Adaptive Monte Carlo Approach for Sensitivity Analysis

Ivan Dimov

Institute of Information and Communication Technologies, Bulgarian Academy of Sciences (BAS) e-mail: ivdimov@bas.bg

Intensive course on

Advanced Monte Carlo methods - computational challengies
February 21 - 27, 2012

- Introduction
- Mathematical background

 - Total Sensitivity Indices
 - Sobol' Approach for Computing Global Sensitivity Indices
- Adaptive Monte Carlo approach
- Numerical experiments
- Concluding remarks

Goal

The aim is to propose and study a new mechanism for sensitivity studies in a case study: concentrations levels of some important pollutants (like ozone O_3) in real-live scenarios of air pollution transport over Europe with Unified Eulerian Models.

Goal

The aim is to propose and study a new mechanism for sensitivity studies in a case study: concentrations levels of some important pollutants (like ozone O_3) in real-live scenarios of air pollution transport over Europe with Unified Eulerian Models.

Sensitivity analysis studies

- improving the model
- increasing the reliability of the results, and
- identifying processes that must be studied more carefully

Goal

The aim is to propose and study a new mechanism for sensitivity studies in a case study: concentrations levels of some important pollutants (like ozone O_3) in real-live scenarios of air pollution transport over Europe with Unified Eulerian Models.

Sensitivity analysis studies

- improving the model
- increasing the reliability of the results, and
- identifying processes that must be studied more carefully

Motivation

- assessing the influences of each input parameters on the output variability
- to provide validation, optimization, and risk analysis of simulation models
- to determine robustness, reliability, efficiency of a model

Mathematical Representation of UNI-DEM

Sensitivity Analysis Studies - The Mathematical Model Presentation Sobol' Approach for Evaluating Sensitivity Measures (Sobol', 1990) Sobol' Global Sensitivity Indices

proaches for Small Sensitivity Indices

$$\frac{\partial c_{s}}{\partial t} = -\frac{\partial (uc_{s})}{\partial x} - \frac{\partial (vc_{s})}{\partial y} - \frac{\partial (wc_{s})}{\partial z} +
+ \frac{\partial}{\partial x} \left(K_{x} \frac{\partial c_{s}}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_{y} \frac{\partial c_{s}}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_{z} \frac{\partial c_{s}}{\partial z} \right) +
+ E_{s} + Q_{s}(c_{1}, c_{2}, \dots, c_{q}) - (k_{1s} + k_{2s})c_{s}, \quad s = 1, 2, \dots, q.$$

q – number of equations = number of chemical species

 c_s — concentrations of the chemical species,

u, v, w — components of the wind along the coordinate axes,

 K_x, K_y, K_z – diffusion coefficients,

 E_s — emissions in the space domain,

 k_{1s}, k_{2s} — coefficients of dry and wet deposition respectively,

 $Q_s(c_1, c_2, ..., c_q)$ – non-linear functions that describe the chemical reactions between species.

Mathematical Representation of UNI-DEM

Sensitivity Analysis Studies - The Mathematical Model Presentation Sobol' Approach for Evaluating Sensitivity Measures (Sobol', 1990) Sobol' Global Sensitivity Indices

proaches for Small Sensitivity Indices

$$\frac{\partial c_{s}}{\partial t} = -\frac{\partial (uc_{s})}{\partial x} - \frac{\partial (vc_{s})}{\partial y} - \frac{\partial (wc_{s})}{\partial z} +
+ \frac{\partial}{\partial x} \left(K_{x} \frac{\partial c_{s}}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_{y} \frac{\partial c_{s}}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_{z} \frac{\partial c_{s}}{\partial z} \right) +
+ E_{s} + Q_{s}(c_{1}, c_{2}, \dots, c_{q}) - (k_{1s} + k_{2s})c_{s}, \quad s = 1, 2, \dots, q.$$

q – number of equations = number of chemical species

 c_s — concentrations of the chemical species,

u, v, w — components of the wind along the coordinate axes,

 K_x, K_y, K_z – diffusion coefficients,

 E_s — emissions in the space domain,

 k_{1s}, k_{2s} — coefficients of dry and wet deposition respectively,

 $Q_s(c_1, c_2, ..., c_q)$ – non-linear functions that describe the chemical reactions between species.

Mathematical Representation of UNI-DEM

Sensitivity Analysis Studies - The Mathematical Model Presentation Sobol' Approach for Evaluating Sensitivity Measures (Sobol', 1990) Sobol' Global Sensitivity Indices

oproaches for Small Sensitivity Indices

$$\frac{\partial \mathbf{c_s}}{\partial t} = -\frac{\partial (u\mathbf{c_s})}{\partial x} - \frac{\partial (v\mathbf{c_s})}{\partial y} - \frac{\partial (w\mathbf{c_s})}{\partial z} + \\
+ \frac{\partial}{\partial x} \left(K_x \frac{\partial \mathbf{c_s}}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_y \frac{\partial \mathbf{c_s}}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_z \frac{\partial \mathbf{c_s}}{\partial z} \right) + \\
+ E_s + Q_s(c_1, c_2, \dots, c_q) - (k_{1s} + k_{2s}) \mathbf{c_s}, \quad s = 1, 2, \dots, q.$$

q – number of equations = number of chemical species

 c_s — concentrations of the chemical species,

u, v, w – components of the wind along the coordinate axes,

 K_x, K_y, K_z – diffusion coefficients,

 E_s — emissions in the space domain,

 k_{1s}, k_{2s} — coefficients of dry and wet deposition respectively,

 $Q_s(c_1, c_2, \dots, c_q)$ – non-linear functions that describe the chemical reactions between species.

Mathematical Representation of UNI-DEM

Sensitivity Analysis Studies - The Mathematical Model Presentation Sobol' Approach for Evaluating Sensitivity Measures (Sobol', 1990) Sobol' Global Sensitivity Indices

pproaches for Small Sensitivity Indices

$$\frac{\partial c_{s}}{\partial t} = -\frac{\partial (\mathbf{u}c_{s})}{\partial x} - \frac{\partial (\mathbf{v}c_{s})}{\partial y} - \frac{\partial (\mathbf{w}c_{s})}{\partial z} +
+ \frac{\partial}{\partial x} \left(K_{x} \frac{\partial c_{s}}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_{y} \frac{\partial c_{s}}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_{z} \frac{\partial c_{s}}{\partial z} \right) +
+ E_{s} + Q_{s}(c_{1}, c_{2}, \dots, c_{q}) - (k_{1s} + k_{2s})c_{s}, \quad s = 1, 2, \dots, q.$$

q – number of equations = number of chemical species

 c_s — concentrations of the chemical species,

u, v, w – components of the wind along the coordinate axes,

 K_x, K_y, K_z – diffusion coefficients,

 E_s — emissions in the space domain,

 k_{1s}, k_{2s} — coefficients of dry and wet deposition respectively,

 $Q_s(c_1,c_2,\ldots,c_q)$ – non-linear functions that describe the chemical reactions between species.

Mathematical Representation of UNI-DEM

Sensitivity Analysis Studies - The Mathematical Model Presentation Sobol' Approach for Evaluating Sensitivity Measures (Sobol', 1990) Sobol' Global Sensitivity Indices

proaches for Small Sensitivity Indices

$$\frac{\partial c_{s}}{\partial t} = -\frac{\partial (uc_{s})}{\partial x} - \frac{\partial (vc_{s})}{\partial y} - \frac{\partial (wc_{s})}{\partial z} +
+ \frac{\partial}{\partial x} \left(\frac{\kappa_{x}}{\partial x} \frac{\partial c_{s}}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\kappa_{y}}{\partial y} \frac{\partial c_{s}}{\partial y} \right) + \frac{\partial}{\partial z} \left(\frac{\kappa_{z}}{\partial z} \frac{\partial c_{s}}{\partial z} \right) +
+ E_{s} + Q_{s}(c_{1}, c_{2}, \dots, c_{q}) - (k_{1s} + k_{2s})c_{s}, \quad s = 1, 2, \dots, q.$$

q – number of equations = number of chemical species

 c_s — concentrations of the chemical species,

u, v, w — components of the wind along the coordinate axes,

 K_x, K_y, K_z – diffusion coefficients,

 E_s — emissions in the space domain,

 k_{1s}, k_{2s} — coefficients of dry and wet deposition respectively,

 $Q_s(c_1,c_2,\ldots,c_q)$ – non-linear functions that describe the chemical reactions between species.

Mathematical Representation of UNI-DEM

$$\frac{\partial c_{s}}{\partial t} = -\frac{\partial (uc_{s})}{\partial x} - \frac{\partial (vc_{s})}{\partial y} - \frac{\partial (wc_{s})}{\partial z} +
+ \frac{\partial}{\partial x} \left(K_{x} \frac{\partial c_{s}}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_{y} \frac{\partial c_{s}}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_{z} \frac{\partial c_{s}}{\partial z} \right) +
+ E_{s} + Q_{s}(c_{1}, c_{2}, \dots, c_{q}) - (k_{1s} + k_{2s})c_{s}, \quad s = 1, 2, \dots, q.$$

number of equations = number of chemical species q

concentrations of the chemical species, C_{S}

components of the wind along the coordinate axes. U, V, W

 K_x, K_y, K_z diffusion coefficients,

 E_s emissions in the space domain,

 k_{1s}, k_{2s} coefficients of dry and wet deposition respectively,

non-linear functions that describe $Q_{\rm s}(c_1,c_2,\ldots,c_n)$ the chemical reactions between species.

Ivan Dimov. BAS

Mathematical Representation of UNI-DEM

Sensitivity Analysis Studies - The Mathematical Model Presentation Sobol' Approach for Evaluating Sensitivity Measures (Sobol', 1990) Sobol' Global Sensitivity Indices

proaches for Small Sensitivity Indices

$$\frac{\partial c_{s}}{\partial t} = -\frac{\partial (uc_{s})}{\partial x} - \frac{\partial (vc_{s})}{\partial y} - \frac{\partial (wc_{s})}{\partial z} +
+ \frac{\partial}{\partial x} \left(K_{x} \frac{\partial c_{s}}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_{y} \frac{\partial c_{s}}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_{z} \frac{\partial c_{s}}{\partial z} \right) +
+ E_{s} + Q_{s}(c_{1}, c_{2}, \dots, c_{q}) - (k_{1s} + k_{2s})c_{s}, \quad s = 1, 2, \dots, q.$$

q – number of equations = number of chemical species

 c_s — concentrations of the chemical species,

u, v, w — components of the wind along the coordinate axes,

 K_x, K_y, K_z – diffusion coefficients,

 E_s — emissions in the space domain,

 k_{1s}, k_{2s} — coefficients of dry and wet deposition respectively,

 $Q_s(c_1, c_2, ..., c_q)$ – non-linear functions that describe the chemical reactions between species.

Mathematical Representation of UNI-DEM

Sensitivity Analysis Studies - The Mathematical Model Presentation Sobol' Approach for Evaluating Sensitivity Measures (Sobol', 1990) Sobol' Global Sensitivity Indices

proaches for Small Sensitivity Indices

$$\frac{\partial c_{s}}{\partial t} = -\frac{\partial (uc_{s})}{\partial x} - \frac{\partial (vc_{s})}{\partial y} - \frac{\partial (wc_{s})}{\partial z} +
+ \frac{\partial}{\partial x} \left(K_{x} \frac{\partial c_{s}}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_{y} \frac{\partial c_{s}}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_{z} \frac{\partial c_{s}}{\partial z} \right) +
+ E_{s} + Q_{s}(c_{1}, c_{2}, \dots, c_{q}) - (k_{1s} + k_{2s})c_{s}, \quad s = 1, 2, \dots, q.$$

q – number of equations = number of chemical species

 c_s — concentrations of the chemical species,

u, v, w — components of the wind along the coordinate axes,

 K_x, K_y, K_z – diffusion coefficients,

 E_s — emissions in the space domain,

 k_{1s}, k_{2s} — coefficients of dry and wet deposition respectively,

 $Q_s(c_1,c_2,\ldots,c_q)$ – non-linear functions that describe the chemical reactions between species.

The mathematical model

$$\mathbf{u} = f(\mathbf{x}), \text{ where } \mathbf{x} = (x_1, x_2, \dots, x_d) \in U^d \equiv [0, 1]^d$$

is a vector of inputs with a joint p.d.f. $p(\mathbf{x}) = p(x_1, \dots, x_d)$.

The mathematical model

$$\mathbf{u} = f(\mathbf{x}), \quad \text{where} \quad \mathbf{x} = (x_1, x_2, \dots, x_d) \in U^d \equiv [0, 1]^d$$
 is a vector of inputs with a joint p.d.f. $p(\mathbf{x}) = p(x_1, \dots, x_d)$.

• Total Sensitivity Index of input parameter x_i , $i \in \{1, ..., d\}$:

$$S_{x_i}^{tot} = S_i + \sum_{l_1 \neq i} S_{il_1} + \sum_{l_1, l_2 \neq i, l_1 < l_2} S_{il_1 l_2} + \ldots + S_{il_1 \ldots l_{d-1}},$$

where

 S_i - the main effect (first-order sensitivity index) of x_i and $S_{il_1...l_{j-1}} - j^{th}$ order sensitivity index for parameter x_i (2 \leq j \leq d).

ANalysis Of VAriances (ANOVA) HDMR of a square integrable function $f(\mathbf{x})$:

$$f(\mathbf{x}) = f_0 + \sum_{\nu=1}^d \sum_{l_1 < \dots < l_{\nu}} f_{l_1 \dots l_{\nu}}(x_{l_1}, x_{l_2}, \dots, x_{l_{\nu}}), \text{ where } f_0 = const,$$

and
$$\int_0^1 f_{l_1...l_{\nu}}(x_{l_1}, x_{l_2}, ..., x_{l_{\nu}}) \mathrm{d}x_{l_k} = 0, \quad 1 \le k \le \nu, \ \nu = 1, ..., d.$$

The functions in the right-hand side are defined in a unique way:

$$\bullet \ f_0 = \int_{U^d} f(\mathbf{x}) d\mathbf{x}, \ f_{l_1}(x_{l_1}) = \int_{U^{d-1}} f(\mathbf{x}) \prod_{k \neq l_1} d\mathbf{x}_k - f_0, \ l_1 \in \{1, \dots, d\}$$

$$\bullet \int_{I_{1}d} f_{i_{1}...i_{\mu}} f_{j_{1}...j_{\nu}} d\mathbf{x} = 0, \ \ (i_{1},...,i_{\mu}) \neq (j_{1},...,j_{\nu}), \ \ \mu,\nu \in \{1,...,d\}.$$

Definition (Sobol')

$$S_{I_1 \dots I_{\nu}} = \frac{\mathbf{D}_{I_1 \dots I_{\nu}}}{\mathbf{D}}, \quad \nu \in \{1, \dots, d\},$$

where

$$ullet$$
 partial variances $oldsymbol{\mathsf{D}}_{l_1\ ...\ l_
u} = \int f_{l_1\ ...\ l_
u}^2 \mathrm{d} x_{l_1} \ldots \mathrm{d} x_{l_
u},$

$$\mathbf{D} = \int_{\mathcal{U}} f^2(\mathbf{x}) \mathrm{d}\mathbf{x} - f_0^2,$$

$$\bullet \text{ total variance } \quad \mathbf{D} = \int_{U^d} f^2(\mathbf{x}) \mathrm{d}\mathbf{x} - f_0^2, \qquad \mathbf{D} = \sum_{\nu=1}^d \sum_{l_1 < \ldots < l_\nu} \mathbf{D}_{l_1 \ldots l_\nu},$$

and the following properties hold:

•
$$S_{l_1 \dots l_s} \geq 0$$

•
$$S_{l_1 \dots l_s} \ge 0$$
, $\sum_{s=1}^d \sum_{l_s \le l_s}^d S_{l_1 \dots l_s} = 1$.

Table: Methods for evaluating global sensitivity indices.

Method Cost (model runs)		Sensitivity measures		
FAST (1973)	$O(d^2)$	$S_i, orall i$		
Sobol' (1993)	N(2d + 2)	$S_i, S_{x_i}^{tot}, \forall i$		
EFAST (1999)	dN	$S_i, S_{x_i}^{tot}, \forall i$		
Saltelli (2002)	<i>N</i> (<i>d</i> + 2)	$S_i, S_{x_i}^{tot}, \forall i, S_{-lj}, \forall l, j, l \neq j$		
Saltelli (2002)	N(2d + 2)	$S_i, S_{x_i}^{tot}, \forall i, S_{lj}, S_{-lj}, \forall l, j, l \neq j$		

Approaches for Small Sensitivity Indices

Let
$$\mathbf{x} = (\mathbf{y}, \mathbf{z}) \in \mathbb{R}^d$$
, $\mathbf{y} = (x_{k_1}, \dots, x_{k_m}) \in \mathbb{R}^m$, $K = (k_1, \dots, k_m)$.
Variance of the subset $\mathbf{y} : \mathbf{D}_{\mathbf{y}} = \sum_{n=1}^m \sum_{(i_1 < \dots < i_n) \in K} \mathbf{D}_{i_1, \dots, i_n}$.

Theorem (Sobol')

$$\mathbf{D}_{\mathbf{y}} = \int f(\mathbf{x}) f(\mathbf{y}, \mathbf{z}') \mathrm{d}\mathbf{x} \mathrm{d}\mathbf{z}' - f_0^2$$

Motivation

If
$$\mathbf{D}_{\mathbf{y}} << f_0^2 \Rightarrow$$
 a loss of accuracy.

unermatical representation of one-dem instituty Analysis Studies - The Mathematical Model Presentation bol' Approach for Evaluating Sensitivity Measures (Sobol', 1990) bol' Global Sensitivity Indices

Approaches for Small Sensitivity Indices

Let
$$\mathbf{x} = (\mathbf{y}, \mathbf{z}) \in \mathbb{R}^d$$
, $\mathbf{y} = (x_{k_1}, \dots, x_{k_m}) \in \mathbb{R}^m$, $K = (k_1, \dots, k_m)$.
Variance of the subset $\mathbf{y} : \mathbf{D}_{\mathbf{y}} = \sum_{n=1}^m \sum_{(i_1 < \dots < i_n) \in K} \mathbf{D}_{i_1, \dots, i_n}$.

Theorem (Sobol')

$$\mathbf{D}_{\mathbf{y}} = \int f(\mathbf{x}) f(\mathbf{y}, \mathbf{z}') \mathrm{d}\mathbf{x} \mathrm{d}\mathbf{z}' - f_0^2$$

Reducing the Mean Value (I.M. Sobol', 1990)

- Choose a constant $c \sim f_0$ and set the function $\varphi(\mathbf{x}) = f(\mathbf{x}) c$.
- Obtain

$$\begin{split} \mathbf{D}_{\mathbf{y}} &= \int \varphi(\mathbf{x}) \; \varphi(\mathbf{y}, \mathbf{z}') \mathrm{d}\mathbf{x} \mathrm{d}\mathbf{z}' - \omega^2, \qquad \text{where} \quad \omega = \int \varphi(\mathbf{x}) \mathrm{d}\mathbf{x}, \\ \mathbf{D} &= \int \varphi^2(\mathbf{x}) \mathrm{d}\mathbf{x} - \omega^2, \qquad \qquad \omega = f_0 - c. \end{split}$$

Internation Representation of UNI-DEM
nstitivity Analysis Studies - The Mathematical Model Presentation
bol' Approach for Evaluating Sensitivity Measures (Sobol', 1990)
bol' Global Sensitivity Indices

Approaches for Small Sensitivity Indices

Let
$$\mathbf{x} = (\mathbf{y}, \mathbf{z}) \in \mathbb{R}^d$$
, $\mathbf{y} = (x_{k_1}, \dots, x_{k_m}) \in \mathbb{R}^m$, $K = (k_1, \dots, k_m)$.
Variance of the subset $\mathbf{y} : \mathbf{D}_{\mathbf{y}} = \sum_{n=1}^m \sum_{(i_1 < \dots < i_n) \in K} \mathbf{D}_{i_1, \dots, i_n}$.

Theorem (Sobol')

$$\mathbf{D}_{\mathbf{y}} = \int f(\mathbf{x}) f(\mathbf{y}, \mathbf{z}') d\mathbf{x} d\mathbf{z}' - f_0^2$$

Combined Approach (Saltelli, 2002, Kucherenko, 2007)

- Choose a constant $c \sim f_0$ and set the function $\varphi(\mathbf{x}) = f(\mathbf{x}) c$.
- Use $\varphi(\mathbf{x})$ rather than $f(\mathbf{x})$:

$$\mathbf{D}_{\mathbf{y}} = \int \, \varphi(\mathbf{x}) \, [\varphi(\mathbf{y}, \mathbf{z}') \mathrm{d}\mathbf{x} \mathrm{d}\mathbf{z}' - \varphi(\mathbf{x}')] \mathrm{d}\mathbf{x} \mathrm{d}\mathbf{x}',$$

$$\mathbf{D} = \int \varphi(\mathbf{x}) [\varphi(\mathbf{x}) - \varphi(\mathbf{x}')] \, d\mathbf{x} d\mathbf{x}'.$$

anematical Representation of UNI-DEM institivity Analysis Studies - The Mathematical Model Presentation bol' Approach for Evaluating Sensitivity Measures (Sobol', 1990) bol' Global Sensitivity Indices

Approaches for Small Sensitivity Indices

Let
$$\mathbf{x} = (\mathbf{y}, \mathbf{z}) \in \mathbb{R}^d$$
, $\mathbf{y} = (x_{k_1}, \dots, x_{k_m}) \in \mathbb{R}^m$, $K = (k_1, \dots, k_m)$.
Variance of the subset $\mathbf{y} : \mathbf{D}_{\mathbf{y}} = \sum_{n=1}^m \sum_{(i_1 < \dots < i_n) \in K} \mathbf{D}_{i_1, \dots, i_n}$.

Theorem (Sobol')

$$\mathbf{D}_{\mathbf{y}} = \int f(\mathbf{x}) f(\mathbf{y}, \mathbf{z}') \mathrm{d}\mathbf{x} \mathrm{d}\mathbf{z}' - f_0^2$$

Remark

We also have shown that for some considerations *small* sensitivity indices are important. To be able to get relevant estimates of *small* indices one needs to apply a special combined technique which includes a variance reduction method and correlated sampling.

Example (integrand with computational irregularities).

$$f(x) = (1 + \sum_{i=1}^{d} a_i x_i)^{-(d+1)}$$

$$||a||_1 = \frac{600}{d^2}$$

$$I[f] = \int_{I/d} f(x) \mathrm{d}\mathbf{x}$$

Figure: Genz integrand function with a corner peak in two

Table: Relative error and CPU time for dimension d = 5, $I[f] = 0.21214\mathbf{e} - 05$, a = (5, 5, 5, 5, 4).

Adaptive Monte Carlo Algorithm			Plain Monte Carlo Algorithm				
N	$I_N[f]$	Rel.	Time	N	$I_N[f]$	Rel.	Time
	×10 ⁵	error	(s)		$\times 10^5$	error	(s)
100	0.213	0.008	0.01	94.10 ²	0.18	0.13	0.01
1000	0.211	0.007	0.13	94.10 ³	0.19	0.08	0.06
10000	0.212	0.001	1.42	94.10 ⁴	0.22	0.02	0.55
100000	0.212	0.0009	14.05	94.10 ⁵	0.20	0.04	5.38

Table: Relative error and CPU time for dimension d = 18,

$$I[f] = 0.99186\mathbf{e} - 05, a = \left(\frac{1}{9}, \frac{2}{27}, \frac{2}{9}, \frac{1}{9}, \frac{2}{27}, \frac{1}{9}, \frac{1}{9}, \frac{4}{27}, \frac{2}{27}, \frac{1}{9}, \frac{1}{9}, \frac{2}{27}, \frac{2}{27}, \frac{1}{9}, \frac{1}{9}, \frac{4}{27}, \frac{1}{9}, \frac{1}{9}\right).$$

Adaptive Monte Carlo Algorithm			Plain Monte Carlo Algorithm				
N	$I_N[f]$	Rel.	Time	N	$I_N[f]$	Rel.	Time
	×10 ⁵	error	(s)		×10 ⁵	error	(s)
10	0.9923	0.0005	7	2621440	0.989	0.002	6
100	0.9918	0.00005	75	26214400	0.909	0.084	60
1000	0.9919	0.00008	758	262144000	0.510	0.48	600

Figure: Total sensitivity indices of input parameters.

Figure: First-, second-, third-, fourth-, fifth-order effects.

Komentar: vyrhu izhodniq rezultat po-syshtestveno vliqnie imat indeksite ot po-visok red

1989

NOX EMISSIONS

JULY 1989 NO2 ALL EUROPEAN SOURCES

Figure: European nitrogen oxides

JUNE 1989 03 SKEWNESS (X=1.0, Y=0.25)

Figure: Skewness of the ozone concentrations (variance 0.50)

Figure: Distribution of ozone concentrations (July_1998).

Figure: Sensitivity of several species to changes of chemical rates (1998).

Figure: Sensitivity of ozone concentrations to changes of chemical rates (period 1994-1998).

Table: Total sensitivity indices of input parameters obtained using different variance-based approaches for sensitivity analysis.

	Standard	l (Sobol')	Approaches for small indices		
approach estimated quantity			red. of the m.v.	combined	
	$\mathbf{x} \in [0.1; 2.0]^3$	$\mathbf{x} \in [0.6; 1.4]^3$	$\mathbf{x} \in [0.6; 1.4]^3$	$\mathbf{x} \in [0.6; 1.4]^3$	
integrand $g(\mathbf{x})$	$f(\mathbf{x})$	$f(\mathbf{x})$	$f(\mathbf{x}) - c$	$f(\mathbf{x})-c$	
c	-	-	0.51737	0.51737	
g_0	0.51520	0.51634	0.25145	0.25145	
D	0.26181	0.26446	0.07061	0.00530	
S ₁	0.26386	0.26530	0.27354	0.52979	
S_2	0.26447	0.26359	0.26713	0.46142	
S_3	0.25348	0.25209	0.22406	0.00222	
$\sum_{i=1}^3 S_i$	0.78182	0.78097	0.76474	0.99342	

Table: Total sensitivity indices of input parameters obtained using different variance-based approaches for sensitivity analysis.

	II	d (Sobol')	Approaches for small indices				
approad estimated quantity	ch		red. of the m.v.	combined			
quantity	$\mathbf{x} \in [0.1; 2.0]^3$	$\mathbf{x} \in [0.6; 1.4]^3$	$\mathbf{x} \in [0.6; 1.4]^3$	$\mathbf{x} \in [0.6; 1.4]^3$			
S ₁₂	0.06885	0.06941	0.07994	0.00628			
S ₁₃	0.06598	0.06634	0.06845	0.00009			
S ₂₃	0.06613	0.06592	0.06686	0.00021			
$\sum_{i,j=1,i\leq j}^3 S$	0.20096	0.20167	0.21525	0.00658			
S ₁₂₃	0.01722	0.01736	0.02001	0.000003			
$S_{x_1}^{tot}$	0.41592	0.41841	0.44195	0.53615			
$S_{x_2}^{tot}$	0.41667	0.41627	0.43395	0.46791			
$S_{x_3}^{tot}$	0.40281	0.40170	0.37938	0.00252			

An adaptive MC algorithm using Sobol's approach for providing sensitivity analysis has been developed and applied for a test integrand family. The Sobol' approach is a widely used technique because it is a global and model-free approach.

The results of this work can be outlined as follows.

- Both techniques plain Monte Carlo and adaptive Monte Carlo are applicable depending on the particular mathematical model.
- Plain Monte Carlo is preferable for relatively small dimensions up to (d = 5) when the needed accuracy is not very high (the relative error is up to 10%). This approach can be applied to relatively simple mathematical models containing up to 5 input parameters.
- Adaptive Monte Carlo is preferable when large-scale models are analysed. When the number of dimensions is up to 18 the algorithm still produces accurate results for Sobol' sensitivity indices in a reasonable time. The relative error is approximately 0.01%, or smaller. The computational complexity is fairly qood.
- Our experience dealing with random but controlled high sharpness outputs (typical for some outputs of non-linear large-scale
 environmental models) shows that the higher order sensitivity indices are more influential than lower order sensitivity indices.

Future plans

- •
- •
- .

- I. Dimov, Monte Carlo Methods for Applied Scientists, London, World Scientific (2008).
- A. Saltelli, S. Tarantola, F. Campolongo, M. Ratto, Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models, Halsted Press, New York (2004).
- I.M. Sobol', Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates, *Mathematics and Computers in Simulation*, 55 (1-3) (2001) 271–280.
- I. Sobol', E. Myshetskaya, Monte Carlo Estimators for Small Sensitivity Indices, *Monte Carlo Methods and Applications* 13 (5-6) (2007) 455–465.
- Z. Zlatev and I. Dimov, Computational and Numerical Challengies in Environmental Modelling, Elsevier, Amsterdam (2006).

