large values of n [10,2].

The coarse grained case for MI is considered in [1]. The coarse grained
parallel Monte Carlo algorithms for solving dense SLAE and finding a dominant
eigenvalue are considered in [3] and [6] respectively. In this paper we extend
this implementation approach for sparse SLAE in MIMD environment, i.e. a
cluster of workstations under MPI in our case. We also derive an estimate on
time complexity using CGM model.

The Coarse Grained Multicomputer model, or CGM(n, p) for short,
which is the architectural model to be used in this paper is a set of p processors
with O(n

p) local memory each, connected to some arbitrary interconnection net-
work or a shared memory. The term “coarse grained” refers to the fact that
(as in practice) the size O(n

p
) of each local memory is defined to be “considerably

larger” than O(1). Our definition of “considerably larger” will be that n
p ≥ p.

This is clearly true for all currently available coarse grained parallel machines.
For determining time complexities we will consider both, local computation time
and inter-processor communication time, in the standard way.

For parallel algorithms for SLAE to be relevant in practice, such algorithms
must be scalable, that is, they must be applicable and efficient for a wide range
of ratios n

p
. The use of CGM helps to ensure that the parallel algorithms designed

are not only efficient in theory, but also they result in efficient parallel software
with fast running time on real data . Experiments have shown that in addition to
the scalability, the CGM algorithms typically quickly reach the point of optimal
speedup for reasonable data sets. Even with modest programming efforts the
actual results obtained for other application areas have been excellent [5].

In this paper we focus mainly on the case when a copy of the non-zero
elements of a sparse matrix is sent to each processor.

Parallel Monte Carlo Algorithms for Sparse SLAE Using MPI 285

2 Stochastic Methods and SLAE

Assume that the system of linear algebraic equations (SLAE) is presented in the
form:

x = Ax+ ϕ (1)

whereA is a real square n×nmatrix, x = (x1, x2, ..., xn)t is a 1×n solution vector
and ϕ = (ϕ1, ϕ2, ..., ϕn)t is a given vector. (If we consider the system Lx = b,
then it is possible to choose non-singular matrix M such that ML = I −A and
Mb = ϕ, and so Lx = b can be presented as x = Ax+ϕ.) Assume that A satisfies
the condition max1≤i≤n

∑n
j=1 |aij | < 1, which implies that all the eigenvalues of

A lie in the unit circle. The matrix and vector norms are determined as follows:
‖A‖ = max1≤i≤n

∑n
j=1 |aij |, ‖ϕ‖ = max1≤i≤n |ϕi|.

Suppose that we have Markov chains with n - states. The random trajectory
(chain) Ti of length i starting in state k0 is defined as k0 → k1 → · · · → kj →
· · · → ki where kj is the number of the state chosen, for j = 1, 2, · · · , i. The
following probability definitions are also important: P (k0 = α) = pα, P (kj =
β|kj−1 = α) = pαβ where pα is the probability that the chain starts in state α
and pαβ is the transition probability to state β from state α. Probabilities pαβ

define a transition matrix P . We require that
∑n

α=1 pα = 1 ,
∑n

β=1 pαβ = 1
for any α = 1, 2, ..., n, the distribution (p1, ..., pn)t is acceptable to vector g and
similarly the distribution pαβ is acceptable to A [11].

Consider the problem of evaluating the inner product of a given vector g with
the vector solution of (1)

(g, x) =
∑n

α=1 gαxα (2)

It is known [11] that the mathematical expectation EΘ∗[g] of random variable
Θ∗[g] is:

EΘ∗[g] = (g, x)

where Θ∗[g] = gk0
pk0

∑∞
j=0 Wjϕkj

and W0 = 1 , Wj = Wj−1
akj−1kj

pkj−1kj

(3)

We use the following notation for a partial sum (3) θi[g] =
gk0
pk0

∑i
j=0 Wjϕkj .

According to the above conditions on the matrix A, the series
∑∞

j=0 Wjϕkj

converges for any given vector ϕ and Eθi[g] tends to (g, x) as i −→ ∞. Thus
θi[g] can be considered an estimate of (g, x) for i sufficiently large.

Now we define the Monte Carlo method. To find one component of the solu-
tion, for example the r-th component of x, we choose g = e(r) = (0, ..., 0, 1, 0, ..., 0)
where the one is in the r-th place. It follows that (g, x) =

∑n
α=1 eα(r)xα = xr

and the corresponding Monte Carlo method is given by

xr ≈ 1
N

N∑

s=1

θi[e(r)]s (4)

286 V. Alexandrov and A. Karaivanova

where N is the number of chains and θi[e(r)]s is the value of θi[e(r)] in the s-th
chain.

The probable error of the method, is defined as rN = 0.6745
√

Dθ/N ,
where P{|θ̄ − E(θ)| < rN} ≈ 1/2 ≈ P{|θ̄ − E(θ)| > rN}, if we have N indepen-
dent realizations of random variable (r.v.) θ with mathematical expectation Eθ
and average θ̄ [11].

It is clear from the formula for rN that the number of chainsN can be reduced
by a suitable choice of the transition probabilities that reduces the variance for
a given probable error. This idea leads to Monte Carlo methods with minimal
probable error.

The key results concerning minimization of probable error and the definition
of almost optimal transition frequency for Monte Carlo methods applied to
the calculation of inner product via iterated functions are presented in [10].
According to [10,9] and the principal of collinearity of norms [10] we can choose
pαβ proportional to the |aαβ |.

In case of Almost Optimal Monte Carlo [1,2] the following transition proba-
bilities pαβ are applied :

pαβ =
|aαβ |∑
β |aαβ | for α, β = 1, 2, ..., n.

In case of ‖A‖ ≥ 1 or very close to 1 we can use the Resolvent Monte Carlo
method [7] to reduce the matrix norm and to speedup the computations.

3 Parameters Estimation and Discussion

We will outline the method of estimation of N and T in case of Monte Carlo
method without absorbing states since it is known that these methods
require less chains than the methods with absorption to reach the same precision
[2,1]. In case of Monte Carlo with absorption the parameter estimation can
be done in the same way. We will consider Monte Carlo methods with almost
optimal (MAO) transition frequency function. We assume that the following
conditions

∑n
β=1 pαβ = 1 for any α = 1, 2, ..., n must be satisfied and transition

matrix P might have entries pαβ =
|aαβ|∑
β
|aαβ| for α, β = 1, 2, ..., n.

The estimator Θ∗ for SLAE was defined as follows

EΘ∗[g] = (g, x),

where Θ∗[g] = gk0
pk0

∑∞
j=0 Wjϕkj

and W0 = 1 , Wj = Wj−1
akj−1kj

pkj−1kj
.

(5)

The sum for Θ∗ must be dropped when |Wiϕki | < δ [11].
Note that

|Wiϕki | = | aα0α1 · · · aαi−1αi

|aα0α1 |
‖A‖ · · · |aαi−1αi

|
‖A‖

||ϕki | = ‖A‖i‖ϕ‖ < δ.

Parallel Monte Carlo Algorithms for Sparse SLAE Using MPI 287

Then it follows that

T = i ≤ log (δ/‖ϕ‖)
log ‖A‖ .

It is easy to find [11] that |Θ∗| ≤ ‖ϕ‖
(1−‖A‖) , which means that variance of r.v.

Θ∗ is bounded by its second moment: DΘ∗ ≤ EΘ∗2 = ‖ϕ‖2

(1−‖A‖)2 ≤ f2

(1−‖A‖)2 .
According to the Central Limit Theorem for the given error ε

N ≥ 0.67452Dη∗[g]
ε2

and thus N ≥ 0.67452

ε2
f2

(1−‖A‖)2 (6)

is a lower bound on N which is independent of n.
It is clear that T and N depend only on the matrix norm and precision.

4 Parallel Implementation

We implement parallelMonte Carlo algorithms on a cluster of workstations under
MPI. We assume virtual star topology and we apply master/slave approach.

Inherently, Monte Carlo methods for solving SLAE allow us to have minimal
communication, i.e. to pass the non-zero elements of the sparse matrix A to
every processor, to run the algorithm in parallel on each processor computing

n/p� components of the solution vector and to collect the results from slaves
at the end without any communication between sending non-zero elements of A
and receiving partitions of x. Even in the case we compute only k components
(1 ≤ k ≤ n) of the solution vector we can divide evenly the number of chains
among the processors, e.g. distributing
kN/p� chains on each processor. The
only communication is at the beginning and at the end of the algorithm execu-
tion which allows us to obtain very high efficiency of parallel implementation.
Therefore, by allocating the master in the central node of the star and the slaves
in the remaining nodes, the communication is minimized.

Since we need to compute n components of the vector solution each requiring
N chains of length T and having d non-zero elements in average in a row of a
given sparse matrix on p processors in parallel, the time is O(nNdT/p). This
estimate includes logical operations, multiplications and additions.

5 Numerical Tests

The numerical tests are made on a cluster of 48 Hewlett Packard 900 series 700
Unix workstations under MPI (version 1.1). The workstations are networked via
10Mb switched ethernet segments and each workstation has at least 64Mb RAM
and run at least 60 MIPS.

We have carried out several type of experiments. First, we have considered
the case when one component of the solution vector is computed. In this case
each processor executes the same program for N/p number of trajectories, i.e. it
computes N/p independent realizations of the random variable . At the end the
host processor collects the results of all realizations and computes the desired

288 V. Alexandrov and A. Karaivanova

value. The computational time does not include the time for initial loading of the
matrix because we consider our problem as a part of bigger problem (for example,
spectral portraits of matrices) and suppose that every processor constructs it.

Second we have considered computing an inner product (h, x).
The parallel efficiency E is defined as:

E(X) =
ET1(X)
pETp(X)

,

where X is a Monte Carlo algorithm, ETp(X) is the expected value of the com-
putational time for implementation the algorithm X on a system of p processors.

Table 1. Implementation of the Monte Carlo Algorithm using MPI for
calculating one component of the solution (number of trajectories - 100000).

1pr. 2pr. 2pr. 4pr. 4pr. 5pr. 5pr. 8pr. 8pr.

T (ms) T (ms) E T (ms) E T (ms) E T (ms) E

SLAE
n = 128 38 19 1 15 0.63 12 0.63 8 0.6

SLAE
n = 1024 28 14 1 8 0.9 6 0.93 4 0.9

SLAE
n = 2000 23 11 1.04 6 0.96 5 0.92 5 0.6

Table 2. Implementation of the Monte Carlo Algorithm for evaluation of
the scalar product (h, x), where x is the unknown solution vector, and h is a
given vector, using MPI (number of trajectories - 100000).

1pr. 2pr. 2pr. 4pr. 4pr. 5pr. 5pr. 8pr. 8pr.

T (ms) T (ms) E T (ms) E T (ms) E T (ms) E

SLAE
n = 128 16 8 1 4 1 3 1.01 3 0.7

SLAE
n = 1024 105 53 0.98 28 0.94 21 1 14 0.94
SLAE
n = 2000 167 84 0.99 58 0.7 42 0.8 33 0.7

Parallel Monte Carlo Algorithms for Sparse SLAE Using MPI 289

In all cases the test matrices are sparse and are stored in packed row for-
mat (i.e. only non-zero elements). The average number of non-zero elements per
matrix row is d = 52 for n = 128, d = 57 for n = 1024 and d = 56 for n = 2000
respectively. The results for average time and efficiency are given in tables 1 and
2 and look promising. The relative accuracy is 10−3.

As you can see in case when one component of the vector solution is computed
the time does not depend on the matrix size n. When all the components of
the solution vector are computed the time is linear of the matrix size n. This
corroborates our theoretical results.

6 Conclusion

In our parallel implementation we have to compute n components of the solu-
tion vector of sparse SLAE in parallel. To compute a component of the solution
vector we need N independent chains with length T for matrix with d non-zero
elements per row in average, and for n components in parallel we need nN such
independent chains of length T , where N and T are the mathematical expecta-
tions of the number of chains and chain length, respectively. So the execution
time on p processors for solving SLAE byMonte Carlo is bounded byO(nNdT/p)
(excluding initialization communication time). According to the discussion and
results above N and T depend only on the matrix norm and precision and do
not depend on the matrix size. Therefore the Monte Carlo methods can be ef-
ficiently implemented on MIMD environment and in particular on a cluster of
workstations under MPI.

In particular it should be noted that the Monte Carlo methods are well suited
to large problems where other solution methods are impractical or impossible
for computational reasons, for calculating quick rough estimate of the solution
vector, and when only a few components of the solution vector are desired.
This method also do not require any reordering strategies to be implemented.
Consequently, if massive parallelism is available and if low precision is acceptable,
Monte Carlo algorithms could become favorable for n >> N.

References

1. Alexandrov, V., Lakka, S.: Comparison of three Parallel Monte Carlo Methods for
Matrix Inversion, Proc. of EUROPAR96, Lyon, France, Vol II (1996), 72-80

2. Alexandrov, V., Megson, G.M.: Solving Sytem of Linear algebraic Equations by
Monte Carlo Method on Regular Arrays, Proc. of PARCELLA96, 16-20 September,
Berlin, Germany, (1996) 137-146

3. Alexandrov, V., Rau-Chaplin, A., Dehne, F., Taft, K.: Efficient Coarse Grain
Monte Carlo Algorithms for Matrix Computations using PVM, LNCS 1497,
Springer, August, (1998) 323-330

4. Bertsekas, D.P., Tsitsiklis : Parallel and Distributed Computation, Prentice Hall,
(1989)

5. Dehne, F., Fabri, A., Rau-Chaplin, A.: Scalable parallel geometric algorithms for
multicomputers, Proc. 7th ACM Symp. on Computational Geometry, (1993)

290 V. Alexandrov and A. Karaivanova

6. Dimov, I., Alexandrov, V., Karaivanova, A.: Implementation of Monte Carlo Al-
gorithms for Eigenvalue Problem using MPI, LNCS 1497, Springer, August (1998)
346-353

7. Dimov, I., Alexandrov, V.: A New Highly Convergent Monte Carlo Method for
Matrix Computations, Mathematics and Computers in Simulation, Vol. 47, No
2-5, North-Holland, August (1998) 165-182

8. Golub, G.H., Ch., F., Van Loon: Matrix Computations, The Johns Hopkins Univ.
Press, Baltimore and London, (1996)

9. Halton, J.H.: Sequential Monte Carlo Techniques for the Solution of Linear Sys-
tems, TR 92-033, University of North Carolina at Chapel Hill, Department of
Computer Science, (1992)

10. Megson,G.M., Aleksandrov, V., Dimov, I.: Systolic Matrix Inversion Using Monte
Carlo Method, J. Parallel Algorithms and Applications , Vol.3, (1994) 311-330

11. Sobol’, I.M.: Monte Carlo numerical methods. Moscow, Nauka, (1973) (Rus-
sian)(English version Univ. of Chicago Press 1984).

12. Westlake J.R.: A Handbook of Numerical Matrix Inversion and Solution of Linear
Equations, John Wiley and Sons, New York, (1968)

13. Gallivan,K., Hansen,P.C., Ostromsky, Tz., Zlatev, Z.: A Locally Optimized Re-
ordering Algorithm and its Application to a Parallel Sparse Linear System Solver,
Computing V.54, (1995) 39-67

	Introduction
	Stochastic Methods and SLAE
	Parameters Estimation and Discussion
	Parallel Implementation
	Numerical Tests
	Conclusion
	References

