Journal papers / Book contributions

[42] Hoppe R.H.W. and Petrova S.I., Multi-scale method for the crack problem in microstructural materials, Comput.Methods Appl.Math., Vol.10, No.1, 2010, pp.69-86.

[41] Petrova S.I., Topology optimization of eddy-current systems by level-set and primal-dual methods, Proc. IMECS 2010 , IAENG Publisher, ISBN:978-988-17012-8-2, Vol.I, 2010, pp.327-332.

[40] Petrova S.I., On shape optimization of acoustically driven microfluidic biochips, LNCS (I.Lirkov et al., eds.), Springer, Vol.5910, 2010, pp.821-828.

[39] Petrova S.I., Applications of one-shot methods in PDEs constrained optimization, Math.Comput.Simul., Vol.80, No.3, 2009, pp.581-597.

[38] Hoppe R.H.W. and Petrova S.I., Path-following methods for shape optimal design of periodic microstructural materials, Optimization Methods and Software, Vol.24, No.2, 2009, pp.205-218.

[37] Bordas S., Hoppe R.H.W. and Petrova S.I., Mechanical failure in microstructural heterogeneous materials, LNCS (T.Boyanov et al., eds.), Springer, Vol.4310, 2007, pp.533-541.

[36] Hoppe R.H.W. and Petrova S.I., Elasto-plasticity model in structural optimization of composite materials with periodic microstructures, Math.Comput.Simul., Vol.74, No.6, 2007, pp.468-480.

[35] Hoppe R.H.W. and Petrova S.I., Adaptive refinement techniques in homogenization design method, In: Free and Moving Boundaries: Analysis, Simulation and Control (R.Glowinski et al., eds.), Lecture Notes in Pure and Applied Mathematics, Chapman&Hall, 2007, Chapter 19.

[34] Hoppe R.H.W., Linsenmann Chr. and Petrova S.I., Primal-dual Newton methods in structural optimization, Comput.Visual.Sci., Vol.9, No.2, 2006, pp.71-87.

[33] Hoppe R.H.W. and Petrova S.I., Shape optimization of biomorphic ceramics with microstructures by homogenization modeling, In: Analysis, Modeling and Simulation of Multiscale Problems (A.Mielke, ed.), Springer, 2006, pp.395-424.

[32] Hoppe R.H.W. and Petrova S.I., Efficient solvers for 3-D homogenized elasticity model, LNCS (J.Dongarra et al., eds.), Springer, Vol.3732, 2006, pp.857-863.

[31] Hoppe R.H.W. and Petrova S.I., On the return mapping algorithms in structural optimization of biomorphic ceramics, Proc. 6th World Congress on Structural and Multidisciplinary Optimization, Rio de Janeiro, Brazil, May 29-June 3, 2005 (J.Herskovits et al., eds.), CD-ROM, ISBN:85-285-0070-5.

[30] Hoppe R.H.W. and Petrova S.I., A posteriori adaptive meshes for shape optimization of TiC-ceramics, HERMIS Intern. J. Comput. Math. Appl., 5(2005), pp.109-124.

[29] Hoppe R.H.W. and Petrova S.I., Primal-dual Newton interior point methods in shape and topology optimization, Numer. Linear Algebra Appl. , Vol.11, No.5-6, 2004, pp.413-429.

[28] Hoppe R.H.W. and Petrova S.I., Optimal shape design in biomimetics based on homogenization and adaptivity, Math.Comput.Simul., Vol.65, No.3, 2004, pp.257-272.

[27] Hoppe R.H.W. and Petrova S.I., Homogenization design method for biomorphic composite materials, J.Comput.Methods Sci.Engrg., Vol.4, No.1-2, 2004, pp.87-96.

[26] Hoppe R.H.W., Petrova S.I. and Vassilevski Yu.V., Adaptive grid refinement for computation of the homogenized elasticity tensor, LNCS (I.Lirkov et al., eds.), Springer, Vol.2907 , 2004, pp.371-378.

[25] Hoppe R.H.W., Kladny R., Petrova S.I., and Sieber H., Modeling, simulation, and optimization of microstructured biomorphic materials, In: Functional Micro- and Nanosystems (K.-H.Hoffmann et al., eds.), Springer, 2004.

[24] Hoppe R.H.W. and Petrova S.I., Applications of primal-dual interior methods in structural optimization, Comput.Methods Appl.Math., Vol.3, No.1, 2003, pp.159-176.

[23] Boehm P., Hoppe R.H.W., Mazurkevitch G., Petrova S.I., Wachutka G., and Wolfgang E., Optimal design of high power electronic devices by topology optimization, In: Mathematics-key technology for the future (W.Jaeger et al.; eds.), Springer, 2003, pp.365-376.

[22] Hoppe R.H.W. and Petrova S.I., Optimal structural design of biomorphic composite materials, LNCS (I.Dimov et al., eds.), Springer, Vol.2542, 2003, pp.479-487.

[21] Hoppe R.H.W. and Petrova S.I., Homogenized elasticity solvers for biomorphic microcellular ceramics , Proc. 4th European Conf. Numer. Math. Adv. Appl., ENUMATH 2001, July 23-28, 2001, Ischia, Italy (F.Brezzi et al., eds.), Springer, 2003, pp.371-380.

[20] Hoppe R.H.W., Petrova S.I., and Schulz V., Primal-dual Newton-type interior-point method for topology optimization, J.Optimization Theory Appl., 114(2002), No.3, pp.545-571.

[19] Hoppe R.H.W. and Petrova S.I., Structural optimization of biomorphic microcellular ceramics by homogenization approach, LNCS (S.Margenov et al., eds.), Springer, Vol. 2179, 2001, pp.353-360.

[18] Hoppe R.H.W., Petrova S.I., and Schulz V., Topology optimization of high power electronic devices, In: International Series of Numerical Mathematics (K.-H.Hoffmann et al., eds.), Birkhauser-Verlag Basel, 139(2001), pp.119-131 .

[17] Hoppe R.H.W., Petrova S.I., and Schulz V., 3D structural optimization in electromagnetics, Proc. 13th Intern. Conf. on Domain Decomposition Methods, October 9-12, 2000, Lyon, France (N.Debit et al., eds.) DDM.org , 2001, pp.469-476.

[16] Petrova S.I., Nonconforming streamline-diffusion FEM for 3-D convection-diffusion problems using multigrid discretizations, Proc. FEM3D Conf., June 2000, Jyvaskyla, Finland (P.Neittaanmaki and M.Krizek, eds.) GAKUTO Internat.Ser.Math.Sci.Appl., Vol.15, Gakkotosho, Tokyo, 2001, pp.217-225.

[15] Hoppe R.H.W., Petrova S.I., and Schulz V., Topology optimization of conductive media described by Maxwell's equations, LNCS (L.Vulkov et al., eds.), Springer, 1988(2001), pp.414-422.

[14] Petrova S.I., Tobiska L., and Vassilevski P., Multigrid methods based on matrix-dependent coarse spaces for nonconforming streamline-diffusion FE discretization of convection-diffusion problems, East-West J.Numer.Math., 8(2000), No.3, pp.223-242.

[13] Hoppe R.H.W. and Petrova S.I., Applications of the Newton interior-point method for Maxwell's equations, Proc. 16th IMACS World Congress, August 2000, Lausanne, Switzerland (M.Deville and R.Owens, eds.), (CD-ROM, 107-7.pdf).

[12] Paprzycki M. , Petrova S.I., and Sanchez J., Implementing parallel elliptic solver on a Beowulf cluster, Electron.J.Differ.Equ., 1999, pp.75-85.

[11] Hope H., Paprzycki M. and Petrova S.I., Parallel performance of a direct elliptic solver,   Notes on Numerical Fluid Mechanics, Large-Scale Scientific Computations of Engineering and Environmental Problems, Vieweg,   62(1997), pp.310-319.

[10] Petrova S.I. and Vassilevski P., A Variational parameters-to-estimate-free nonlinear solver, LNCS (L.Vulkov et al., eds.), Springer, 1196(1997), pp.396-405.

[9] Petrova S.I., Parallel implementation of fast elliptic solver, Parallel Computing, 23(8)(1997), pp.1113-1128.

[8] Petrova S.I., Practical implementation of local refinement preconditioners, Iterative Methods in Linear Algebra, II (S.Margenov et al.,eds.), IMACS Series in Computational and Applied Mathematics, 3(1995), pp.292-308.

[7] Petrova S.I., An efficient implementation of certain iterative refinement preconditioners, Computing, 52(1), 1994, pp.51-63.

[6] Brand Cl. and Petrova S.I., Computing extreme eigenvalues of large sparse symmetric problems, Proc. 3rd Intern. Conf. on Numer. Methods Appl., NM&A-O(h3), August 21-26, 1994, Sofia, Bulgaria (I.Dimov et al., eds.), Singapore, World Scientific, 1994, pp.40-46.

[5] Petrova S.I., On the use of iterative refinement preconditioners based on domain decomposition, Advances in Parallel Algorithms (I.Dimov et al., eds.), IOS Press, 1994, pp.44-53.

[4] Ewing R., Petrova S.I. and Vassilevski P., Two-level local-refinement preconditioners for nonsymmetric and indefinite elliptic problems, SIAM J.Sci.Comput., 15(1994), pp.149-163.

[3] Vassilevski P., Petrova S.I., and Lazarov R., Preconditioning elliptic problems on grids with multilevel local refinement, Mathematica Balkanica. New Series, 8(1994), pp.179-196.

[2] Vassilevski P., Petrova S.I. and Lazarov R., Finite difference schemes on triangular cell-centered grids with local refinement, SIAM J.Sci.Stat.Comp., 13(1992), pp.1287-1313.

[1] Vassilevski P. and Petrova S.I., A note on construction of preconditioners in solving 3D elliptic problems by substructuring, Compt. Rend. de l'Acad. Bulg. Sci., 41(7), 1988, pp.33-36.

Technical reports

[9] Hoppe R.H.W. and Petrova S.I., Shape optimal design of periodic microstructural materials, Preprint No.16, April 2008, University of Augsburg, Germany.

[8] Hoppe R.H.W. and Petrova S.I., Combined mesh superposition method and homogenization approach for a crack problem in periodic composites, Preprint No.20, July 2007, University of Augsburg, Germany.

[7] Hoppe R.H.W. and Petrova S.I., On the return mapping algorithms in structural optimization of biomorphic ceramics, Preprint No.19, July 2007, University of Augsburg, Germany.

[6] Hoppe R.H.W. and Petrova S.I., Shape optimization in biomimetics by homogenization modelling, ICTP Preprint IC/2003/83, Trieste-Miramare.

[5] Petrova S.I., Tobiska L., and Vassilevski P., Algebraic multigrid methods for nonconforming streamline--diffusion finite element discretization of convection--diffusion problems, Preprint No.30, Dept.of Mathematics, Otto-von-Guericke-University Magdeburg, Germany, November 1997.

[4] Notay Y., Gheur V., Ould Amar Z., Petrova S.I., and Saint-Georges P., ITSOL: An evolving routine for the iterative solution of symmetric positive definite systems, Report GANMN 95-02, June 1995, ULB, Brussels, Belgium.

[3] Vassilevski P.and Petrova S.I., Multilevel local refinement preconditioning for elliptic problems, PROJECT REPORT HG CP 94-0820-CICT-4-3, 1996.

[2] Petrova S.I. and Vassilevski P., Tests on two- and multilevel patched refinement FEM code, PROJECT REPORT No. 3, HG CP 94-0820, 1996.

[1] Brand Cl. and Petrova S.I., Preconditioned iterations to calculate extreme eigenvaluesi, Tech. Rep.#1994-1, Mining University Leoben, Austria; presented at the Colorado Conference on Iterative Methods, April 4-10, 1994, Breckenridge, Colorado, USA.

PhD Thesis

Petrova S.I., Iterative methods for solving differential equations on grids with local refinement, 1993, University of Sofia (144 pages, in Bulgarian).
UpBack